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Abstract. Compressive covariance sensing (CCS) can recover the second-order 

statistics of a signal that has undergone compression, and this can be achieved 

without the requirement of sparsity conditions. Instead, certain structure 
information in the statistical domain is to be captured during compression. In 

particular, least squares compressive covariance sensing is considered which 

requires the estimation of the covariance of the available compressed signal in 
order to recover the covariance matrix of the original signal. Different covariance 

estimation methods are applied and the CCS performance compared, in the 

presence of white Gaussian noise, in terms of the normalized mean square error 
between the true and recovered covariance.   
Keywords. compressive covariance sensing, least squares, linear sparse ruler, 
covariance matching, covariance estimation methods, preprocessing.  

1. Introduction 

Compressive sensing (CS) [1] is a technique that enables simultaneous signal 

acquisition and compression to limit sensing, storage and communication costs using 

sub-Nyquist sampling of the signal. Recovery of the original signal is possible provided 

the latter has a sparse representation in a known transformed domain. This paradigm of 

CS has impacted a wide range of applications in communications, networking and 

signal and image processing. On the other hand, compressive covariance sensing (CCS) 

[2] can recover the second-order statistics of a signal after compression rather than the 

signal itself, but without the requirement of the sparsity condition. In this case, 

structure forms other than sparsity are to be captured whilst the signal undergoes 

compression. Such structure information is present in the statistical domain enabling 

the reconstruction of second-order statistics of a wide-sense stationary (WSS) signal, 

and recently [3], even non-stationary signals via online CCS. Since many signal 

processing techniques and methodologies are based on second-order statistics, CCS 

finds applications in power spectrum estimation, frequency estimation and direction-of-

arrival (DOA) estimation, among others. In CCS, it is generally assumed that the 

covariance matrix of the original signal has a Hermitian Toeplitz structure such that the 

covariance matrix can be reconstructed from the covariance sequence, so that, actually, 

it is the recovery of the covariance sequence that is aimed at.    
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This paper focuses on least squares compressive covariance sensing (LS-CCS) in 

which compression is achieved by a sparse ruler that identifies the sampling pattern. 

The latter is such that a ruler of length N-1 can measure all integer lags from zero to N-

1 according to the sparse marks of the ruler [2, 3]. This leads to a development of an 

overdetermined problem due to the assumed Hermitian Toeplitz structure of the 

covariance matrix [4, 2]. The overdetermined problem can then be solved by least 

squares leading to the LS-CCS method which involves the computation of an estimate 

of the covariance matrix of the compressed signal as a step towards recovering the 

covariance matrix of the original signal.  

Different covariance estimates of the compressed signal exhibit different properties 

and thereby affect the CCS process. The purpose of the present work is to assess the 

performance of the LS-CCS method using different covariance estimation methods in 

the presence of white Gaussian noise (WGN). It is found that the unbiased covariance 

estimation method yields the optimum results. 

The rest of the paper is organized as follows: Section 2 presents covariance and 

sparse ruler sampling. In Section 3, the LS-CCS method is explained, and different 

methods of covariance estimation are also discussed. The simulation results are 

presented in Section 4. Finally, Section 5 concludes the paper.  

 

2. Covariance and Sparse Rule Sampling 

The autocorrelation of a WSS random signal )(nx  is given by: 

])()([)( * �� �� nxnxExr  ,      (1) 

 

where the operator E is the expectation or ensemble average operator, the asterisk 

represents the complex conjugate, n is the time index and τ is the time shift or lag. 

Another second-order statistic is the autocovariance given by: 

)])(())([()( * ���� ���� nxnxExc  ,     (2) 

 

where μ is the statistical mean of the random signal )(nx . Clearly, if the mean is 

zero, autocorrelation and autocovariance, as given by Equations 1 and 2 respectively, 

are interchangeable. For simplicity, autocovariance will be referred to as covariance 

throughout the paper. Moreover, if the random process is also ergodic [5], the 

theoretical ensemble average can be replaced by a time average which is easily 

calculated as follows: 
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where T is the number of terms to be averaged.  

 

If we assume that the available number of signal samples is N, the covariance can 

be computed for lag values ranging from 0 to N – 1. The covariance as a sequence is 

then defined by: 

)]1(.......,),1(),0([ �� Nccc xxxxc .     (4) 
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In applications, covariance is generally described as a matrix and is characterized 

by specific structures such as positive semidefinite Hermitian Toeplitz [5]. As such, the 

covariance matrix can be constructed solely from its first column which is none other 

than the sequence given by Equation 4. In the present work, only real signals will be 

considered, and therefore, the covariance matrix structure is reduced to symmetric 

Toeplitz (ST).  

As explained in the introduction, CCS recovers the covariance of a signal from a 

compressed version of this signal to attain the entailed compression advantages. This is 

possible if compression is achieved using a sparse ruler. A linear sparse ruler (LSR) is 

shown in Figure 1. It can be thought of as a ruler with missing marks. The existing 

remaining marks allow all integer distances between zero and the ruler length to be 

measured.  

 

 
Figure 1. An example of a linear sparse ruler of length N -1= 10.  

K={0, 1, 3, 7, 8, 10} 

 

As shown in Figure 1, a length- (N-1) LSR consists of M marks, usually with M<< 

N. M takes on integer values between 0 and N-1. The ruler can be thought of as a set 

}1....,,1,0{ �� NK on the condition that for all lag values τ between 0 and N-1, 

there is at least one pair of elements in K, namely (k, k’), such that this pair satisfies k - 

k’ = τ, with k > k’ [2]. When this LSR of length N-1, represented by K, is synchronized 

with a signal vector of length N, it will sparsely sample the signal vector at its M marks 

resulting in a length-M compressed signal vector. Since the LSR can measure all 

distances from 0 to N-1, all possible lags can be derived and the covariance sequence of 

the original signal can be estimated from the compressed signal.  

The compression ratio of the length-(N-1) LSR is given by M/N, and is almost 

inversely proportional to the length N-1. Therefore, long LSRs perform better. There 

are also circular sparse rulers (CSR) that yield better compressibility than LSRs 

because of their ability to measure two different distances with each pair of marks [2]. 

However, the discussion in this work will be concerned with LSRs only.  

Although there arise in applications covariance matrix structures other than 

Toeplitz such as circulant [6] or banded [7], most works on CCS deal with estimating 

Toeplitz matrices with non-periodic sparse samplers using the LSR, requiring at least a 

pair of samples in the compressed signal vector for each possible value of lag [4].  

 

 

 0  1 2 3 4 5 6 7 8 9 10 

 

N =11,  M = 6 
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3. Least Squares Compressive Covariance Sensing (LS-CCS) 

To formulate the CCS problem first, consider the recovery of the covariance of a zero-

mean random signal vector 
NRx�  from the compressed signal vector MRy� given 

by: 

xy 	�           (5) 

where the matrix NM 
�	 R is called the compression matrix or sampler, and M 

<< N. Several realizations of the vector y may be available. 

The matrix 	  performs mathematically the function of the sparse ruler. It is a 

sparse matrix with at most one non-zero entry in each row or column. Each of the M 

rows of 	  contains a ‘one’ at one of the corresponding M positions of the LSR and 

zeros elsewhere. In contrast to sparse sampling matrices, there are applications that 

employ dense sampling matrices whose design relies on probabilistic arguments and 

that have been proven successful [2]. These, however, will not be considered further in 

this work.  

The theoretical covariance matrix described by Equations 1 and 2 will be re-

written here in terms of the vector x, and given a temporary different symbol here (Σ) 

for notation convenience: 

][ TE xx�� .        (6) 

The matrix Σ is assumed to be a linear combination of the ST matrices s�  that are 

elements of the set NN
S



� ������ R}.....,,,{ 110

. This implies that there exist real 

scalars s such that:  
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When the subspace �  is assumed to be a linearly independent set of matrices, the 

decomposition in Equation 7 is unique such that a knowledge of the s leads to 

knowing Σ. The above ST structure for Σ that is characteristic of WSS processes 

enables a certain degree of compression. If no prior information about Σ is available 

and the latter is simply considered to be a symmetric positive semidefinite matrix, then 

no compression is possible that preserves the second-order statistics of the original 

signal. The condition 12 �� NS  must be satisfied for �  to be linearly independent 

[4].  

The covariance of the vector y is given by  

][ TE yy�� .        (8) 

 

Substituting Equations 5 and 6 in 8 yields: 
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 where    T
ss 	�	�� ,      (10) 
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so that � is linear combination of the symmetric matrices that are elements of the set 

MM
S



� ������ R}.....,,,{ 110

. These symmetric matrices in the subspace �  are not 

necessarily Toeplitz. If compression preserves the second-order statistical information, 

that is if, for example, it is achieved according to the LSR described in Section 2, then 

�  is linearly independent and knowing s� leads to knowing s� from Equation 10. 

This entails knowing the s from Equation 9 and finally knowing Σ using Equation 7.  

The problem of estimating the s from the linear parameterization of Equations 9 

and 10 is known in the literature as structured covariance estimation or covariance 

matching [8, 4], and it plays an important role in CCS as will be shown by way of the 

following example. The example also clarifies the need for a least squares solution to 

an overdetermined system of equations.    

 

3.1.  CCS Example 

We assume the original signal vector x to have limited dimension (N=4) to clarify the 

CCS concepts discussed so far. Let the vector x be given by: 
T

o xxxx ][ 321�x
 

 

A LSR of M=3 will be used to compress the above vector. Due to the small 

dimension (N=4), M cannot be made smaller than 3 if the second-order statistical 

information is to be preserved. This LSR is mathematically equivalent to multiplying x 
by the following sparse sampling matrix: 

 

�
�
�

�

�

�
�
�

�

�
�	

1000

0100

0001

. 

 

Using Equation 5, the compressed vector will be: 

 

][ 32 xxxo�y . 

Therefore, Σ has dimensions of 44
 , whereas �  has dimensions of 33
 . The 

covariance matrix of the compressed signal, � , can be readily computed from the 

vector y using one of the covariance estimation methods to be discussed shortly, one of 

which is given by the practical computation of Equation 3. The steps for recovering the 

covariance matrix of the original signal, Σ, are the following; 

 

� Choose the matrices s�  such that they are symmetric, Toeplitz and linearly 

independent. We can choose: 
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We are taking S=4 (or N) since, as explained, it is required that 12 �� NS .  

  

� For each s� , find s�  from Equation 10. The results are: 
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It is clear that the s�  are symmetric and linearly independent, but not 

necessarily Toeplitz.  

 

� Compute the covariance matrix of the compressed signal, � , using one of the 

covariance estimation methods to be discussed next. Naturally, the availability 

of more than a single realization of y (that is, of x) gives a more accurate 

result.  

� Find the  s from Equation 9, knowing �  and s� . 

� Finally, find Σ from Equation 7. 

� The result can be verified by finding the covariance matrix Σ by the same 

estimation method used to find � . If we assume that the covariance sequence 

vector of the original signal, as in Equation 4, is denoted by xc , and the 

recovered covariance sequence vector computed for this same signal from the 

above steps is denoted by xĉ , then the normalized mean square error (NMSE) 

between the covariance sequence xc and its recovered version xĉ can be 

calculated as the ratio of the squared magnitude of the difference vector to that 

of the original sequence vector, and is given below in dB’s: 
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We notice from the above example that S=4, so we have four values of s  , that is, 

four unknowns. However, Equation 9 from which these unknowns can be 

computed provides nine equations as all involved matrices have nine elements 

each. This is an overdetermined system of equations that can be solved by least 

squares. In MATLAB, any of the two commands, lsqr(.) or, pinv(.), can be used.   

 

3.2. Estimation Methods for the Covariance Sequence of the Compressed Signal 

As can be seen from Equations 1 and 2, covariance involves averaging. LS-CCS can 

utilize an additional average as preprocessing to obtain more accurate covariance 

estimation [2, 9] that can be explained as follows. The NMSE computed from Equation 

11 becomes larger as compression increases since the total number of available signal 

samples is reduced. This is true for any estimation, not just LS estimation. Therefore, to 

increase accuracy of the estimate, several realizations of the vector y are needed over 

which an average is taken. This does not contradict the concept of compression since 

the average sampling rate is reduced anyway, and it is this reduction in sampling rate 

that entails the compression advantage of reduced hardware cost [2].  

In accordance with Equation 4, the covariance matrix of the compressed signal, � , 

has a covariance sequence, derived from its first column, that can be denoted by yc . 

Regardless of the additional averaging or preprocessing just discussed, common 

estimation methods to obtain yc are as follows:  

� Unscaled estimation: This is exemplified by the MATLAB command xcorr(.). 

This can be expressed as  

�
�

��
T

n
y nyny

1

)()()( ��c      (12) 

where T is the number of terms to be summed and is equal to ��M . 

� Biased estimation. This is given by: 
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� Unbiased estimation. This is given by: 

�
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T 1
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The covariance estimates of Equations 12-14 can all be made more accurate by 

preprocessing averaging.  
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4. Simulation Results and Discussion 

Simulations are carried out in MATLAB. A length-33 signal vector x is chosen with 

the unscaled covariance shown in Figure 2. This has been computed and plotted using 

the MATLAB function xcorr(.) whose argument is set to x, yielding the covariance for 

lag values ranging from -32 to 32 that correspond to )32(�xc  to )32(xc . The signal 

vector x is divided into three parts or three realizations, each of length 11, denoted by 

1x , 2x and 3x . Compression and CCS will be performed using one realization ( 1x ) 

and thereafter the three realizations ( 1x , 2x and 3x ) to highlight the increased 

accuracy advantage of preprocessing discussed in Section 3.2.  

Working with length-11 realizations, the CCS results are expected to be  )0(ˆ xc to 

)10(ˆ xc . Thus, the original values of xc considered for comparison or verification will 

be limited to )0(xc to )10(xc  only out of the 65 values of Figure 2.  
 

 

 
Figure 2. Unscaled covariance of the vector x of length 33 obtained by the MATLAB command 

xcorr(x). 

 

For each length-11 realization, the LSR of length N=11 shown in Figure 1 is used 

for compression to obtain a length-M y vector where M=6. For the first realization, 

CCS is carried out exactly as outlined in the example of Section 3.1, but with respect to 

the different vectors and matrices dimensions, and the NMSE is calculated using 

Equation 11.  

Preprocessing and averaging over three realizations is done as follows: The LSR of 

Figure 1 is applied to each of 1x , 2x and 3x , and the xĉ values are computed and 

averaged over the three realizations for τ = 0 to τ = 10 using LS-CCS. Thereafter the 

NMSE is calculated. 

N.A.S. Alwan / Investigation of the Effect of Different Covariance Estimation Methods370



To incorporate WGN, the noise is added to the observed compressed signal vector 

y. The compressed signal power is computed for each compressed realization denoted 

by 1y  , 2y or 3y . Each compressed realization is of length M=6 corresponding to the 

length-11 original realizations. The total concatenated compressed vector y is of length 

18 corresponding to the length-33 original signal x. The standard deviation (SD) of the 

noise is found by specifying the values of signal-to-noise-ration (SNR) in dB’s and 

substituting them in: 

 

)(1.010 dBSNR
powersignalcompressedSD 
� .    (15) 

 

In the simulations, the above value of SD is computed and added to the 

compressed realizations. CCS is performed and NMSE is computed in dB from 

Equation 11. All simulations are averaged over 1000 independent runs. 

To compare between the different estimation methods of the covariance yc , all the 

afore-mentioned explained procedure is repeated for each of the estimation methods 

presented in Section 3.2, and xĉ is found in each case by LS-CCS. Note that the 

computed original xc needed in Equation 11 must be found by the same estimation 

method used for yc . 

Figure 3 demonstrates the results of the CCS process as a plot of the NMSE versus 

the SNR when each of the three estimation methods are used for the computation of the 

covariance of the compressed signal vector. Preprocessing is employed so that the three 

realizations are used. We notice that the unbiased scaled estimation results in the best 

CCS performance for moderate and high SNR values whereas the unscaled method is 

best for low SNR. This is explained as follows. In general, the smaller the value of lag 

τ, the higher the quality of the estimate because the number of averaging terms is larger 

for small lags as can be observed from Equations 12-14.  Moreover, we note that the 

biased and unbiased estimation methods in Equations 13 and 14 reduce the covariance 

magnitudes compared to the unscaled estimation of Equation 12, thereby reducing the 

importance of the high-lag covariance values even further and making the low-lag 

values the prominent or dominant ones. It is also noteworthy that the white 

uncorrelated noise variance or power is actually added only to )0(yc  and is absent 

from the rest of the covariance values. Thus, for low SNR the noise level is high and 

therefore the dominant low-lag covariance values are the noisy ones when the second 

and third estimation methods are used, leading to poor overall CCS performance. In the 

first method, the noisy low-lag values are not that dominant because the covariance 

values for other lags are also quite considerable.  
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Figure 3. LS-CCS performance as a plot of NMSE (dB) vs. SNR (dB) using the unscaled, biased and 

unbiased covariance estimation methods. Three realizations are used. 

 

To demonstrate the accuracy advantage of preprocessing, Figure 4 is a plot of 

NMSE vs. SNR using only the third estimation method (scaled unbiased) with LS-CCS 

carried out for one and then three realizations. Clearly, the latter case gives better 

results, that is, smaller NMSE.  

 

 

 
Figure 4. LS-CCS performance as a plot of NMSE (dB) vs. SNR (dB) using the scaled unbiased 

covariance estimation method, and for the cases of one and three realizations. 
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5. Conclusion 

Least squares CCS is simulated using different covariance estimation methods in 

computing the compressed signal covariance in order to recover the covariance of the 

original signal through covariance matching. It is found that the scaled biased and 

especially the unbiased covariance estimation methods, in achieving LS-CCS, 

outperform the unscaled method for moderate and high SNR’s. This improvement is 

manifested in terms of the normalized mean square error between the true and 

recovered covariance values. Additional averaging by preprocessing is found to result 

in even better CCS performance. As future work, applications that necessitate 

computation of correlation values from compressed measurements will be researched, 

such as the important field of single-tone frequency estimation in white and colored 

noise. 
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