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Abstract. This paper presents the modeling, simulation and control of a human
gait system, which consists of the modeling of a leg by means of Euler’s classical
mechanics and Lagrange’s formalism, where the equations of motion of the joint
are obtained both of the hip as of the knee and the solution of these. In addition, a
state feedback control was implemented and the controller gains were determined
by means of the Ackerman formula, based on the equations of motion rewritten
in state space and simulated in simulink, where the behavior of the system can be
observed with control.
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1. Introduction

Human gait is a complex process that integrates the relationship of various subsystems
of the human body necessary to generate biped movement. In addition, this locomotion
process is marked by some phases, which are the support phase and the equilibrium
phase that is selected in a series of stages that begin with the heel contact with the ground
and end with the takeoff of the foot [1]. This research seeks to provide a dynamic model
that describes the movement of the leg joints such as the hip and knee using the Euler-
Lagrange formalism and a control, which serves as a support to reproduce human gait
in an electromechanical environment. The objective was to investigate and describe a
series of basic mechanical and physiological mechanisms behind human walking. The
methodologies used were the biomechanical analysis of movement and physiology [2]. It
is important to note that one leg dynamics is only one of many possible approaches to its
study. The pathological approach integrates simple principles, clinical observations, and
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controlled experiments performed to explain the advantages of the method. The dynamic
study and control by state feeding that we present here show how the dynamic walking
approach could be applied to integrative study of gait pathologies [3]. These examples
can be seen as starting points for new research, where experimental evidence will be
indispensable [4]-[5]. Simple principles can’t explain everything of the complexities of
the march, but can help ask helpful questions what you have to answer to understand
those complexities. There are two approaches to solving the direct and inverse dynamic
model. A direct dynamic model is one that expresses the temporal evolution of joint
coordinates as a function of the forces and torques involved, and an inverse dynamic
model is one that expresses the forces and torques that intervene as a function of the
evolution of joint coordinates and their derivatives [6]-[7].

It should be noted that the data obtained from this study is based on a simulation
that uses computational tools. The simulation is based on a mathematical model that
indicates a change between potential energy and kinetic energy, resembling the action of
a double pendulum. This, with the evolution of this type of models in the future, they will
be usable in the clinical context either for the training of medical personnel or to plan
adjustments in the alignments that individuals may undergo, without presenting risks
to patient stability [8]. The gait model produced with Solidworks was of great help in
simulating the behavior of the leg system [9].

A model of the double pendulum in two dimensions is the pendulum-like motion of
the swinging leg. The same conservation of mechanical energy is applied, so little work
is necessary to move the swinging leg. Given a suitable starting position and velocity, the
entire single limb support phase can be produced largely through the movement of 2 cou-
pled pendulums representing the posture and swing of the leg. This modeling approach
suggests that both the hip and the legs can take advantage of the pendulum dynamics
during single-limb support [10] - [11].

During the present work several aspects of study were taken into account, starting
in the section 2, by the dynamic modeling of the system through the Euler-Lagrange
equations in a in a non-conservative way, the numerical model, the matrix representation
of states and the graphic analysis of the numerical solutions were carried out.

Next, in section 3, the control of the dynamic system is shown, a rigorous study of
the controllability and observability of the system is carried out, as well as the dominant
poles and the gain matrix that allows designing the controller are calculated. The simu-
lation of the human walking system is performed by applying the controller to an input
signal. In the section 4, we present the conclusions of the work.

2. Symbolic model

In clinical routine, gait analysis identifies normal or pathological movements. From a
simplified model of the structure of the human body, perform this analysis at different
levels and complementary techniques that evaluate different aspects of neuromuscular
function, the mechanical model is described below. From Figure 1, we can take the fol-
lowing measurements: x1 and y1 are the coordinates of the center of mass of the upper
leg (femur) and in the same way, x2 and y2 are the coordinates of the center of mass of
the lower leg (tibia and fibula).

We can start with taking some measurements from the drawing,
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Figure 1. Initial system image

then we obtain the linear speed of the first link or the first joint,

v21 = ẋ2
1 + ẏ21 = r21 θ̇

2
1, (1)

and also, the linear speed of the second link,

v22 = ẋ2
2 + ẏ22 = l21θ̇

2
1 + r22 θ̇

2
2 + 2l1r2θ̇1θ̇2 cos(θ1 − θ2), (2)

2.1. Kinetic energy

Kinetic energy is defined as

K =
1

2
m1v

2
1 +

1

2
m2v

2
2 ,

replacing Eqs. (1) and (2), in the previous expression we obtain,

K =
1

2
m1r

2
1 θ̇

2
1 +

1

2
m2[l

2
1θ̇

2
1 + r22 θ̇

2
2 + 2l1r2θ̇1θ̇2 cos(θ1 − θ2)]. (3)

2.2. Gravitational potential energy

Gravitational potential energy is defined as

U = m1gy1 +m2gy2,

getting,

U = −m1gr1 cos θ1 −m2gl1 cos θ1 −m2gr2 cos θ2. (4)
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2.3. Lagrangian density and equations of motion

Lagrangian density is defined [12],

L = K − U,

replacing Eqs. (3) and (4), in the previous expression we obtain

L = 1
2m1r

2
1 θ̇

2
1 +

1
2m2[l

2
1θ̇

2
1 + r22 θ̇

2
2 + 2l1r2θ̇1θ̇2 cos(θ1 − θ2)] +m1gr1 cos θ1+

+m2gl1 cos θ1 +m2gr2 cos θ2.
(5)

The Euler-Lagrange equations of motion have the form,

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
+

∂Di

∂θ̇i
= τi, i = 1, 2. (6)

here, Di is the Rayleigh dissipation function and it is only considered the viscous
case [13], in other words, the friction, we can define Rayleigh function as a homogeneous
quadratic form at generalized speeds, this results as a theoretical suggestion and they
could be calculated in practice. With this in mind, Rayleigh’s dissipation function can
take the form,

fr =
∂Di

∂q̇i
=

1

2
βiq̇

2
i . (7)

From it, we can define the forces acting on the system, we must remember that the
friction forces are proportional to a power of the instantaneous velocity, fr = −bvn.
In our case, these friction forces are related to the forces delivered to each link in the
system. For our case, we have two generalized coordinates that are (θ1, θ2), resulting in
the following equations,

resulting the motion equations,

τ1 = θ̈1(m1r
2
1 +m2l

2
1) +m2l1r2θ̈2 cos(θ1 − θ2) +m2l1r2θ̇

2
2 sin(θ1 − θ2)+

+(m1r1 +m2l1)g sin θ1 + β1θ̇1.
(8)

τ2 = θ̈1m2l1r2 cos(θ1 − θ2) +m2r
2
2 θ̈2 −m2l1r2θ̇

2
1 sin(θ1 − θ2)+

+m2r2g sin θ2 + β2θ̇2.
(9)

2.4. Numerical model

To define the numerical model, the constant values are replaced,

P.A. Ospina-Henao et al. / Modeling of a Leg and Knee System for the Analysis of Human Gait 291



Table 1. System variables.

Variable Value Units

m1 8 [kg]
m2 3.72 [kg]
l1 0.45 [m]
r1 0.195 [m]
r2 0.165 [m]
g 9.81 [m/s2]
β1 2.288 [kg/s]
β2 0.175 [kg/s]

here, m1 is thigh mass, m2 the calf mass, l1 thigh length, r1 length to center of
mass of thigh, r2 length to center of mass of calf, g the gravitational acceleration, β1

hip coefficient of friction and β2 knee friction coefficient. The measurements were taken
for a male person 1.77 m tall and 80 kg, the mass of the thigh segment and the calf
next to the center of mass of each one was taken according to the synthesis of classic
anthropometry works presented by Winter [14]. Replacing the values of the constants of
Table 1, in Eqs. (8) and (9), we obtain,

τ1 = 31.72554 sin θ1 + 0.27621θ̇22 sin(θ1 − θ2) + 0.27621θ̈2 cos(θ1 − θ2)+

+2.288θ̇1 + 1.0575θ̈1
(10)

τ2 = 6.021378 sin θ2 − 0.27621θ̇21 sin(θ1 − θ2) + 0.27621θ̈1 cos(θ1 − θ2)+

+0.175θ̇2 + 0.101277θ̈2
(11)

here, Eqs. (10) and (11), represent a system of coupled partial differential equations.

2.5. Matrix representation in state variables

The matrix representation of the dynamic model is given by [15]

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ, (12)

then, we can rewrite the system of Eqs. (12) like this,

[
m1r

2
1 +m2l

2
1 m2l1r2 cos(θ1 − θ2)

m2l1r2 cos(θ1 − θ2) m2r
2
2

] [
θ̈1
θ̈2

]
+[

β1 m2l1r2θ̇2 sin(θ1 − θ2)

−m2l1r2θ̇1 sin(θ1 − θ2) β2

] [
θ̇1
θ̇2

]
+[

(m1r1 +m2l1)g sin θ1
m2r2g sin θ2

]
=

[
τ1
τ2

] (13)

The state variables of a system are generally critical variables, of interest to be con-
trolled, observed or that have an important relevance in the system. It is essential to keep
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in mind that these variables may not be accessible to the user; that is, they cannot be
measured with sensors, so in these cases the use of state observers is necessary. In the
case of leg prostheses, four variables are critical, which are the position and angular ve-
locity of each link. For these four state variables the use of an observer is not necessary,
since physically they can be measured with encoders and there is the concept of classi-
cal mechanics that the position is the integral of velocity, and velocity is the integral of
acceleration.

Clearing the accelerations, we get,

θ̈1 =
τ1−m2l1r2θ̇

2
2 sin(θ1−θ2)−β1θ̇1−(m2l1+m1r1)g sin θ1

m2l21+m1r21−m2l21 cos2(θ1−θ2)
−

− l1 cos(θ1−θ2)[m2l1r2θ̇
2
1 sin(θ1−θ2)+τ2−β2θ̇2−m2r2g sin θ2]

m2r2l21+m1r21r2−m2r2l21 cos2(θ1−θ2)
,

(14)

θ̈2 =
(m1r

2
1+m2l

2
1)[m2l1r2θ̇

2
1 sin(θ1−θ2)+τ2−β2θ̇2−m2r2g sin θ2]

m2
2l

2
1r

2
2+m1m2r21r

2
2−m2

2l
2
1r

2
2 cos2(θ1−θ2)

+

+
l1 cos(θ1−θ2)[m2l1r2θ̇

2
2 sin(θ1−θ2)−τ1+β1θ̇1+(m1r1+m2l1)g sin θ1]

m2r2l21+m1r21r2−m2r2l21 cos2(θ1−θ2)
.

(15)

Because the theoretical model obtained is nonlinear, it is required to linearize it for
the design of the controller in state space. The linearization of the system was performed
around its unstable equilibrium point using Taylor’s series, where only the first term of
the series is taken since it is the linear term. The values of the state variables taken for
the linear approximation are (0, 0, 0, 0), these values are due to the fact that the speeds
must be zero for the system to remain in the desired position. Based on the above, the
calculation of the linear model will be based on the state variables, which have the form,

x =

⎡⎢⎢⎣
x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
θ1
θ̇1
θ2
θ̇2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
θ1
ω1

θ2
ω2

⎤⎥⎥⎦ , (16)

and the equations of state are,

ẋ =

⎡⎢⎢⎣
ẋ1

ẋ2

ẋ3

ẋ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
θ̇1
θ̈1
θ̇2
θ̈2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
θ̇1
ω̇1

θ̇2
ω̇2

⎤⎥⎥⎦ . (17)

To reduce the derivatives of the differential equations by one degree Eqs. (14) and
(15), which represent the dynamic solution of the system, we define the following vectors
of state, ω1 = θ̇1, ω2 = θ̇2, ω̇1 = θ̈1, ω̇2 = θ̈2, which physically represent the angular
velocities and accelerations of both links. Once the state vectors have been defined, the
Eqs. (14) and (15), can be rewritten as follows,
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ẋ1 = x2, (18)

ẋ2 = ω̇1 =
τ1−m2l1r2ω

2
2 sin(θ1−θ2)−β1ω1−(m2l1+m1r1)g sin θ1

m2l21+m1r21−m2l21 cos2(θ1−θ2)
−

− l1 cos(θ1−θ2)[m2l1r2ω
2
1 sin(θ1−θ2)+τ2−β2ω2−m2r2g sin θ2]

m2r2l21+m1r21r2−m2r2l21 cos2(θ1−θ2)
,

(19)

ẋ3 = x4, (20)

ẋ4 = ω̇2 =
(m1r

2
1+m2l

2
1)[m2l1r2ω

2
1 sin(θ1−θ2)+τ2−β2ω2−m2r2g sin θ2]

m2
2l

2
1r

2
2+m1m2r21r

2
2−m2

2l
2
1r

2
2 cos2(θ1−θ2)

+

+
l1 cos(θ1−θ2)[m2l1r2ω

2
2 sin(θ1−θ2)−τ1+β1ω1+(m1r1+m2l1)g sin θ1]

m2r2l21+m1r21r2−m2r2l21 cos2(θ1−θ2)
.

(21)

The following border conditions are assumed,

θ1 = 0→ ω1 = 0

θ2 = 0→ ω2 = 0,

taking as a reference the upright position of a person on both feet. The equilibrium
points suggested by experimental physics [16], are (0, 0, 0, 0), (0, π, 0, 0), (π, π, 0, 0),
(π, 0, 0, 0). These points are where the force of gravity, g, does not influence the move-
ment and like the acceleration, θ̈1 = θ̈2 = 0, the masses of the two pendulums never
change places. Now as sin(π) = sin(0) = sin(−π) = 0 = ẋ2 = ẋ4 = 0. Points
(0, π, 0, 0), (π, π, 0, 0), (π, 0, 0, 0), are unstable. Gravity is what ensures the instability
of these points. The reason is that in a neighborhood of any of these points, the force of
gravity will involve a change in the acceleration of the pendulum centers of mass, ẋ2,
ẋ4, and this change implies a change in position, the change is in the direction of the
set of points such that x1 = x3 = 0. This implies that for every neighborhood of the
equilibrium points there is an orbit that comes out of that neighborhood, and therefore
the points are unstable.

2.6. Graphical Analysis

In this section we analiced the solutions for different points.
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Figure 2. Solution θ1 for (π, 0, 0, 0) Figure 3. Solution θ2 for (π, 0, 0, 0)

At this point the hip angle at 180◦ is evaluated, since the leg is not able to rotate to
this position, the natural response of the system is unstable as can be seen in the Figure
2 and the Figure 3.

Analyzing the point of operation (π/9, 0, 2π/2.5, 0) of the swing phase, which oc-
curs between the take-off of the foot and the middle phase of the swing, where the hip
is in neutral position and the knee rotates 20◦ with an angular velocity of 2.51[rad/s],
based on the cycle period, the following numerical solution is obtained.

Figure 4. Solution θ1 for (π/9, 0, 2π/2.5, 0) Figure 5. Solution θ2 for (π/9, 0, 2π/2.5, 0)
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Figure 6. Solution θ̇1 for (π/9, 0, 2π/2.5, 0) Figure 7. Solution θ̇2 for (π/9, 0, 2π/2.5, 0)

It can be seen that in the Figure 4 and the Figure 5, the graph starts from the point
designated π/9 for θ1, oscillating in an acceptable working range for the angles of ro-
tation performed by the hip, as well as the angular velocity of the hip θ̇1 that starts at
2.51[rad/s] as shown in Figure 6. Furthermore, even though the knee angle θ2 and the
angular velocity θ̇2 is zero, it is observed how these vary during the 2.5 seconds of the
gait cycle, which indicates that the equations of motion are coupled, that is, one depends
on the other, as can be seen in Figure 7.

2.7. Linealization

An approximate linearization of the system was performed using Taylor’s series, in
which the selected operating points are (0, 0, 0, 0). For the system [17]-[18],

ẋ = Ax+Bu

y = C̃x,

where, A, B y C̃, are the Jacobian matrices of the system and are generally calculated
and take the form,

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0

− g(m1r1+m2l1)
m1r21

− β1

m1r21

m2gl1
m1r21

l1β2

m1r2r21

0 0 0 1

m2gl
2
1+m1gr1l1
m1r2r21

l1β1

m1r2r21
− g(m1r

2
1+m2l

2
1)

m1r2r21
−β2(m1r

2
1+m2l

2
1)

m1m2r21r
2
2

⎤⎥⎥⎥⎥⎥⎦ (22)

B =

⎡⎢⎢⎢⎢⎢⎢⎣

0

1
m1r21

0

m1r
2
1+m2l

2
1

m1m2r21r
2
2

⎤⎥⎥⎥⎥⎥⎥⎦ (23)
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C̃ =

[
1 0 0 0

0 0 1 0

]
(24)

Replacing the value of the constants of the Table 1, in Eqs. (22), (23), and (24), the
following linearized matrices of the system are obtained,

A =

⎡⎢⎢⎢⎣
0 1 0 0

−104.2917 −7.5214 53.9840 1.5689

0 0 0 1

284.4320 20.5128 −206.6837 −6.0069

⎤⎥⎥⎥⎦ (25)

B =

⎡⎢⎢⎢⎢⎢⎣
0

3.2873

0

34.3250

⎤⎥⎥⎥⎥⎥⎦ (26)

C̃ =

[
1 0 0 0

0 0 1 0

]
(27)

Given the linearized matrices Eqs. (25), (26) and (27), it can be seen that the system
is a SIMO case, where there is one input (1 column in matrixB) and two outputs (2 rows
in matrix C̃), from the above the transfer matrix can be obtained,

M.T =
1

s4 + 13.5s3 + 324s2 + 627.4s+ 6200.6

[
3.3s2 + 73.6s+ 2532.4

34.3s2 + 325.6s+ 4514.8

]
(28)

The transfer matrix Eq. (28), is defined as the relationship between the inputs and outputs
of the system, in the denominator is the characteristic polynomial, which for this case is
fourth degree, that is, the system has four poles, this number of poles is the same that
must have the desired poles to control the system.

3. Dynamic system control

A state feedback controller was designed due to its good performance in the face of mod-
eling inaccuracies or disturbances. However, before designing the controller, the control-
lability and observability of the system must be verified, this is done by calculating the
controllability matrix Q = [B AB A2B A3B] and the observability matrix
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O :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C̃

C̃A

C̃A2

...

C̃An−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= n

to verify the controllability and observability each of the matrices must have rank n [18],
and effectively for this case, each matrix has a rank equal to 4. for our case we have,

Q =

⎡⎢⎢⎢⎣
0 3.2873 29.1289 1073.4

3.2873 29.1289 1073.4 −26020
0 34.325 −138.7538 −4728.4

34.325 −138.7538 −4728.4 87384

⎤⎥⎥⎥⎦ (29)

and

O :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

−104.2917 −7.5214 53.9840 1.3689

284.4320 20.5128 −206.6837 −6.0069
1230.7 −15.5373 −730.3088 32.7590

3847.9 6.9216 2348.9 −138.4177

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Rank(O) = 4 (30)

The design of the controller was carried out using the pole allocation technique, the
desired poles of the system are placed under the criterion of settlement time ts = 4T ,
(where T = 2.5 seconds the duration of the running cycle), therefore, the settling time
is 10 seconds and the overshoot, which is defined by the maximum amount that the
response exceeds the steady state value, in this case, you want to attenuate this as much
as possible parameter, this is why an overshoot less than 5% is defined. With the two
previous parameters the dominant poles of the controller are determined by means of the
equations,

ξ =
ln
(
OV
100

)√
π2 + ln

(
OV
100

)2 =
ln
(

5
100

)√
π2 + ln

(
5

100

)2 = 0.69 (31)

ωn =
4

ξ ts
=

4

(0.69)(10)
= 0.57 (32)

where, OV , is the overshoot value, ts is the settlement time, then the values obtained
from Eqs. (31) and (32), are replaced in the equation,
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s2 + 2ξωns+ ω2
n = s2 + 0.8s+ 0.33, (33)

solving the quadratic equation, we know the dominant poles of the controller

μ1 = −0.4 + 0.4195i, (34)

μ2 = −0.4− 0.4195i. (35)

Since the system is of order 4, that is, it has four poles, this is deduced from the Eq.
(28), four poles must be defined for the controller, from Eq. (33), two dominant poles
were obtained, and the remaining two poles are insignificant, which are located 5 to 10
times farther than the dominant poles μ3 = −50 and μ4 = −45. Feedback gains are
determined using Ackerman’s formula [18],

K = [0 0 0 1]Q−1φ(A), (36)

where, φ(A) = A4 + α1A
3 + α2A

2 + α3A+ α1I. The characteristic equation is given
by,

| s−A+BK | = | sI−A |
= (s− μ1)(s− μ2)(s− μ3)(s− μ4) (37)

= s4 + α1s
3 + α2s

2 + α3A+ α4,

in our case,

(s−0.4+0.4195i)(s−0.4−0.4195i)(s−50)(s−45) = s4+95.8s3+2326.3s2+1831.9s+756

to get feedback gains

K = [−105.3237 − 9.8608 57.8717 3.3412], (38)

here, the Eq. (38), there is the controller gain vector, whereK1 = −105.3237 is the state
feedback gain x1,K2 = −9.8608 is the state gain x2,K3 = 57.8717 is the state gain x3

and K4 = 3.3412 is the gain of the status x4.

Figure 8. Block diagram with controller
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The Figure 8, shows the block diagram of the system, where the matrices A, B, C̃
previously described are entered respectively, additionally, the controller feedback with
the gain vector Eq. (38), the result of the controller simulation is shown in Figure 9.

Figure 9. Hip and knee exit angles.

In the Figure 9, shows the response of the hip (θ1) and knee (θ2) angles with the
controller to a sinusoidal input, where it can be seen that the hip joint has a greater
amplitude with respect to the knee Since the hip has a wider turning range than the knee.
In addition, it is shown how each of the two outputs try to follow the sinusoidal input
until both stabilize in a certain time, keeping the input signal within the operating range
of each one of them.

4. Conclusions

The human gait model resembles the mechanical behavior of a double pendulum, the
equations of motion are obtained by means of the Euler-Lagrange formalism based on
the analysis of energies, since this allows to obtain a dynamic model of the system, these
equations they are linearized using the Taylor series approximation in order to design
and implement a state feedback control system, which is based on a design in state space.
As can be seen in Figure 9, the controller responds satisfactorily in such a way that it
satisfies the variations of the angles of both the hip and the knee, following the input
signal, giving good results to the pole assignment criterion and Ackerman’s formula for
obtaining feedback gains. On the other hand, this study allows us to define a dynamic
model of human gait, which can be taken into account for the design of electromechanical
devices such as prostheses and / or recovery devices.
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