
Detecting Similar Versions of Software by

Learning with Logistic Regression on

Binary Opcode Information

Hyun-il LIM1

Department of Computer Engineering, Kyungnam University, South Korea

Abstract. Logistic regression is widely used in decision problems to classify inputs

through training from the previously known training data. In this paper, we propose

an approach to detecting similar versions of software by learning with logistic

regression on binary opcode information. Because the binary opcode information

has detailed information for executing software on an individual machine, the

learning from the binary opcode information can provide effective information in

detecting similar versions of software. To evaluate the proposed approach, we

experiment with two Java applications. The experimental results showed that the

proposed logistic regression model can accurately detect similar versions of

software after learning from training data. The proposed logistic regression model

is expected to be applied in applications for comparing and detecting similar

versions of software.

Keywords. Logistic regression, Software analysis, Similar version detection,

Binary opcode analysis

1. Introduction

In recent computing environments, software plays an important role in various areas. To

support efficient development and management of software, it is required to understand

the characteristics of software. Software analysis is an approach to understand the

specific characteristics of software. Detecting similar versions of software is one of the
basic software analyses to figure out the similarity between versions of software and

detect similar ones. The approach has various application areas, such as software

similarity analysis [1, 2], code clone detection [3], or malware detection [4].

Machine learning [5] is an approach to generating a model for predicting solutions
for given problems by learning previously known training data. Several related works on

comparing the similarity of software by using machine learning have been studied, such

as linear regression [6] and support vector machine [7]. Besides, deep neural networks

have been applied through analyzing the n-grams of binary codes [8], common features
of binary data [9], or images of binary codes [10].

Logistic regression is one of various machine learning approaches based on a

statistical model to describe the relationship between independent and dependent

1 Corresponding Author, Department of Computer Engineering, Kyungnam University, 7

Kyungnamdaehak-ro, Masanhappo-gu, Changwon, Gyeongsangnam-do 51767, South Korea; E-mail:

hilim@kyungnam.ac.kr.

Machine Learning and Artificial Intelligence
A.J. Tallón-Ballesteros and C. Chen (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200776

146

variables. This method is effectively used in binary decision problems for predicting the
possibility of events. In this paper, we present an approach to applying binary code

information to logistic regression to detect similar versions of software. Because it is not

suitable to directly apply software as training data for analyzing and classifying software

in logistic regression, it is essential to generate data for representing the features of
software as training data. So, we present a method for generating training data of logistic

regression for detecting similar versions of software. To evaluate the proposed approach,

we experiment and show the experimental results for detecting similar versions in Java

applications.

2. Logistic Regression for Software Analysis

Logistic regression [11] is a linear modeling approach to find the relation between the

independent variable x and dependent variable . In binary logistic regression, the

dependent variable has one of two values of 0 and 1 according to whether the

predicting event occurred or not. The logistic regression model is generated from the

learning of the relationship between the independent variable x and dependent variable

y. The dependent variable y stands for the output data for presenting the occurrence of

the event. The trained model can predict the possibility of the event for input data. So, in
a binary prediction problem, the dependent variable has the value 0 or 1 according to the

occurrence of the event. To formulate such a model, the representative logistic model is

described as a function , that is continuously increasing between 0 and 1 according

to the input variable x as follows:

This logistic model function can be used to model the possibility of an event on the input

variable x to the result value between 0 and 1.

To design a logistic model for detecting similar versions of software, it is required

to represent the features of software as input data of logistic regression. The output data
are labeled 0 or 1, depending on whether the input data is for similar versions of software

or not. To describe the features of software as input data, we consider the information of

binary opcode of software. The binary opcode consists of instructions that are performed

to accomplish a task in computing environments. So, the data represent how the task is
performed to achieve the goal of the software. As the opcode information describes the

characteristics of software at the instruction level, the information is an important

criterion for distinguishing different versions of software. In this paper, we design a

logistic regression model for detecting similar versions of software through data
analyzed from binary opcode information that is derived by comparing the opcode

distribution information of software. For example, when there are n types of instructions

in software, let the opcode distribution information of two software A and B be

 and , respectively. Then, the distance data comparing the

two software A and B is formulated as follows:

H.-i. Lim / Detecting Similar Versions of Software by Learning with Logistic Regression 147

So, the distance data is used as input data for logistic regression, and the model is trained
with 1 or 0 according to the similarity of the two software.

Logistic regression is a method for finding a linear relationship between input and

output to model the probability of a certain class. We design a logistic regression model

for learning from the distance data of software for detecting similar versions. After the
logistic regression model is trained with the distance data and label with 0 or 1 depending

on the similarity of data, the model can be used as a classifier for detecting similar

versions of software.

3. Designing Logistic Regression for Detecting Similar Versions of Software

In this section, we design the procedure for the logistic regression approach to detecting

similar versions of software. Figure 1 shows the procedure for the designed approach.

The binary code analyzer is a stage for analyzing the binary opcode from input software.

It analyzes the structure of input software and generates the opcode distribution
information. The binary opcode information needs to be compared with other data to

distinguish similar versions of software. The training data generator compares the opcode

information and makes training data set with labels 0 or 1 according to the similarity.

After the logistic regression model is trained with the training data set, a logistic
regression model is constructed for detecting similar versions of software.

Figure 1. The procedure for applying logistic regression for detecting similar versions of software.

To evaluate the accuracy of the proposed approach, the generated model has

experimented with a set of the other test data. The result can show the applicability of

the proposed model in detecting similar versions by learning with logistic regression on
binary opcode information.

4. Experimental Results

4.1. Experiments

In this section, we experiment on real-world Java applications to evaluate the accuracy
of the proposed approach. As described in Figure 1, the binary code analyzer and the

training data generator were implemented in Python to analyze binary opcode

H.-i. Lim / Detecting Similar Versions of Software by Learning with Logistic Regression148

information and generate the data set for logistic regression. The logistic regression for
the data was implemented in Python and scikit-learn [12] to train the logistic regression

model from the generated data and construct a model for detecting similar versions of

software.

Table 1. The experimental environment for evaluating the logistic regression model for detecting similar

versions of software.

Operating system CPU RAM Binary opcode format

Microsoft Windows 10 Core i7-4790 32GB Java bytecode

Table 1 shows the experimental environment for evaluating the proposed approach.

The experiment was performed in Microsoft Windows 10 operating system with 32 GB

of main memory. To evaluate the efficacy of the proposed method, we used Java

bytecode as a binary opcode format. Java class files are executable files for Java Virtual
Machine and they have Java bytecode as binary opcode to execute programs in the virtual

machine. So, Java class files were analyzed to construct data sets of bytecode information.

As benchmark software, we used Jakarta ORO and ANTLR for training and evaluation,

respectively.

Table 2. The specification of the benchmark software used for training and testing in the experiment.

 Training Data Test Data

Name of benchmark software Jakarta ORO ANTLR

Total # of class files 50 117

Total # of training or test data (similar versions) 1672 (38) 9672 (93)

Max # of bytecodes in a class file 923 1646

Average # of bytecodes in a class file 143.5 172.3

Max # of bytecodes in a similar version 1029 1705

Average # of bytecodes in a similar version 167.7 190.3

Table 2 shows the specification of the benchmark software for this experiment. The
information on the numbers of Java bytecodes in benchmarking data is described. To

ensure the reliability of the evaluation results, we used the class files that have more than

10 bytecodes as benchmark software. The data sets were generated by analyzing Java

bytecode information and comparing the data from two versions of Java class files. The
total numbers of data for training and testing were 1672 and 9672, respectively. Among

the data, the numbers of data for similar versions were 38 and 93, respectively. To

evaluate the detection accuracy for similar versions of software, we used the

Smokescreen Java obfuscator to generate similar versions of the benchmark software.
The Smokescreen obfuscator generates similar versions by modifying names, Java

bytecode instructions, control flows to obfuscate internal structures of the original Java

programs. So, the numbers of Java bytecodes in the similar versions were increased as

compared to the original versions.
With the training data set from Jakarta ORO, we applied the logistic regression

approach to generate a model for detecting similar versions. The generated detection

model was evaluated with the test data set generated from ANTLR. From an analysis of

H.-i. Lim / Detecting Similar Versions of Software by Learning with Logistic Regression 149

experimental results, we can confirm the applicability of the proposed approach in
detecting similar versions of software.

Table 3. The evaluation results of the experiments for detecting similar versions of software with the test data

described in Table 2.

 Evaluation Results

Total # of test data (similar versions) 9672 (93)

The # of detections for similar versions 93

The # of false detection for different versions 0

Detection accuracy 100%

Average training time (for 1672 training data) 12.0s

After generating a logistic regression model from the training data, the model was

applied to the test data to evaluate how many similar versions of software can correctly

be detected. Table 3 shows the evaluation results of the experiment. The number of total

test data was 9672, and the number of data for similar versions was 93. The evaluation
results showed that all the 93 similar versions in the test data were correctly detected.

Besides, there was no false detection for the test data from different versions of software.

The average training time was 12.0 seconds, and the detection accuracy was 100% for

the test data. These results show that the model trained with the bytecode information of
Java class files is highly effective in detecting similar versions of software.

4.2. Discussion and Future Work

From the evaluation results, we confirm that the logistic regression model on Java

bytecode information can effectively detect similar versions of software. This is because
the learning from the bytecode information can acquire the knowledge needed to

distinguish different versions of software by adopting the features in the level of binary

instructions. In the proposed approach, we have evaluated the accuracy for detecting

similar versions of software with the model trained with the data of the same types of
similar versions generated by the Smokescreen obfuscator. Because the training data

with the previously known types of similar versions can reflect the exact information

needed to detect similar versions of software, the accurate results can be achieved in the

evaluation results. So, we confirm that well-prepared training data to reflect the actual
environment is important for improving the accuracy of machine learning.

For the practical application of the proposed model for detecting similar versions of

software, it needs to generalize the execution environment to adapt data with various

types of similar versions. In the evaluation experiments, the model can be trained to fit
well to the data of the same types of similarity. In the case where the exact type of similar

versions is not clear, it will be difficult to construct accurate training data. In future work,

we plan to evaluate the proposed model in environments without knowing the

information on similar versions. To improve the ability to detect similar versions of
software in real-world environments, we plan to analyze and reflect the additional

information from software, such as control flows, opcode sequences, or function calls in

the software, as the feature data for identifying the similarity. We also plan to experiment

and compare the effectiveness in detecting similar versions of software with other
machine learning algorithms.

H.-i. Lim / Detecting Similar Versions of Software by Learning with Logistic Regression150

5. Conclusion

Logistic regression is widely used in binary decision problems. In this paper, we designed

an approach to detecting similar versions of software by learning with logistic regression

on binary opcode information. Because the binary opcode information has detailed

information for executing software, the learning from the information can be applied in
modeling logistic regression for detecting similar versions of software. To evaluate the

proposed approach, we implemented the bytecode analyzer and logistic regression model

and experimented with two Java applications. The experimental results showed that the

proposed logistic regression model can accurately detect similar versions of software.
We confirm that the binary opcode information is effective data for reflecting the features

of software for detecting similar versions. The proposed logistic regression model is

expected to be applied as a reliable measure in detecting similar versions of software.

Besides, a well-designed model for learning from data is expected to be applied to solve
prediction problems in various areas.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant

funded by the Korea government (Ministry of Education) (No. NRF-
2017R1D1A1B03034769).

References

[1] Niccolo M, Roberto G, Mila DP. A deep learning approach to program similarity. Proceedings of the 1st
International Workshop on Machine Learning and Software Engineering in Symbiosis (MASES).

September 2018. pp. 26-35.

[2] Noam S, Nimrod P. Binary similarity detection using machine learning. Proceedings of the 13th

Workshop on Programming Languages and Analysis for Security (PLAS). January 2018. pp. 42-47.

[3] White M, Tufano M, Vendome C, Poshyvanyk D. Deep learning code fragments for code clone detection.
Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE),

2016. pp. 87-98. Singapore.

[4] Danie G, Carles M, Jordi P. The rise of machine learning for detection and classification of malware:

Research developments, trends and challenges. J Network Comp Appl. March 2020. 153(1).

[5] Kevin P M. Machine Learning: A Probabilistic Perspective. The MIT Press. 2012.

[6] Lim HI. A linear regression approach to modeling software characteristics for classifying similar software.

Proceedings of COMPSAC, 2019. pp. 942-943.

[7] Lim HI. Applying code vectors for presenting software features in machine learning. Proceedings of

COMPSAC. 2018. pp. 803-804.

[8] White M, Tufano M, Vendome C, Poshyvanyk D. Deep learning code fragments for code clone detection.
31st IEEE/ACM International Conference on Automated Software Engineering (ASE), 2016. pp. 87-98.

Singapore.

[9] Noam S, Nimrod P. Binary similarity detection using machine learning, Proceedings of the 13th

Workshop on Programming Languages and Analysis for Security (PLAS). January 2018. pp. 42-47.

[10] Niccolo M, Roberto G, Mila DP. A deep learning approach to program similarity. Proceedings of the 1st
International Workshop on Machine Learning and Software Engineering in Symbiosis (MASES).

September 2018. pp. 26-35.

[11] Joseph MH. Practical Guide to Logistic Regression. Chapman and Hall. 2015.

[12] Scikit-learn, Machine Learning in Python. https://scikit-learn.org/stable/.

H.-i. Lim / Detecting Similar Versions of Software by Learning with Logistic Regression 151

