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Abstract. The generalized interval observer design conditions for continuous-time
Metzlerian Takagi-Sugeno systems are presented in the paper. Attention is focused
on the analysis and design guaranteeing the asymptotic convergence of the interval
observer error and positivity of interval observer state. The relationship between
the nonnegativity of the observer gains and the corresponding positive observer
state attractiveness is also shown. The method presented extends and generalizes
the results that recently appeared in the literature.
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1. Introduction

the type of fuzzy inference systems The study of state observers is a topic of great im-
portance in effective control concepts and system fault diagnosis applications. Because
the Takagi-Sugeno (T-S) fuzzy approach addresses fuzzy implication of local dynamics
by linear models [1], excellent unifications of state observer design for sector-bounded
nonlinear systems are related with T-S fuzzy models [2], [3]. Since using Takagi-Sugeno
method the consequents are the crisp functions of inputs, nonlinear control theories pre-
fer T-S fuzzy approach with relation to state-space representation of systems, although
there exist other fuzzy inference systems [4], [5]. The design algorithm turns out to be
feasible utilizing the linear matrix inequalities (LMI) technique [6], [7].

Restricting attention to positive linear systems, maintaining given features whenever
the system states are nonnegative [8], [9], concepts in this field prioritize in analysis and
design the theory of matrices of Metzler structure [10], [11]. In order to reflect large
number of constraints, an excellent unification is an LMI-based design strategy for linear
positive (Metzlerian) systems [12].

Based on nominal system models, the state observers in general asymptotically es-
timate unknown system state. Counterpart of this approach is outlined in [13] to pro-
vide, for given system matrix bounds, the system state estimation in projected intervals.
In addition to the above, reference [14] presents a cooperative observer error approach
for exact analysis of interval observers with grasp of the Metzler matrix details. Interval
observer algorithms, with LMI projection of interval bounds, for uncertain Metzlerian
systems are analyzed in [15].

Adapting the above results in synthesis of T-S fuzzy observers and interval ob-
servers for uncertain Metzlerian systems and reflecting [16], the paper extend the latter
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approaches to design interval observer for Metzlerian Takagi-Sugeno systems. Preferring
LMI formulation for solving the problem, the interval observer stability proofs use stan-
dard arguments and reflect the concept of diagonal stabilization that is in keeping with
the structure of Metzler matrices. Working along these lines to establish the observer
design conditions, the newly presented theoretical aspect gives relationships between
system parametric constraints, the LMIs feasibility and the observer state attractiveness
guaranty. Because only a set of LMIs defines conditions, practical aspects are standard.

The paper is organized as follows. In Sec. 2 the essential properties of Metzlerian
Takagi-Sugeno fuzzy models are adduced and Sec. 3 outlines problems with Metzlerian
observer design for given class of strictly Metzlerian T-S systems. The set of LMIs,
describing the design conditions for Metzlerian Takagi-Sugeno interval observer, and its
solution is the theme of Sec. 4 and an example to implement the algorithm is included
into Sec. 5. Within the underlying concept, Sec. 6 draws conclusions and the topics of
the research activity in the future.

Throughout the paper, the following notations are used: xT, XT denotes the trans-
pose of the vector x, and the matrix X , respectively, diag [ · ] marks a (block) diagonal
matrix, for a square symmetric matrix X ≺ 0 means that X is negative definite matrix, the
symbol In indicates the n-th order unit matrix, R+, Rn

+ qualify the sets of nonnegative
real numbers and n-dimensional real vectors, Rn×n

+ refers to the set of nonnegative real
matrices and Rn×n

−+ covers the set of Metzler matrices.

2. Metzlerian Takagi-Sugeno Fuzzy Model

The used systems are multi-input and multi-output (MIMO) Metzlerian continuous-time
dynamic systems, represented in T-S form as

q̇(t) =
s

∑
i=1

hi(ϑ(t))(Aiq(t)+Biu(t)) , (1)

y(t) =Cq(t) , (2)
where q(t) ∈ Rn

+, u(t) ∈ Rr, y(t) ∈ Rm
+, are vectors of the state, input, and output vari-

ables and A ∈Mn×n
−+ , B ∈ Rn×r

+ , C ∈ Rm×n
+ . Moreover, hi(θ(t)) is averaging weight for

the i-th rule, representing the normalized grade of membership, where

0≤ hi(ϑ(t))≤ 1,
s

∑
i=1

hi(ϑ(t)) = 1 f or all i ∈ 〈1,s〉 , (3)

while s is the number fuzzy rules (linear sub-models) and
ϑ(t) =

[
θ1(t) θ2(t) · · · θq(t)

]
(4)

is q-dimensional vector of premise variables. More details can be found, e.g., in [6], [12].
Within the above model, there are considered nonnegative matrices Bi ∈Rn×r

+ , C ∈
Rn

+ and a strictly Metzler Ai ∈ Rn×n
−+ , where strictly Metzler Ai means that all its off

diagonal elements are greater then zero and all its diagonal elements are negative. Such
above given system is noted as strictly Metzlerian T-S system. In general, a Metzler
matrix is so confronted with n2 boundaries implying from the structural constraints

alh < 0, l = h, alh > 0, l �= h, ∀l,h ∈ 〈1,n〉 . (5)
This just means in consequence that continuous-time strictly Metzlerian systems are di-
agonally stabilizable. To respect diagonal structures the following are reflected.
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Definition 1. [17] A square matrix Lp ∈Rn×n is permutation matrix if exactly one ele-
ment in each column and each row is equal to 1 and all others are equal to 0.

Definition 2. [17] Let L ∈Rn×n
+ be a permutation matrix. L is called circulant if

L =

[
0T 1

In−1 0

]
. (6)

Moreover, the following remark can be easily checked applying the circulant per-
mutation matrix representstion.

Remark 1. If X ∈Rn×n is a diagonal matrix then, consequently,

LTdiag
[
x1 x2 · · · xn

]
L = diag

[
x2 · · · xn x1

]
. (7)

In the case when only a matrix Ai ∈Rn×n
−+ is analyzed and structural constraints (65)

are represented as a set of n LMIs, then

Lemma 1. [12] Ai ∈ Rn×n
−+ is Metzler and Hurwitz if and only if there exists a positive

definite diagonal matrix P ∈Rn×n
+ such that

P	 0 , (8)

PAi(p, p)Δ ≺ 0 , (9)
PLhAi(p+h, p)ΔLhT 	 0 , (10)

AT
i P+PAi ≺ 0 , (11)

for i = 1,2, . . . ,s, h = 1,2, . . . ,n−1, p = 1,2, . . . ,n, where

Ai(p+h, p)Δ = diag
[
ai,1+h,1 · · · ai,n,n−h ai,1,n−h+1 · · · aihn

]
, (12)

Δ = (1↔ n)/n . (13)

Note, with the matrix P thus defined, the set of LMIs (9), (10) reflects (65) and the
Lyapunov inequality (11) guaranties that Ai is Hurwitz.

3. Strictly Metzlerian Takagi-Sugeno Fuzzy Observer

The state estimation assumes the observer to strictly Metzlerian Takagi-Sugeno fuzzy
system (1), (2) in the form

q̇e(t) =
s

∑
i=1

hi(θ(t))(Aiqe(t)+Biu(t)+ Ji(y(t)− ye(t)) , (14)

ye(t) =Cqe(t) , (15)
where qe(t) ∈ Rn

+ is the estimation of the system state vector, Ji ∈ Rn×m
+ , i = 1,2, . . . ,s

is the set of the positive observer gain matrices and forms of the parameters are

Ai =

⎡
⎢⎣

ai11 · · · ai1n
...

ain1 · · · ainn

⎤
⎥⎦, C =

⎡
⎢⎣

cT
1
...

cT
m

⎤
⎥⎦, cT

k =
[
ck1 · · · ckn

]
, Ji =

[
ji1 · · · jim

]
, jik =

⎡
⎢⎣

ji1k
...

jink

⎤
⎥⎦, (16)

Jdik = diag
[

ji1k · · · jink
]
, Cdk = diag

[
c1k · · · cnk

]
. (17)

Then the structural constraints problem for strictly Metzler Aei ∈Rn×n
−+ is formable as
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Aei = Ai− JiC = Ai−
m

∑
k=1

jikcT
k = Ai−

m

∑
k=1

JdikllTCdk , (18)

where
lT =

[
1 1 · · · 1

]
, (19)

aelh−
m

∑
k=1

jihkckl < 0, h = l, ailh−
m

∑
k=1

jihkckl > 0. h �= l, ∀ h, l ∈ 〈1, . . . ,n〉 . (20)

Having in mind constraints (20) it is not hard to establish the following:

Theorem 1. The observer (14), (15) is stable if there exist positive definite diagonal
matrices P,Rik ∈Rn×n

+ such that

P	 0 , Ri 	 0 , (21)

PAi(p, p)Δ−
m

∑
k=1

RikCdk ≺ 0 , (22)

PLhAi(p+h, p)ΔLhT−
m

∑
k=1

RikLhCdkLhT 	 0 , (23)

PAi +AT
i P−

m

∑
k=1

RikllTCdk−
m

∑
k=1

CdkllTRik ≺ 0 . (24)

for i = 1,2, . . . ,s, p = 1,2, . . . ,n, h = 1,2, . . . ,n−1, k = 1,2, . . . ,m.
When the above conditions hold, the set of Jik is given by

Jdik = P−1Rik, jik = Jdikl, Ji =
[

ji1 · · · jim
]
. (25)

Proof. Writing Aei from (18) as follows

Aei =

⎡
⎢⎢⎢⎣

ai11 ai12 · · · ai1n
ai21 ai22 · · · ai2n

. . .
ain1 ain2 · · · ainn

⎤
⎥⎥⎥⎦−

m

∑
k=1

⎡
⎢⎢⎢⎣

ji1k
ji2k
...

jink

⎤
⎥⎥⎥⎦
[
ck1 ck2 · · · ckn

]
, (26)

it can see that the diagonal elements of (26) satisfy the first set of conditions from (20) if

Ai(p, p)Δ−
m

∑
k=1

JidkCdk ≺ 0 , (27)

where
Ai(p, p)Δ = diag

[
ai11 ai22 · · · ainn

]
. (28)

Therefore, multiplying the left side by a positive definite diagonal matrix P ∈Rn×n
+ then

(27) implies

PAi(p, p)Δ−
m

∑
k=1

PJidkCdk ≺ 0 , (29)

and with the notation
Rik = PJidk (30)

(29) implies (22) and (30) forces (25).
Rewriting (26) in the circular shifted structures to cover other sets of algebraic con-

straints then
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LhTAei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai,h+1,1 ai,h+1,2 · · · ai,h+1,n
...

ain1 ain2 · · · ainn
ai11 ai12 · · · ai1n

...
aih1 aih2 · · · aihn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

m

∑
k=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ji,h+1,k
...

jink
ji1k
...

jihk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
ck1 ck2 · · · ckn

]
(31)

and it can see that the diagonal elements of (31) force the set (18) for fixed h if

Ai(p+h, p)Δ−
m

∑
k=1

JdikchCdk 	 0 , (32)

where Ai(p+h, p)Δ is defined in (12) and Jdikch is derived from the diagonal matrix Jidk
by h circular shifts of its diagonal elements applying circulant L from (6).

Since, it yields for h = 1,2, . . .n−1,
Jidk = LhJdikchT hT, (33)

pre-multiplying the left side by T h and post-multiplying the right side by T hT then (32)
can be represented as

T hAi(p+h, p)ΔT hT−
m

∑
k=1

T hJdkchT hTT hCdkT hT 	 0 , (34)

T hA(i+h, i)ΔT hT −
m

∑
k=1

JdkT hCdkT hT 	 0 , (35)

respectively. Thus, multiplying the left side by positive definite diagonal matrix P∈Rn×n
+

and using (33) then (35) implies (23).
Introducing the error in system state observations as

e(t) = q(t)−qe(t) (36)
and performing the time derivative then, exploiting (1) and (14), it is obtained

ė(t) =
s

∑
i=1

hi(θ(t))(Ai(q(t)−qe(t))− Ji(y(t)− ye(t))) , (37)

which can be written using (2), (18) as follows

ė(t) =
s

∑
i=1

hi(θ(t))Aeie(t) . (38)

Defining the Lyapunov function
v(e(t)) = eT(t)Pe(t)> 0 , (39)

where P ∈Rn×n
+ is positive definite diagonal matrix, then (39) implies

v̇(e(t)) = ė(t)Pe(t)+ eT(t)Pė(t) . (40)
Substituting (38) into (40) gives

v̇(e(t)) = eT(t)
s

∑
i=1

hi(θ(t))(PAei +AT
eiP)e(t) , (41)

which results with (18) to

P(Ai−
m

∑
k=1

JdikllTCdk)+(Ai−
m

∑
k=1

JdikllTCdk)
TP≺ 0 ∀ i . (42)

Therefore, using (30), then (42) implies (24). This concludes the proof.
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4. Metzlerian Takagi-Sugeno Fuzzy Interval Observer

Consider (1), (2), where (Ai,C) and q(0) are unknown but bounded and for all i ∈ 〈1,s〉
the known constant bounds satisfy elementwise

q(0)≤ q(0)≤ q(0) , Ai ≤ Ai ≤ Ai , C ≤C ≤C . (43)
The aforementioned problem can be turned to construction of the (strictly) Metzle-

rian T-S fuzzy interval observer, defined as the couple of the algorithms

q̇e(t) =
s

∑
i=1

hi(ϑ(t))(Aiqe(t)+Biu(t)+ Ji C(q(t)−qe(t)) , (44)

q̇
e
(t) =

s

∑
i=1

hi(ϑ(t))(Aiqe
(t)+Biu(t)+ Ji C(q(t)−q

e
(t)) , (45)

where the design objective constraints can be stated as
0≤ q

e
(t)≤ q(t)≤ qe(t) (46)

for all t ≥ 0 if qe(0) = q(0), q
e
(0) = q(0). It is the problem that is reformulated in the

following definition.

Definition 3. The set of equations (44), (45) give stable observer for uncertain Metzle-
rian Takagi-Sugeno fuzzy plant (1), (2) if both the lower estimation error e(t) and the
upper estimation error e(t) converge to the equilibrium.

Assumption 1. Supposing that it is possible to force equilibrium convergence of errors
e(t) = q(t)−qe(t) , e(t) = q(t)−q

e
(t) . (47)

If (1), (2), (44), (45) are rearranged as

ė(t) =
s

∑
i=1

hi(ϑ(t))(Ai− JiC)e(t) =
s

∑
i=1

hi(ϑ(t))Aeie(t) , (48)

ė(t) =
s

∑
i=1

hi(ϑ(t))(Ai− JiC)e(t) =
s

∑
i=1

hi(ϑ(t))Aeie(t) (49)

trajectories (48), (49) are asymptotically stable if for given set (Ai, Ai, C, C, i ∈ 〈1,s〉)
satisfying (43), and nonnegative e(0), e(0), all matrices Aei, Aei are Metzler and Hurwitz.

Corollary 1. By performing an inner adjustment for (49)

q̇(t)− q̇
e
(t) =

s

∑
i=1

hi(ϑ(t))Aei(q(t)−q
e
(t)) , (50)

it then follows from (50)

q̇
e
(t) = (q̇(t)−

s

∑
i=1

hi(ϑ(t))Aeiq(t))+
s

∑
i=1

hi(ϑ(t))Aeiqe
(t)) (51)

and considering the autonomous part of (1)

q̇
e
(t) =

s

∑
i=1

hi(ϑ(t))(Ai− (Ai− JiC))q(t))+Aeiqe
(t)

=
s

∑
i=1

hi(ϑ(t))Aeiqe
(t)+

s

∑
i=1

hi(ϑ(t))JiCq(t)+
s

∑
i=1

hi(ϑ(t))(Ai−Ai)q(t) .
(52)

Thus, for C ∈ Rm×n
+ , q(t) ∈ Rn

+ the lower state estimate is nonnegative if Ji ∈ Rn×m
+ is

nonnegative and all Aei are (strictly) Metzler and Hurwitz.
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With the above facts in mind, Theorem 1 is adapted to obtain Aei, Aei ∈Rn×n
−+ .

Theorem 2. Using algorithms (44), (45) in state estimation of uncertain strictly Metzle-
rian Takagi-Sugeno fuzzy system (1), (2), then matrices Aei, Aei ∈Rn×n

−+ for all i ∈ 〈1,s〉
are strictly Metzler and Hurwitz if for given strictly Metzler matrices Ai,Ai ∈ Rn×n

−+ ,
i ∈ 〈1,s〉 and non-negative matrices C,C ∈ Rm×n

+ there exist positive definite diagonal
matrices P,Rik ∈Rn×n

+ such that

P	 0, Rik 	 0 , (53)

PAi(p, p)Δ−
m

∑
k=1

RikCdk ≺ 0 , (54)

PAi(p, p)Δ−
m

∑
k=1

RikCdk ≺ 0 , (55)

PLhAi(p+h, p)ΔLhT−
m

∑
k=1

RikLhCdkLhT 	 0 , (56)

PLhAi(p+h, p)ΔLhT−
m

∑
k=1

RikLhCdkLhT 	 0 , (57)

PAi +AT
i P−

m

∑
k=1

RikllTCdk−
m

∑
k=1

CdkllTRik ≺ 0 , (58)

PAi +AT
i P−

m

∑
k=1

RikllTCdk−
m

∑
k=1

CdkllTRik ≺ 0 , (59)

for i = 1,2, . . . ,s, h = 1,2, . . . ,n−1, p = 1,2, . . . ,n, where L, lT are predefined and

Ai(p+h, p)Λ = diag
[
ai,1+h,1 · · · ai,n,n−h ai,1,n−h+1 · · · aihn

]
, (60)

Ai(p+h, p)Δ = diag
[
ai,1+h,1 · · · ai,n,n−h ai,1,n−h+1 · · · aihn

]
, (61)

Cdk = diag [ck1 ck2 . . . ckn] , Cdk = diag
[
ck1 ck2 · · · ckn

]
. (62)

When these conditions are successfully met, (25) defines the rule to compute a set of
strictly positive gain matrices Ji ∈Rn×m

+ .

Proof. Adequately adapting (26) then Aei takes its open structure

Aei =

⎡
⎢⎢⎢⎣

ai11 ai12 · · · ai1n
ai21 ai22 · · · ai2n

. . .
ain1 ain2 · · · ainn

⎤
⎥⎥⎥⎦−

r

∑
k=1

⎡
⎢⎢⎢⎣

ji1k
ji2k
...

jink

⎤
⎥⎥⎥⎦
[

ck1 ck2 · · · ckn
]

(63)

and the constraints on the diagonal elements of (63), if Ji ∈Rn×m
+ is strictly positive for

all i, are by definition

Ai(p, p)Δ−
r

∑
k=1

JdikCdk ≺ 0 , (64)

where Jdik is defined in (17) and (61) for h = 0 implies

Ai(p, p)Δ = diag
[
ai11 ai22 · · · ainn

]
. (65)

Multiplying the left side by a positive definite diagonal matrix P ∈Rn×n
+ and using (30)

then (64) implies (55). Quite analogously, it can be applied to Aei and derived (54).
The condition (31) can be reformulated to Aei in the analogous way as

D. Krokavec and A. Filasová / Interval Observer Design for Metzlerian Takagi-Sugeno Systems 595



LhTAei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ai,h+1,1 ai,h+1,2 · · · ai,h+1,n
...

ain1 ain2 · · · ainn
ai11 ai12 · · · ai1n

...
aih1 aih2 · · · aihn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
−

m

∑
k=1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ji,h+1,k
...

jink
ji1k
...

jihk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
ck1 ck2 · · · ckn

]
, (66)

while the diagonal elements of (66) for fixed h implies

Ai(p+h, p)Δ−
m

∑
k=1

JdikchCdk 	 0 , (67)

where Ai(p+h, p)Δ is defined in (61) and Jdikch is related to Jdik in (33).
Pre-multiplying the left side by PLh and post-multiplying the right side by LhT with

P ∈Rn×n
+ defined as above, (67) with (33) gives

PLhA(p+1, p)ΔLhT−
r

∑
k=1

PJikLhCdkLhT 	 0 (68)

and applying (30) then (68) implies (57).
Constructing a positive Lyapunov function candidate

v(e(t)) = eT(t)Pe(t)> 0 , (69)

using the same P as above, then solving for

v̇(e(t)) = eT(t)
s

∑
i=1

hi(θ(t))
(
AT

eiP+PAei
)

e(t)< 0 , (70)

which corresponds to the conditions writable for i ∈ 〈1,s〉 in the set of LMIs

AT
eiP+PAei ≺ 0 (71)

and results in

P
(

Ai−
m

∑
k=1

JdikllTCdk

)
+
(

Ai−
m

∑
k=1

JdikllTCdk

)T
P≺ 0 ∀ i . (72)

Thus, for k = 1, . . . ,m, i = 1, . . . ,s and with (30) then (72) implies (59), and analogously,
(58), (59) guaranty required stability. This completes the proof.

To apply for uncertain non-strictly Metzlerian Takagi-Sugeno fuzzy system the prin-
ciple of structured matrix variables [18] can be adapted, with the following procedure,
excluding cases that both the column of C and C indexed by β are zero column vectors.

Corollary 2. Let for given α,β ∈ 〈1,n〉 the off-diagonal element aiαβ of Ai as well as
the off-diagonal element aiαβ of Ai are zero. Then Rik must be structured so that

Rik = diag
[
rik1 · · · rik,α−1 rikα rik,α+1 · · · rikn

]
, (73)

where
rikα = 0, rikγ > 0 f or γ �= α, γ = 1, . . . ,n . (74)

If columns cβ , cβ of C, C are strictly positive, (73), (74) must be satisfied for all k =
1, . . .m, i = 1, . . . p. Otherwise, for i,k related to positive elements in nonnegative cβ , cβ .

The proposed design conditions have no tuning parameters with relation to (58),
(59). This problem can be redefined using the approaches proposed in [19].

D. Krokavec and A. Filasová / Interval Observer Design for Metzlerian Takagi-Sugeno Systems596



5. Illustrative Example

The system is represented by the Metzlerian Takagi-Sugeno equations (1), (2), where

A1 =

⎡
⎣−0.272 1.940 1.450

0.058 −3.960 0
0.100 0 −2.910

⎤
⎦ , A2 =

⎡
⎣−0.272 1.940 1.450

0.058 −3.960 0.100
0.100 0 −2.910

⎤
⎦ ,

A3 =

⎡
⎣−0.272 1.940 1.450

0.058 −3.960 0
0.100 0.080 −2.910

⎤
⎦ , A4 =

⎡
⎣−0.272 1.940 1.450

0.058 −3.960 0.100
0.100 0.080 −2.910

⎤
⎦ ,

A1 =

⎡
⎣−0.258 2.060 1.550

0.142 −3.640 0
0.200 0 −2.550

⎤
⎦ , A2 =

⎡
⎣−0.258 2.060 1.550

0.142 −3.640 0.100
0.200 0 −2.550

⎤
⎦ ,

A3 =

⎡
⎣−0.258 2.060 1.550

0.142 −3.640 0
0.200 0.080 −2.550

⎤
⎦ , A4 =

⎡
⎣−0.258 2.060 1.550

0.142 −3.640 0.100
0.200 0.080 −2.550

⎤
⎦ ,

B =

⎡
⎣0.50 1.00

1.00 0.90
0.70 1.10

⎤
⎦ , C =

[
0.9 0 0
0 1.2 0

]
, C =

[
1.1 0 0
0 1.5 0

]
,

while, for all i, Bi = B.
Tt is not hard to attest that Ai, Ai are Metzler and Hurwitz for all i, Ai ≤ Ai, C ≤C,

B is positive matrix and C, C are nonnegative matrices.
For the vector of premise variables and the sector bounds

ϑ(t) =
[
θ1(t) θ2(t)

]
=
[
q1(t) q2(t)

]
,

d1 = max(q1) = 1, d2 = min(q1) = 0, e1 = max(q2) = 1, e2 = min(q2) = 0,
the sector functions are given as

w11(q1(t)) =
d1−q1(t)

d1−d2
, w12(q1(t)) =

q1(t)−d2

d1−d2
= 1−w11(q1(t)) ,

w21(q2(t)) =
e1−q2(t)

e1− e2
, w22(q2(t)) =

q2(t)− e2

e1− e2
= 1−w21(q2(t))

and the set of membership functions is aggregated as

h1(θ(t)) = w12(q1(t))w22(q2(t)), h2(θ(t)) = w12(q1(t))w21(q2(t)),

h3(θ(t)) = w11(q1(t))w22(q21(t)), h4(θ(t)) = w11(q2(t))w21(q2(t)).
It is evident that some from the matrices Ai, Ai are not strictly Metzler and a certain

structuring of the diagonal matrix variables Rdk is necessary. Since the third column of
C as well as C is zero vector, it is not necessary to define zero elements of the structured
diagonal matrix variables Rdk in the lower right corner position for k = 1,2 and so the
problem with zero elements ai23, ai23 for i = 1,3 is solved in general. Conversely, since
c22, c22 are not equal to zero, it is necessary to choose zero elements ri2 = 0 in structured
diagonal matrix variables Ri2, i = 1,2. Summarising,

Rik = diag
[
rik1 rik2 rik3

]	 0 for (k = 1, i = 1,2,3,4) and (k = 2, i = 3,4) ,

Rik = diag
[
rik1 rik2 0

]� 0 for k = 2, i = 1,2 .
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To reflect diagonal LMIs structures, the representations of C, C are given as

Cd1 = diag
[
0.9 0 0

]
, Cd2 = diag

[
0 0.2 0

]
, Cd1 = diag

[
1.1 0 0

]
, Cd2 = diag

[
0 0.5 0

]
and with modulo n summation operator Δ = (1↔ 3)/3, for example the representations
of A1 are

A1(p, p)Δ = Ai(p, p)Δ = diag
[−0.272 −3.960 −2.910

] ∀ i ∈ 〈1,4〉 ,
A1(p+1, p)Δ = diag

[
0.058 0 1.450

]
, A1(p+2, p)Δ = diag

[
0.100 1.940 0

]
.

The remaining matrices Ai, Ai are parameterized analogously.
By applying Theorem 2 for solving by toolbox SeDuMi [20], the feasible solution

is obtained as follows

J1 =

⎡
⎣1.1667 0.7376

0.0210 0.6443
0.0286 0

⎤
⎦ , J2 =

⎡
⎣1.1679 0.7389

0.0210 0.6449
0.0286 0

⎤
⎦ ,

J3 =

⎡
⎣1.1812 0.7476

0.0198 0.6491
0.0270 0.0181

⎤
⎦ , J4 =

⎡
⎣1.1812 0.7476

0.0198 0.6491
0.0270 0.0181

⎤
⎦ ,

guaranteing Metzler and Hurwitz local system matrices of the interval observer

Ae1 =

⎡
⎣−1.5553 0.8336 1.450

0.0349 −4.9265 0
0.0686 0 −2.910

⎤
⎦ , Ae2 =

⎡
⎣−1.5567 0.8317 1.450

0.0349 −4.9274 0.100
0.0685 0 −2.910

⎤
⎦ ,

Ae3 =

⎡
⎣−1.5713 0.8186 1.450

0.0362 −4.9337 0
0.0703 0.0528 −2.910

⎤
⎦ , Ae4 =

⎡
⎣−1.5727 0.8170 1.450

0.0362 −4.9339 0.100
0.0702 0.0527 −2.910

⎤
⎦ ,

Ae1 =

⎡
⎣−1.3080 1.1749 1.550

0.1231 −4.4132 0
0.1743 0 −2.550

⎤
⎦ , Ae2 =

⎡
⎣−1.3091 1.1733 1.550

0.1231 −4.4139 0.100
0.1742 0 −2.550

⎤
⎦ ,

Ae3 =

⎡
⎣−1.3080 1.1749 1.550

0.1231 −4.4132 0
0.1743 0 −2.550

⎤
⎦ , Ae4 =

⎡
⎣−1.3091 1.1733 1.550

0.1231 −4.4139 0.100
0.1742 0 −2.550

⎤
⎦ .

Having in mind (43) it is not hard to verify that the condition Aei ≤ Aei is satisfied
for all i ∈ 〈1,4〉.

Note, feasibility of the presented set of LMIs can be checked also by using the LMI
toolbox of MATLAB c©.

Based on the structured matrix variable properties, defined in (73), (74), it is verified
that conditions (53)-(59) allows the existence of nonnegative Ji for i ∈ 〈1,4〉 such that
Lyapunov function (69) establishes asymptotic stability of the interval observer equilib-
rium. Moreover, set of nonnegative Ji for i ∈ 〈1,4〉 for nonnegative initial state of Metz-
lerian Takagi-Sugeno system guaranties that the lower observer estimate is nonnegative
in the sense of (52).

Involving additional inequality constraints the problem of interval observer design
is transformed to equivalent linear time invariant forms and make the design problem
standard.
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6. Concluding Remarks

The key observation is that it can obtain a finite number of linear matrix inequalities to
account in design for Metzler and Hurwitz interval observer system matrices and non-
negative interval observer gains. Therefore, to obtain a solution, the design method can
be applied yielding feasibility of the set of linear matrix inequalities. Moreover, the con-
dition extensions take into account the fact that certain elements of bounds can to equal
zero and so reflect also non strictly Metzler matrix structures. The novelty lies in strictly
LMI representation of interval bounds, parametric constraints and stability. The example,
demonstrating how one can formulate design task, also indicates that defined LMI de-
sign conditions are necessary in synthesis of interval observers for uncertain Metzlerian
Takagi-Sugeno multidimensional systems.

Presented version prefers standard LMI numerical procedures to manipulate the in-
terval observer stability and structural properties and is guided in the direction of the
second Lyapunov method, which guarantees convergence to equilibria of the estimation
errors. It seems to be significant to extend the approach for uncertain Metzlerian Takagi-
Sugeno continuous-time systems with external disturbances.

Since interval estimation of switched Takagi-Sugeno systems is connected with Met-
zler system matrices, further future research is naturally focused on this application field.
A similar trend can be expected in the positive control of agent systems in the case when
additional criteria are found for design of nonnegative gains for agents whose system
matrices are not Metzler. Hence it is apparent that exactly the same methods of solution
can carry potentially through to fractional fuzzy inference systems.
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