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Abstract. In view of the significant effects of deep learning in graphics and image 

processing, research on human pose estimation methods using deep learning has 

attracted much attention, and many method models have been produced one after 

another. On the basis of tracking and in-depth study of domestic and foreign 

research results, this paper concentrates on 3D single person pose estimation 

methods, contrasts and analyzes three methods of end-to-end, staged and hybrid 

network models, and summarizes the characteristics of the methods. For 

evaluating method performance, set up an experimental environment, and utilize 

the Human3.6M data set to test several mainstream methods. The test results 

indicate that the hybrid network model method has a better performance in the 

field of human pose estimation. 
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1. Introduction 

Human posture is an important feature of living beings and has been widely used in 

application scenarios such as behavior recognition [1], interactive analysis [2], video 

surveillance [3], entertainment [4], virtual reality [5], animation[6], etc. Through 

human pose estimation, it can assist in judging other people's behaviors, actions, and 

identification. In recent years, researchers have discovered that the human pose 

estimation method based on deep learning can effectively develop the accuracy of the 

estimation [7], resulting in a large number of research achievements. Chen Y et al. [8] 

gave a method for estimating human pose using structure-aware convolutional 

networks. The training of three sub-networks optimized the problems of joint occlusion 

and overlap. Chou CJ et al. [9] learn the structure and configuration of human body 

parts through confrontation training to achieve human pose estimation. Great 

achievements have been made in 2D single person pose estimation [10], but due to the 

single data set and the division of key points, the accuracy cannot be greatly improved. 

For the past few years, a breakthrough has been made in 3D single person pose 

estimation. Zhou X et al. [11] integrated the kinematics object model into deep learning 

and performed effective 3D single person pose estimation. Tekin B et al. [12] presented 

a novel deep learning regression architecture that combines an autoencoder with CNN 

to improve the prediction accuracy between various parts of the human body. These 

two methods belong to the end-to-end 3D single person pose estimation method [13]. 
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Due to the constraints of the 3D human annotation data set, they can not be applied to 

more complex networks. In order to deal with complex and changeable scenes more 

accurately, researchers began to use the increasingly accurate 2D human pose 

estimation method as an aid to produce a staged 3D human pose estimation method. 

Zhou X et al. [14] combined a 2D part regressor based on deep learning and a sparse-

driven 3D reconstruction method to design a 3D human pose estimation framework. 

Tome D et al. [15] presented a associated method, in order to estimate the human pose, 

combining the image appearance-based prediction offered by the 2D landmark detector 

with the geometric 3D skeletal information encoded in the new pre-trained model of 

the 3D human pose. Chen CH et al. [16] proposed a simple method for 3D human pose 

estimation by performing 2D pose estimation and then matching 3D examples. 

Moreno-Noguer F[17] formulated the 3D human pose estimation problem as a 

regression between the matrix encoding the 2D and 3D joint distances, and solved the 

problem of 3D human pose estimation from a single image. Martinez J et al. [18] 

established a system combining 2d joint positions to predict 3d positions, which greatly 

improves the previous results from 2D to 3D pose estimation. Pavlakos G et al. [19] 

used two separate networks to solve the problem of 3D human pose estimation from a 

single color image. With the development of the research process, the ambiguity 

problem in the process of 2D to 3D plane projection has appeared. Even if the deep 

learning network structure is optimized, it cannot be solved. Therefore, research 

scholars have begun to study the 3D single human pose estimation based on the hybrid 

network model. Zhou X et al. [20] extended the most advanced 2D pose estimation 

sub-network through the 3D deep regression sub-network. According to the correlation 

between the 2D pose and the depth estimation sub-task, the network was trained end-

to-end, and 3D geometric constraints are introduced to predict the 3D human pose, 

which can better perform human pose estimation in the wild environment. Zhou X et al. 

[21] proposed a framework called MonoCap, which consists of a 2D part regression 

based on deep learning, a sparse-driven 3D reconstruction method and 3D temporal 

smoothness. Pavlakos G et al. [22] proposed a solution that can train end-to-end 

ConvNets for 3D human pose estimation in the absence of accurate 3D ground truth by 

using weaker supervision signals. Yang W et al. [23] came up with an adversarial 

learning framework to transform the 3D human pose structure learned from a fully 

noted data into a field image with only 2D pose annotations, and designed a original 

discriminator is used to enhance the generalization ability of of the 3D pose estimator. 

Pavllo D et al. [24] proved that a complete convolution model using time convolution 

of 2D keypoints can effectively estimate the 3D poses in the video. An ordinary and 

resultful semi-supervised training way is also introduced. It uses unlabeled video data 

to predict the 2D key points of the unlabeled video, then estimate the 3D pose, in the 

end input it into the 2D key points for back projection. Li C et al. [25] proposed a novel 

method with multiple feasible hypotheses to generate 3D poses from 2D joints. 

Experiments have shown that the 3D pose estimated by this method from 2D joint 

input is consistent in 2D reprojection. 

In summary, although 2D single person pose estimation has achieved great 

accuracy, there are problems such as inaccurate recognition when the human pose is 

occluded or the data set is missing. 3D single person pose estimation uses 3D human 

skeletons to describe the human body pose. Through the improvement of the network 

model, the deep-level features can be effectively obtained from the image, which has 

gradually become the mainstream method. This article will review the 3D single person 

estimation methods using neural networks in the next section. In the third section, the 
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verification of the 3D single person estimation method based on neural network is 

carried out. A unified public data set is used to compare and analyze several 

mainstream methods, and some methods are evaluated by comparing experimental 

results. Finally, summarize the work done in this article and put forward prospects for 

the next research work. 

2. 3D Single person pose estimation method 

The current research on 3D single person pose estimation using deep learning neural 

networks can be classified through different training methods of 3D single person pose 

models, which are generally summarized in three types: end-to-end network model, 

staged network model and hybrid network model. 

2.1.  End-to-end 3D human pose estimation 

An end-to-end network is a type of neural network. For a task, the input to the network 

is the original data, and the final output is what the task expects data. In the image 

classification task, the original picture is input of the neural network, and the output is 

the given image prediction category identification. As shown in figure 1, this method is 

an improved end-to-end CNN method. RGB images or videos are input to the neural 

network, and the output is the 3D coordinate position information of all human joint 

points corresponding to it. The end-to-end network actually uses a network structure to 

process the input content, there is no other data in the process of processing. Therefore, 

for this type of method, data preprocessing and network structure design are 

particularly important. 

Tekin B et al. [12] generated a 3D pose from the input image through regression. 

By using the mapping obtained by the auto encoder and the output of the regular CNN, 

the dependencies can finally be encoded more effectively. In the paper, the regression 

architecture is used to analyze the structure, two high-dimensional embedded mappings 

are introduced, and the final pose estimation is completed after further adjustment of 

the network. 

 
Figure 1. Structure diagram of the improved end-to-end CNN method. 

Figure 1 shows a 3D human pose estimation architecture based on structured 

prediction. (a) It is a designed automatic encoder, in which the size of the hidden layer 

is larger than the size of its input and output layers. During the practice, adopt the CNN 

in (b) to map to the latent representation learned by the autoencoder in (a). (c) Use the 

decoder to map the latent representation back to the original pose space. This improved 

X. Yuan et al. / 3D Single Person Pose Estimation Method Based on Deep Learning 483



end-to-end CNN structure combines traditional CNN networks with autoencoders for 

structured learning, which can resolve dependencies and improve the performance of 

pose estimation. 

The data set applied to the human pose estimation by the end-to-end network is 

generally not constrained by the 3D human pose annotation data set, and therefore 

more complex networks cannot be realized. In order to perform more accurate and 

precise 3D single person pose estimation, the network structure must be able to cope 

with more complex and changeable scenes. 2D human pose estimation methods have 

become more and more accurate after recent years of development. Under such demand, 

researchers have begun to study the combined application of 2D human pose 

estimation methods and 3D human pose estimation methods. 

2.2.  Staged 3D human pose estimation 

The staged 3D human pose estimation is a heterogeneous method proposed by 

researchers in order to solve the problem that the amount of labeled data encountered 

when using end-to-end network for 3D human pose estimation does not match the 

network scale. The staged method is similar to the end-to-end method in that 2D pose 

data is used. The difference is that the phased 3D human pose estimation method 

combines 2D data with 3D data. When acquiring data, a 2D human pose estimation 

method is needed for assistance, that is, a 2D human pose estimation model is used to 

obtain 2D human pose data from the original image data. Assuming that the generated 

2D human pose is accurate, the 2D human pose is used as input, and the 3D human 

pose regression network is used to improve the dimensionality of the 2D data. 

Martinez J et al. [18] designed a concise neural network as shown in Figure 2 

below, which uses a linear layer to perform batch normalization in the network, and 

adds random dropout and ReLU activation functions twice. Input an array of 2D joint 

positions into system, and obtain a battery of 3D human joint positions through 

network operations. 

 
Figure 2. Improved staged neural network. 

Based on the staged 3D human pose estimation, it is established on the 2D human 

pose estimation method. It uses 2D human pose as input to estimates the 3D human 

pose. Because 2D human pose can be considered as 3D human pose on a plane from a 

certain angle of view, there may be multiple different 3D human poses in the same 

projection. This is an ambiguity problem that cannot be solved by optimizing the deep 

learning network structure. At this time, more information needs to be introduced into 

the network to eliminate this ambiguity. Therefore some researchers began to research 

3D human pose estimation of the hybrid network model. 
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2.3.  3D human pose estimation of the hybrid network model 

Different from the end-to-end and staged 3D human pose estimation, the 3D human 

pose estimation of the hybrid network model adds additional image information and 

geometric constraints on the basis of pre-estimated 3D human pose. Then use these 

information to train a network model that promotes a 2D pose to 3D. The 3D human 

pose estimation of the hybrid network model uses accurate 2D human pose estimation 

methods while introducing more additional information including human joint points 

and motion characteristics. The network trained with this information can relieve the 

problem of 2D to a certain extent. The ambiguity problem of posture projection 

calculation of 3D human posture can also reduce the overfitting problem of end-to-end 

network. 

At present, the more successful 3D human pose estimation method of hybrid 

network model is proposed by Pavllo D [24], which performs 3D human pose from 

video with convolution and semi-supervised training.  A semi-supervised training 

means is introduced to boost the precision in the usability setting of annotated 3D 

ground truth pose data. The unlabeled video is combined with a ready-made 2D 

keypoint detector to develop the supervisory loss function with the back projection loss 

term. The designed encoder estimates the 3D pose through the 2D joint coordinates, 

and the decoder maps the 3D pose back to the 2D joint coordinates to solve the 

problem of automatic encoding of unlabeled data. As shown in Figure 3, the model 

takes a series of 2D poses that may be predicted as input, uses regression methods to 

obtain the 3D trajectory of the human pose, and adds soft constraints to make the 

average bone length of the unlabeled prediction and the average bone length of the 

labeled prediction match. 

 
Figure 3. Semi-supervised training using 3D hybrid network model. 

This chapter introduces the 3D single person pose estimation methods of three 

neural networks, gives the definition of different means, and illustrates merit and 

demerit of each estimation method through the method model in the paper. Among the 

three methods, using a hybrid network model to estimate the pose of a 3D single person 

is the best, and the second best is to use a staged method. With the development of 

technology, the end-to-end method will no longer be used alone. Hybrid network 

X. Yuan et al. / 3D Single Person Pose Estimation Method Based on Deep Learning 485



models usually combine the end-to-end network with other methods to improve the 

accuracy of estimation. In the next chapter, we will verify the conclusions of this 

chapter through comparative experiments. 

3. Method validation and comparative analysis 

3.1.  Dataset 

The data set used in the human pose estimation method is usually divided into a 2D 

human pose estimation data set and a 3D human pose estimation data set. 

Most of the data in the 2D human pose data set derived from image data online 

media, and these data are manually annotated. Since 3D human pose estimation is more 

complicated than 2D human pose estimation, the 3D human pose data set used in this 

article is also more complicated than the 2D human pose data set in the data acquisition 

and processing stage. Most of the data sets used in 2D human pose estimation are 

collected in natural environments, and the acquisition method of manual annotation is 

relatively simple. In contrast, the 3D human pose acquisition process requires a large 

number of cameras and sensors. Synchronous acquisition of multiple perspectives 

requires camera parameters. Therefore, many 3D human pose data sets are collected in 

laboratory environments. The final 3D human pose annotation data sets are far lower 

than the 2D human pose data sets in terms of diversity and quantity. 

At present, common 3D human pose annotation data sets include HumanEva[26], 

Human3.6M[27], CMU Panoptic dataset[28], MPI-INF-3DHP[29], etc[30]. The 

following is a detailed introduction to these commonly used annotation data sets, and 

summarized in Table 1. 

HumanEva data set[26]. The HumanEva data set [26] consists of two sub-data 

sets, HumanEva-I and HumanEva-II. The two data sets were captured using 

ViconPeak’s commercial MoCap system and annotated with ground truth. The 

HumanEva-I data set has a total of 13.5GB, which contains 7 verified view video 

sequences synchronized with 3D human poses, including 4 grayscales and 3 colors. 

These 3D human posture marker data are collected through a motion capture system. In 

the 3m x 2m capture area, the bodies of four objects are tagged and six common 

movements such as walking, gesturing, throwing and catching, boxing and combination 

are performed. The HumanEva-II data set has a total of 4.54GB and contains only 2 

objects. Its ground truth motion capture data is also obtained using ViconPeak’s system. 

Human3.6M data set[27]. The collection of Human3.6M data set [27] is carried 

out in the laboratory. The collection system is a precise MoCap system based on tags. 

There are 11 occupational actors wearing well-fitting clothes in the laboratory, 

including 5 women and 6 men. Collect 17 activities, including posing, discussing, 

smoking, taking pictures, making phone calls, etc. It has a total of approximately 

127GB, containing 3.6 million 3D human poses, each of which corresponds to 4 

images with diverse perspectives. The main capture equipment includes 4 digital 

cameras, 1 time-of-flight sensor, and 10 synchronized motion cameras. The capture 

area is approximately 4m x 3m. Figure 4 below is a schematic diagram of the motion 

capture system used by Human3.6M. In order to evaluate, it is divided into three 

protocols according to diverse training and test data: protocol 1, protocol 2, and 

protocol 3. There are two commonly used division criteria. The first is to use 1, 5, 6, 7, 

8 as the training set, and 9, 11 as the test set. The second is to use 1, 5, 6, 7, 8, 9 as the 
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training set, and 11 as the test set. In this article, we mainly use the first protocol in 

Human3.6M to conduct comparative experiments on each model. 

 
Figure 4.  Human3.6M motion capture system schematic diagram. 

CMU Panoptic dataset[28]. The CMU Panoptic dataset [28] is produced by CMU 

and is captured using a multi-view system with unmarked motion capture. The system 

has 480 VGA camera views, 31 HD views, 10 RGBD sensors and hardware 

synchronization system. The annotations include 3D key points, cloud points, optical 

flow, etc. The total size is about 41GB. 

MPI-INF-3DHP data set[29]. The MPI-INF-3DHP dataset [29] was collected 

using an unmarked multi-camera MoCap system in indoor and outdoor sites. It contains 

1.3 million frames from 14 different views. Eight subjects (4 women and 4 men) were 

noted to perform 8 events (such as walking, standing, exercising, sitting, squatting, 

stretching, exercising, etc.). 
Table 1. Summary of commonly used data sets 

Data Set Name Scale Collection 

Scene 

Number Of 

People 

Collected 

Number Of 

Samples 

Capture Method 

HumanEva[26] 18G Indoor 4 8 Motion capture 

Human3.6M[27] 127GB Indoor 11 360 Motion capture 

CMU Panoptic 
dataset[28] 

41GB Indoor Multiplayer unknown Motion capture 

MPI-INF-
3DHP[29] 

unknown Indoor and 

Outdoor 

8 130 Motion capture, 

Image synthesis 

 

3.2.  Evaluation index 

Human3.6M dataset is currently the most widely used 3D human pose annotation 

dataset. There are three evaluation methods mentioned in the paper, namely MPJPE, 

MPJAE and MPJLE. 

MPJPE is the mean per joint position error. It is currently the most widely used 

measure for performance evaluation of 3D attitude estimation. It calculates the Euclide 

distance (in millimeters) from the estimated 3D joint to the real condition of the ground, 

and then compares the results with the real value. The position of each joint point is 

represented in a 3D coordinate system. If it is used for 2D data, the unit used is pixel. 
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MPJAE is the mean per joint angle error. The function returns the joint angle 

instead of the joint position. It is also an MPJPE in nature, but some too small joint 

position errors are filtered and the errors are normalized. 

MPJLE is the mean per joint localization error. MPJPE and MPJAE have two 

shortcomings. The first problem is that they do not have sufficient robust stability. 

Mispredicted joints will affect the error of the entire data set. The second disadvantage 

is that the final result may overemphasize errors that are hard for humans to detect. 

MPJLE is proposed to solve some of these problems. 

The error evaluation method used in this article is the most commonly used 

MPJPE in 3D pose estimation. The calculation formula is as follows: 
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Where f represents the frame, S represents the skeleton, NS represents the quantity 

of nodes in the skeleton S, F represents the estimation result, gt represents the true 

value, and m represents a function, the input is the node number i, and the output is the 

3D coordinate position of the node i, 2
*  which represents 2 norm. 

3.3.  Comparative Test 

Aiming at the three different human pose estimation methods listed in the previous 

chapter, this section uses the python programming language with the deep learning 

open source framework Tensorflow. Corresponding experimental environment was 

built on the Ubuntu system, and several models were verified and compared. The 

Human3.6M data set is used as the verification set for model verification. The 

verification set contains a total of 15 different human daily activity scenes of 11 

different people. When dividing the training set and the verification set, consider the 

generalization ability of the human pose difference for the training model. It is not 

possible to put all 11 people in the training set, so division rules are formed for the 

training set and the verification set. This article uses protocol 1, which uses S1, S5, S6, 

S7, and S8 of the 17 joint bones as the training set and S9 and S11 as the test set. The 

evaluation method used in quantitative analysis is the average joint point position error 

MPJPE. After aligning the depth of the root joint (usually the pelvic joint), use the 

trained model to perform MPJPE calculation on the scene in the verification set, and 

then compare with the current method using the same data set, and finally summarize 

the experimental contrast results, as shown in the following Table 2 below. 

Table 2. Estimated and verified results of each network model on the Human3.6M test set  

(MPJPE(mm)) 

Method Directio

ns 

Discussion Eating Greeting Phoning Photo Posing Purchases 

Zhou X[11] 91.83 102.41 96.95 98.72 113.35 125.22 90.04 93.84 

Tome D[15] 64.98 73.47 76.82 86.43 86.28 110.67 68.93 74.49 

Chen C[16] 71.63 66.60 74.74 79.09 70.05 93.26 67.56 89.30 

Moreno[17] 67.48 79.01 76.48 83.12 97.43 100.37 74.58 71.96 

Martinez[18] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 

Zhou X[20] 54.82 60.70 58.22 71.41 62.03 65.53 53.83 55.58 

Pavlakos[22] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 

Li C[25] 43.8      48.6 49.1 49.8 57.6 61.5 45.9 48.3 

Pavllo[24] 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 
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Method Sitting Sitting 

Down 

Smoking Waiting Walk 

Dog 

Walkin

g 

Walk 

Together 

Average 

Zhou X[11] 132.16 158.97 106.97 94.41 126.04 79.02 98.96 107.26 

Tome D[15] 110.19 173.91 84.95 85.78 86.26 71.36 73.14 88.39 

Chen C[16] 90.74 195.62 83.46 71.15 85.86 55.74 62.51 82.72 

Moreno[17] 102.40 116.68 87.70 94.57 82.72 75.21 74.92 85.64 

Martinez[18] 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9 

Zhou X[20] 75.20 111.59 64.15 66.05 51.43 63.22 55.33 64.90 

Pavlakos[22] 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2 

Li C[25] 62.0 73.4 54.8 50.6 56.0 43.4 45.5 52.7 

Pavllo[24] 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8 

 

According to Table 2, it is concluded that for the data obtained by experiments of 

the models in some papers in the Human3.6M data set, the phased 3D human pose 

estimation method is better than the end-to-end human pose estimation method. For the 

average MPJPE of all scenarios in the test set, the average MPJPE of Martinez et al. 

[18] is about 40mm lower than that of Zhou X et al. [11]. Moreover, the 3D human 

pose estimation method of the hybrid network model is also better than staged 3D 

human pose estimation method. In the chart, the average MPJPE of the method of 

Pavllo et al. [24] is 16.1 mm lower than that of the method of Martinez et al. [18]. 

In summary, in the 3D single person pose estimation method, the constantly 

evolving neural network model is combined with the data information of the 2D human 

pose joints and the geometric structural characteristics of the human pose structure 

itself to optimize the method performance of the model. This kind of mixed and 

matched network model greatly improves the accuracy of human pose estimation, and 

at the same time increases the possibility of application in more different complex 

scenes. 

4. Summary 

This article reviews the development of 3D single person pose estimation methods 

using neural networks, describes in detail the important method models, and compares 

the better theoretical models in previous studies, and gives the comparative 

experimental results. Make a summary of it. 

The existing 3D single person pose estimation methods based on neural networks 

are relatively mature, but the accuracy of pose estimation in complex scenes needs to 

be improved. The current 3D single person pose estimation method based on neural 

networks cannot achieve satisfactory results in the case of multiple poses, which points 

out specific directions for future research work. In addition, a plenty of commonly used 

data sets are collected indoors, and there are too few types of human postures. 

Therefore, the way of generating data will be an immense challenge. 
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