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Abstract. Recent end-to-end CNN-based stereo matching algorithms obtain dispar-
ities through regression from a cost volume, which is formed by concatenating the
features of stereo pairs. Some downsampling steps are often embedded in construct-
ing cost volume for global information aggregation and computational efficiency.
However, many edge details are hard to recover due to the imprudent upsampling
process and ambiguous boundary predictions. To tackle this problem without train-
ing another edge prediction sub-network, we developed a novel tightly-coupled
edge refinement pipeline composed of two modules. The first module implements
a gentle upsampling process by a cascaded cost volume filtering method, aggre-
gating global information without losing many details. On this basis, the second
module concentrates on generating a disparity residual map for boundary pixels by
sub-pixel disparity consistency check, to further recover the edge details. The ex-
perimental results on public datasets demonstrate the effectiveness of the proposed
method.
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1. Introduction

Recently stereo matching has become a research hotspot, aiming at finding correspond-
ing pixels for stereo pairs. And it has been widely applied to autonomous driving,
robotics, 3D object detection, computational photography, virtual and augmented real-
ity [1]. For traditional stereo matching methods, a typical four-step framework has been
established and widely used, composed of matching cost calculation, cost aggregation,
optimization and final disparity refinement, respectively.

This paper proposes a novel tightly-coupled edge refinement pipeline composed of
two modules, to gently upsample cost volumes and effectively recover edge details. The
main contributions of this paper are listed as follows:

• We propose a tightly-coupled edge refinement pipeline to effectively recover edge
details.

• We design a cascaded cost volume filtering module, to aggregate sufficient global
context information without losing many details.

1Corresponding Author; E-mail: steinbeck@163.com.

Fuzzy Systems and Data Mining VI
A.J. Tallón-Ballesteros (Ed.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200719

405



• We design a sub-pixel disparity consistency refinement module to effectively re-
fine the disparity prediction for boundary pixels.

• Our model achieves state of the art on SceneFlow benchmark [2], and comparable
performance on KITTI benchmark [3][4].

2. Related Work

CNN have been widely adopted in deep learning stereo matching algorithms. J. Zbontar
and Y. LeCun [5] pioneered a CNNs-based siamese network for stereo matching. Pang
et al. [6] proposed a cascaded CNN architecture, to refine disparity by learning multi-
scale residuals. Godard et al. [7] fused the left-right disparity consistency check loss into
its loss function to train a better monocular depth estimation network. Zhang et al. [8]
supervised thier network through calculating the pixel intensity difference between the
original input image and reconstruction of input image generated by left-right disparity
consistency mechanism. Enlightened by [8], we perform a sub-pixel left-right consis-
tency check on groundtruth disparity of the stereo pair, to acquire a fine-grained incon-
sistent map consists of boundary pixels. And we supervise the disparity residual with the
inconsistent map to effectively improve the refinement performance.

3. Approach

The proposed architecture is mainly composed of four modules: multi-resolution feature
extraction, multi-resolution cost volumes, cascaded cost volume filtering and sub-pixel
disparity consistency refinement, as shown in Figure. 1.
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Figure 1. The architecture of our proposed network.
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3.1. Multi-resolution Feature Extraction

Inspired by several multi-scale feature extraction methods, such as ASPP [9], 4P [10]
and image pyramid [11], we propose a multi-resolution feature extraction architecture.
The architecture is composed of a weight-share siamese network with hourglass struc-
ture and skip connections, as shown in Figure. 1, to encode local and global contextual
information for stereo pairs.

3.2. Multi-resolution Cost Volumes

Multi-resolution cost volumes are directly generated by multi-resolution features ex-
tracted in the previous step. There are three typical approaches for cost volume construc-
tion, including dot products [2], concatenation [12] and absolute difference [13] between
features. To aggregate sufficient context information, we construct cost volumes by the
way of simply calculating absolute difference.

3.3. Cascaded Cost Volume Filtering

Different from [14], we propose a cascaded cost volume filtering method. Instead of
upsampling and refining the initial disparity map of low resolution, we directly upsample
cost volumes formed in the previous step. We perform four 3D convolutions with 3×3×
3, as shown in Fig. 1. filter and stride of 1, to obtain a new cost volume,

3.4. Disparity Regression

For disparity regression, we use soft argmin operation proposed in [8],

D =
Dmax

∑
d=0

d×P(d) (1)

where D is the estimated disparity map, and P(d) is the softmax operation to the filtered
cost along the disparity dimension.

3.5. Sub-pixel Disparity Consistency Refinement

This module aims at effectively recovering edge details for initial disparity prediction.
We implement a simple addition between initial left disparity and disparity residual map.
A ReLu activation is followed to keep all disparity values greater than 0:

Dâ = σ ×Db +(1−σ)×Dc (2)

Φ = {a|Da−Dâ > 1} (3)

where D denotes disparity, and Φ is a set for inconsistent pixels, which form our in-
consistent groundtruth. Note that, we choose pixels whose original disparity is one-pixel
distance larger than the reprojection one as our inconsistent map. We do not choose pix-
els whose reprojection disparity is larger, for the purpose of avoiding joining occluded
pixels in our inconsistent map, as shown in Fig. 2.
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Figure 2. Examples of different groundtruth disparity inconsistent map, from left to right: left input images,
right input images, edge-aware inconsistent map without occluded pixels, inconsistent map with occluded
pixels. (Better zoom in to view)

3.6. Loss

We train our model with supervised learning using both groundtruth disparity data and
disparity inconsistent map generated by the aforementioned method ,

L1 = α× (
1
N

N

∑
i=1

smoothL1(l̂i− li)+
1
N

N

∑
i=1

smoothL1(r̂i− ri))

+β × (
1
N
(

N

∑
i=1

smoothL1(
ˆ̇li− li))

(4)

in which

smoothL1(x) =
{

0.5x2, if |x|< 1
|x|−0.5, otherwise , (5)

where N is the total number of pixels in a single input image, li and ri are left and
right groundtruth disparity value of pixel i respectively. l̂i and r̂i are the initial left and
right prediction disparity value of pixel i respectively. And ˆ̇li is the final left prediction
disparity value of pixel i.

We utilize the second term to supervise the disparity inconsistent prediction, the loss
is defined as:

L2 =
1
N

N

∑
i=1

(−pi log(1− p̂i)− (1− pi) log p̂i) (6)

where pi and p̂i are groundtruth and prediction of disparity inconsistent value for pixel i,
respectively.

Finally, we train the model using an end-to-end supervised learning mechanism with
following joint loss function:

L = L1 + γ ∗L2 (7)

4. Experiment

4.1. Datasets and Implementation

Datasets: We test the proposed architecture on Sceneflow and KITTI datasets in this
work.
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Implementation: We implemented the proposed architecture by using Pytorch, and we
trained the whole network with the stochastic optimization algorithm of Adam [15],
where β1 = 0.9, β2 = 0.999 and ε = 10−8. We firstly trained our network with a batch
size of 12 on two Titan RTX GPUs using 256×512 randomly cropped stereo pairs from
SceneFlow training set, We set the max disparity to 192. We performed color normaliza-
tion on the whole datasets before training. We set the initial learning rate to 0.001, and
kept it unchanged for the first 10 epochs, and halved for the following 4 epochs, finally
we fixed the learning rate to 0.0001 to the end (25 epoches). We retrained the model on
KITTI dataset for an extra 600 epochs, with learning rate of 0.001 for the first 300 epochs
and 0.0001 for the last 300 epochs. And we set α = 1, β = 1.2 and γ = 0.4 in Eq. (4)
and Eq. (7) respectively.

4.2. Ablation Study

In this section, we demonstrate the effectiveness of the proposed modules by presenting
several ablation experiment results on SceneFlow. The experiment results are shown in
Table 1. And we also test the performance of proposed model trained with different α , β
and γ on SceneFlow, as shown in Table 2.

Table 1. Ablation study of different network architecture settings on SceneFlow. CR represents the resolution
of final cost volume, and BI represents upsampling operation by simple bilinear interpolation.

Network Architecture SceneFlow

CR
Upsampling method Edge refinement

EPE time
BI CDF CCVF TDRA SDCR

1/8 � 2.01 0.05s
1/8 � 1.65 0.06s
1/8 � 1.12 0.08s
1/8 � � 1.05 0.09s
1/8 � � 0.88 0.09s
1/4 � � 0.93 0.27s
1/4 � � 0.81 0.28s

Table 2. Comparing results of proposed model trained with different combinations of loss weight on Scene-
Flow testing datasets.

Parameters
EPE

α β γ
0.8 1.0 - 1.07
1.0 1.2 - 0.98

1.2 1.4 - 1.04
1.0 1.2 0.2 0.88
1.0 1.2 0.4 0.81

1.0 1.2 0.6 0.85

Our cascaded cost volume filtering module and sub-pixel disparity consistency re-
finement module are abbreviated to CCVF and SDCR respectively in Table 1, and other
annotations are listed as follows:
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Figure 3. Qualitative results of SceneFlow testing set. From left to right: left input image, inconsistent pre-
diction, disparity prediction and error map. The last row is the color bar for error maps. (Better zoom in to
view)

End Point Error (EPE). The average absolute difference between disparity prediction
and groundtruth for testing pixels.
Cascaded Disparity refinement (CDF). This module bilinearly upsamples the disparity
map, then downsamples the input to the same resolution, and implements several atrous
convolutions to obtain the disparity residual level by level.
Training Disparity Residual Alone (TDRA). This module outputs disparity residual
map by implementing several atrous convolutions on an input volume, which concate-
nates original left input image and disparity prediction of full resolution.

4.3. Comparison With Other Methods

We trained two models 1
8 and 1

4 resolution of cost volumes, and we compared the EPE
on Sceneflow testing datasets with other state-of-the-art methods, The evaluation results
is shown in Table 3.

Table 3. Comparing results of stereo matching algorithms on the SceneFlow testing datasets.

Non-Real-Time GC-Net [8] SegStereo [16] PSMNet [17] DeepPruner(Best) [18] Proposed(Best)

EPE 2.51 1.45 1.09 0.86 0.81

time 900ms 600ms 410ms 200ms 280ms

Real-Time DispNetC [2] StereoNet [14] DeepPruner(Fast) [18] Proposed(Fast)

EPE 1.68 1.10 0.97 0.88

time 60ms 17ms 62ms 90ms

To prove the effectiveness of the proposed method on boundary and occluded pixels,
we performed another evaluation on these pixels of Sceneflow testing datasets , respec-
tively. And we compared the testing results with PSMNet [17] and DeepPruner(best)
[18], and the result is presented in Table 4.

Then we evaluate our best version model on KITTI. We compare the error rates of
our model with several published compelling algorithms on KITTI 2012 and KITTI 2015
datasets respectively. And the comparing results are shown in Table 5 and Table 6.

Our method achieves the three-pixel error rate of 2.18% in KITTI 2012 and 2.50%
in KITTI2015, which is better than EdgeStereo [19]. And our method significantly out-
performs these algorithms and achieves state-of-the-art performance on SceneFlow.
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Table 4. Comparing results of boundary and occluded pixels on the SceneFlow testing datasets.

Method EPE (boundary) EPE (boundary + pixels) EPE (all pixels) Runtime

PSMNet [17] 3.96 2.92 1.09 0.41 s
DeepPruner(best) [18] 3.81 2.74 0.86 0.2 s

Proposed 3.73 2.66 0.81 0.28 s

Table 5. Testing results of KITTI 2012 [3].

Method Out-Noc Out-All Avg-Noc Avg-All Runtime

PSMNet [17] 1.49 % 1.89 % 0.5 px 0.6 px 0.41 s
EdgeStereo [19] 1.73 % 2.18 % 0.5 px 0.6 px 0.48 s

GC-NET [8] 1.77 % 2.30 % 0.6 px 0.7 px 0.9 s

Proposed 1.80 % 2.30 % 0.5 px 0.6 px 0.28 s

Table 6. Testing results on KITTI 2015 [1].

Method D1-bg D1-fg D1-all Time

DeepPruner [18] 1.87 % 3.56 % 2.15 % 0.28 s
PSMNet [17] 1.86 % 4.62 % 2.32 % 0.41 s

EdgeStereo [19] 2.27 % 4.18 % 2.59 % 0.27 s

Proposed 2.11 % 4.46 % 2.50 % 0.28 s

5. Conclusion

In this paper, we propose a novel end-to-end deep learning architecture, aiming at effec-
tively giving consideration to both global and local areas for stereo matching. To achieve
this goal, we developed a cascaded cost volume filtering module to aggregate sufficient
global information without losing many details. Besides, we designed a sub-pixel dispar-
ity consistency refinement module to futher recover edge details for local areas.
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