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Abstract. This paper is a collection of previous studies for function identification
by simple genetic algorithm (GA) [1] with tree chromosome structure which has
been proposed in [2]-[7], and gives the details more than survey paper. This paper
also aims to introduce the studies which were written in Japanese. In this paper,
there are five main points. First, a tree chromosome structure, which is the core idea
of the studies, is introduced. The tree chromosome structure makes GA succeed in
function identification called symbolic regression. Second, the proposed GA with
tree chromosome structure succeeded in identifying the target functions from the
observed data are shown indeed. The target functions are algebraic functions, pri-
mary transcendental functions, time series functions including chaos function, and
user-defined one-variable functions. Third, to find function represented with some
parentheses, a hierarchical tree chromosome structure is introduced. Forth, some
local search methods to aim at the improvement for identification success rate and
shortening identification time are introduced. In the end of this paper, the proposed
tree and hierarchical tree chromosome structure can be adapted for identifying
Boolean functions are laid out.
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1. Introduction

The scientist finds natural laws from observed data. It has long been human’s dream to
automate this process. One such attempt is Genetic Programming (GP) [8]-[12], which
treat structural representations of functions directly as gene code using computer lan-
guage LISP. It can search for a target function by applying basic operators of genetic
algorithm to the concept tree coded in LISP. However, in real experiments, the high num-
ber of initial groups needed to maintain the variety of a graph causes the huge amount of
calculation necessary, that is the big problem in GP. And, by crossover and/or mutation
of genetic manipulation approach, a profitable partial tree structure may be destroyed.
Thereby the search process is not steady, and much time is needed in many cases.

However, in 1998, a unique approach using simple GA [2], which can find the laws
from the observed data in a very short time, has been proposed. Subsequently, its local
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search methods and a modified chromosome structure to find Boolean function have
been also proposed [3]-[7]. Nevertheless, the approach is unknown to researchers who
are engaged in studying of genetic algorithms. Even though the evolutionary computing
research area becomes wide, and recently there are so many applied research areas such
as [13]-[15]. Presumably, the reason is that the study and some related studies were
written in Japanese. Therefore, the aim of this paper is to introduce the studies in English.

In this paper, first of all, a sophisticated chromosome structure for a simple genetic
algorithm [2] to identify function from observed data is introduced, and that is required
for understanding the studies, which have been proposed by Matayoshi [2]-[7]. The pro-
posed GA-based function identification methods with tree chromosome structure can,
for example, identify f (r,x,m) = r · tan(x)+m (obtaining the height of a point from its
elevations viewed from another point) in a few minutes even when Pentium 350MHz
computer is used. After that, some local search methods for the previous study are in-
troduced in English because the original paper is only written in Japanese. In the rest of
this paper, Boolean function identification by using tree chromosome structure in GA is
described and shown the results.

2. Function Identification

The purpose of symbolic regression is to obtain a function’s form, in many cases, with
coefficients from the observed data. Before the proposed GA approach with sophisticated
chromosome structure, automatic identification of unknown functions was a monopoly
of GP. The method introduced in this paper allows symbolic regression and various iden-
tifications by the implementation of the tree structure as a chromosome, which is called
Tree Chromosome Structure (TCS), of GA based approach. Three chromosome struc-
ture consists of function chromosome, pointer chromosome, constant chromosome, and
operator chromosome. These are shown below.

3. Tree Chromosome Structure

One of the main points of the study is the unique chromosome structure (refer to Figure
1). GA can find the form of the target function by using it as a chromosome. For example,
in Figure 1, when the fourth gene of the function chromosome is Fm[4] = 2, and the
corresponding gene of the pointer chromosome is Pm[4] = 4, then the operator “÷”
which is division symbol is selected as the gene of the operator chromosome. That is the
“divide” operation is set.

f (x) =
{

odd(Re f er to variable chromosome or constant chromosome set)
even(Re f er to operator chrosome) (1)

Fm[ f ] =

⎧⎨
⎩

0 ( f : odd, Re f er to variable chromosome)
1 ( f : odd, Re f er to constant chromosome)
2 ( f : even, Re f er to operator chromosome)

(2)

Pm[ f ] =

⎧⎨
⎩

∈Vc ( f : odd, Vc ∈ Positive integer)
∈Cc ( f : odd, Cc ∈ Positive integer)
∈ Op( f : even, 0 ≤ Op ≤ 5)

(3)

M. Matayoshi / The Overview of Genetic Algorithm with Tree Chromosome Structure 325



Figure 1. The tree chromosome structure.

Figure 2. The Function Chromosome and Pointer Chromosome.

Here, m∈ natural number, n∈ positive odd number, Vc: variable chromosome length,
Cc: number of representable constants, Op: operator chromosome length.

The basic operators of GA are applied to the function chromosome, the pointer chro-
mosome, and the constant chromosome set.

3.1. Function chromosome and pointer chromosome

The function chromosome is described by infix notation without parentheses (refer to
Section 6). The pointer chromosome and the function chromosome have a one-to-one
correspondence. The correspondence by the function chromosome and the pointer chro-
mosome makes a form of function (see Figure 1, Figure 2).
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3.2. Variable Chromosome

The variable chromosome is a fixed length chromosome and does not itself undergo GA
operations. It is generated according to the observed data.

3.3. Operator Chromosome

Tree-Chromosome structure has one operator chromosome that cannot allow GA’s oper-
ators such as selection. The operator chromosome has six genes including “=” and that
is an irrevocably fixed chromosome (refer to Figure 1). Here “ ˆ ” means power function.
The operators are defined to be left-associative, and each gene of operator chromosome
takes mathematical operation priority as follows: +,− < ×,÷ < ˆ < =.

3.4. Structure of constant chromosome set

The structure of the constant chromosome set is a two-dimensional array. Rows in this
array represents different constant floating-point value (refer to Figure 3). This chromo-
some is manipulated by GA operators to get the appropriate constant value.

Chromosome:
i=m
0 + · · ·+ i=1

1 +
i=0
0︸ ︷︷ ︸

Integer part: m bits

j=1
0 +

j=2
1 + · · ·+ j=n

0︸ ︷︷ ︸
Floating point part: n bits

.

The decimal notation:0 ·2m + · · ·+1 ·21 +0 ·20 +0 ·2−1 +1 ·2−2 + · · ·+0 ·2−n.
Here, m,n ∈ natural number.

Figure 3. Representation of constant chromosome with decimal notation.

4. The genetic operators and the fitness function

To find appropriate function, the proposed method applies the simple well-known basic
GA operators (selection, crossover, and mutation) to the function chromosome, pointer
chromosome, and the constant chromosome sets. The three basic operators on each chro-
mosome adopt the following methods consistently:

Crossover method: One point crossover.
Mutation method: Compulsory conversion of gene.
Selection method: Elite preservation method.

Here, the function chromosome and the pointer chromosome have a one-to-one cor-
respondence. Therefore, the crossover point is made the same. GA operators are repeated
until the end condition, such as an iteration is set in advance or the convergence condi-
tion calculated by the fitness function given in (4), is satisfied. The elite solution survives
reliably into the next generation by the fitness. Then, there is no change effected by GA
operators because the elite solution’s function chromosome,

Fittness =
n

∑
i=0

1.0
(|Ri −Observed datai|+1.0)

(4)

(R: output of a chromosome, n: number of observed data)
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5. Experiment

5.1. Experimental function

The test function and observed data used for the experiments are as follows:
(a) Y = 1

2 gt2. (the law of free fall, g = 9.8)
(b) r2 = x2 + y2. (circle at origin)
(c) h = r · tan(x)+m. (refer to Section 1 and Section 3)
(d) Y = x1 · x2 · x3 − x4 · x5 · x6. (two-box problem [10])
(e) Y = (x+ z)(x−z). (calculation with parentheses)
( f ) Y = x+(w− z) f (x). (user-defined function: f (x) = (x+ 1

x )(x
2 + ln(x)),x �= 0)

(g) an+2 = an+1 +an. (n ∈ positive integer, a0 = 1,a1 =1: Fibonacci sequence)
(h) an+1 = α ·an(1−an).
(n ∈positive integer, 0 < a0 < 1.0,3.57 < α ≤ 4.0:chaos phenomenon in logistic map)

Table 1. Restrictions for Test Functions.

Function Observed Unknown Noise Note
variable variable

(a) Y, t 1
2 ,g Y ±1 ∼ 5% 0 ≤ t ≤ 24(s)

g : 9.8(m/s2)

(b) r,x,y r±1 ∼ 5% r : radius
|x,y| ≤ 10

(c) h,r,x m h±1 ∼ 5% x : elevation
0 ≤ r ≤ 10

m : 1.5 view height

(d) Y,x1∼6 Y ±1 ∼ 5% 0 ≤ x1∼6 ≤ 10

(e) Y,x,z Y ±1 ∼ 5% −5 ≤ z− x ≤ 10

(f) Y,x,z Y ±1 ∼ 5% 0 ≤ x ≤ 10
0 ≤ z ≤ 10

(g) an an ±1 ∼ 5% n = 0 ∼ 24
Here, 2 ≤ n a0 = 1.0

a1 = 1.0

(h) an α an ±1 ∼ 5% α = 3.8
Here, 2 ≤ n a0 = 0.2

n = 0 ∼ 24
Note: An unknown variable means the data which cannot be observed independently.

5.2. Objectives

Function identification succeeds when the following objectives are achieved (see Section
5.1):

(a): Obtain the law and unknown constant value.
(b): Obtain a complete solution when both positive and negative one-time so-
lutions are given as input.
(c): Obtain a complete solution which contains the transcendental function and
unknown constant value (view height).
(d): Obtain the complete solution when there are a lot of observation variables.
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(e): Obtain the approximation solution of factorized functions.
(f): Obtain a complete solution of the function which contains the user-defined
function.
(g): Obtain a complete solution of the Fibonacci sequence (time series func-
tion).
(h): Obtain a complete solution and the constant value (= 3.8 for a fixed chaotic
behavior) of the logistic map.

5.3. Experimental conditions

In all experiments, the upper bound of generations is 5000. Each mutation rate of the
function chromosome, the pointer chromosome, and constant chromosome is 10%. The
number of individuals in the function chromosome and pointer chromosome are Fm =
Pm = 500. The number of constant chromosome individuals is Cc = 200. The constant
chromosome length is T = 10 (5 bits for integer part, 5 bits for after the decimal point).
Then experimental runs were executed for each problem in Table 1. The number of input
data was 25 sets of the observed data. The experiment ends when the iteration reaches
the upper bound or the absolute error value of Eq.(4) is |Ri −Observed datai|< 0.05.

5.4. Experimental results: No noise

Experimental results are indicated in Table 2; the proposed method identifies the target
functions at very high speed (Pentium II 350 MHz). In (a) and (c), the approximate value
of unknown constant 1

2 ·g and, in consideration of the end condition, accurate value of m
are obtained.

Table 2. Results, (No Noise in Observation Data).

The best detected solution Average of detected solutions
(include approximation solutions)

Func. Detected Function Time Detected Number of Error Time Detected
(s) generation times detected (s) generation

(a) t ·19.96/4.062 · t 155.0 574 1+8∗+1� 0.112 432.8 1558.3

(b) x · x+ y · y 1.84 18 10 0 6.9 59.7

(c) r · tan(x)+1.531 494.96 2682 1+6∗+3� 0.024 270.2 1430.4

(d) x1 · x2 · x3 − x4 · x5 · x6 11.04 119 6+3� 0.005 103.9 919.4

(e) − − − − − − −
(f) x+w · f (x)− z · f (x) 30.25 721 10 0 75.7 1681.5

(g) an+1 +an 0.14 0 9+1� 0 0.6 2.8

(h) − − − − − − −
Note: * is a solution when the rounding error is considered. # is an approximate solution.

The proposed method with tree chromosome structure has succeeded in calculating
values of constants with high accuracy (although this is difficult in GP). However, the
identification both of (e) and (h) have failed. All detected functions in (h) are oscillatory
functions (e.g., an+1 = a4.875

n ). Indeed, the logistic map oscillates in the range 1+
√

6 <
α ≤ α∗(� 3.57). The reason why the method could not find it is later mentioned (refer
to Section 5.6). In regard to (e), the method is insufficient to solve it. To get the solution
of factorized functions, a sensible approach has been also proposed (refer to Section 6).
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5.5. Experimental results: Noise

Experimental results when the observed data contains noise are shown in Table 3. The
proposed method identifies functions (a), (b), (c), (f), and (g), and succeeds in obtaining
of constant values with high accuracy. In the real world, noise is often included in the
observed data. In such cases, this method obtains reasonable results.

Incidentally, a solution of the form x1 · x2 · x3 − x4 · x5 · x6 +β appeared in all experi-
ments in (d). Because the error value (∼= 5.02) is small, β is a kind of an extra expression
which absorbs and/or represents noise term.

Table 3. Results, (Noise in Observation Data).

The best detected solution Average of detected solutions
(include approximation solutions)

Func. Detected Function Error Time Number of Error Time
(s) times detected (s)

(a) t/10.250 ·28.219/9.875 · t
− t · t/3.031 35.16 1408.32 7∗+3� 35.36 1425.03

(b) x · x+ y · y+ y/19.562 · y 1.06 912.67 9∗ 1.41 915.72

(c) r · tan(x)+1.5 0.97 609.34 3+4∗+3� 0.99 581.37

(d) − − − 10� 5.02 581.599

(e) − − − − − −
(f) 1.688+w · f (x)− z · f (x)+ x 55.99 238.59 4∗+4� 56.23 219.10

(g) 0.906 ·an

+an+1/27.031/30.906+an+1 463.14 1229.66 3∗+5� 434.17 1235.948

(h) − − − − − −
Note: * is a solution when the rounding error is considered. # is an approximate solution.

5.6. Logistic map experiment

In Sections 5.4 and 5.5, the identification of the logistic map failed. This indicates falling
into local solution, however, that is not so far from original function, of a wide search
space. Two results were as follows:

No noise: an+1 = 3.938 ·an −3.962 ·an ·an (detecting rate 10%, error: 0.017).
Noise: an+1 = 3.969 ·an −4.031 ·an ·an (detecting rate 10%, error: 0.044).
Here, variable numbers are rounded off to four decimal places.

Figure 4. Comparison of Predicted and Actual Values for Test Function(h), The Logistic Mapping.
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However, the obtained value for α , which determines the chaotic behavior, is not
3.8 exactly. The butterfly effect makes prediction difficult. In original paper, the constant
chromosome cannot make constant value α = 3.8 because five bits for decimal value has
been assigned unfortunately. Hence, in this experiment, α = 0.813 or α = 0.781 should
have been assigned.

6. Hierarchical Tree Chromosome Structure

The tree chromosome structure identified functions (f) and (h) in their expanded forms.
However, the identification of (e) failed because its expansion was not possible. In order
to identify general expressions in their factorized form, the tree chromosome structure
needs to be expanded.

6.1. Hierarchical tree chromosome

The function chromosome shown in Section 3 is without parentheses. When one function
chromosome is regarded as a formula in a pair of parentheses, that is, it is factorized form,
the general expression can be obtained by connecting the factorized forms with operators.
Thus, a new chromosome called HTCSF (Hierarchical Tree Chromosome Structure for
Function) has been designed and proposed (see Figure 5). This method can represent a
complex form function by hierarchizing.

Figure 5. Representation of the hierarchical tree chromosome structure for factorized function chromosomes.

6.2. Experiments using HTCSF

The experimental results for using HTCSF are shown in Table 4. Reliable identification
of (5) is seen; however, the identification of expandable functions failed. To get appro-
priate function formula in reasonable time, local search method might be efficient. In
next Section 7, the proposed method with some local search methods get good results
are shown.
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Table 4. Results for Identification of Factored Expressions. Using HTCSF.

The best detected solution Average of detected solutions

Func. Detected Error Time Detected Number of Error Time Detected
Function (s) generation times detected (s) generation

(e) (x+ y)(x−y) 0.0 1.21 5 10 0.0 3100.69 1085.8

(f) − − − − − − − −
(h) − − − − − − − −

7. Local search methods to Identify function

Tree Chromosome Structure succeeds in function identifications. However, there are not
exact solution in the results. For example, in Table 2 the results of target function (c) are
one exact solution, six solutions with rounding error, and three approximate solutions.
Thus, to get more sophisticated form of target function, some local search methods have
been proposed [7] (written in Japanese). Of course, the proposed local search methods
also aim at the identification success rate improvement and shortening identification time.

7.1. Local search methods

Three different Local Search Methods for Tree Chromosome Structure (LSMs-TCS)
have been proposed in [7]. And each LSMs-TCS takes two moving strategies. There-
fore, in total, there are six different approaches to find good solution. In other words, six
methods to avoid trapping into local solution are given. LSMs-TCS is the method which
can change variable, constant value, or operator compulsory. The first method changes
variable or constant value to another variable. Second method switches an operator to an
another operator including power operator. The last one exchanges variable or constant
value for ZERO. Here, the behavior of LSMs-TCS is shown in as follows:

• Compulsory changing procedure for variable and/or constant to variable
This local search method changes variable and/or constant to another variable
compulsory, and simultaneously changes the related gene of the pointer chromo-
some to a gene of variable chromosome so that one-to-one correspondence is kept.

e.g., when f (x,y) = x · y+ y · y is found during function identification, this local
search method is able to change the y of x · y to x and get the right form of circle
at origin function f (x,y) = x · x+ y · y.

• Compulsory changing procedure for variable and/or constant to ZERO
The behavior of this local search method is to replace the target variable and/or
constant by ZERO. This is a special case of method mentioned above.

e.g., when f (x,r,m) = m · r+ tan(x)+x−1/x2 is obtained by the process of func-
tion identification, f (x,r,m) = m · r+ tan(x)+ 0.0− 0.0/x2 is made by this local
search method by replacing x and 1 with 0.0 respectively.

• Compulsory changing procedure for operator
This local search method changes operator to another operator. However, if the
value of right side of the target operator is near ZERO, then the target operator

M. Matayoshi / The Overview of Genetic Algorithm with Tree Chromosome Structure332



never changes to division operator because of to avoid dividing by ZERO.

e.g., when f (x,r,m) = m · r+ tan(x)+x ·0.0 was gotten by during function identi-
fication, the local search method could obtain the right function formula by chang-
ing the multiplication operator of m · r to addition operator, and the addition oper-
ator of r+ tan(x) to multiplication operator. Thereby, the found function expres-
sion finally becomes f (x,r,m) = m+ r · tan(x)+ x · 0.0. The found function for-
mula has a redundant part which is multiplied by ZERO in this case. Incidentally,
the multiplication operator of this redundant part is never exchanged by division
operator. Here, when m is the height of another point, r is the distance from the
another point to the point directly underneath of the objective point, and x is the
angle of elevation from another point. Then, the found function gets the height of
an objective point from its elevations viewed from another point.

Each LSMs-TCS can take two moving strategies. The one of moving strategy is Fast
Admissible Move Strategy (FAMS) which changes the solution to another good solu-
tion immediately when a better fitness individual is gotten by applying the local search
method. The other strategy called the Best Admissible Move Strategy (BAMS) takes the
Best solution from the neighborhood solution sets. The both strategies are repeated until
there is nothing of exchangeable object in neighborhood.

In original paper [7], the six approaches are described in detail but are written in
Japanese. However, hereinto, for want of space, the essence of two strategies are given
instead of the detailed description of each six approaches. The essence of local search
methods with moving strategies are shown as follows:

Step1: Take an individual at random from the population.
Step2: Take a genetic locus on the function chromosome and apply LMS. Simulta-

neously, change the gene of pointer chromosome because of one-to-one corre-
spondence.

Step3: Calculate the fitness.

In FAMS;
Step4: If the fitness is improved, then the alteration is fixed, and back to Step 2.
Step5: If there is no good individual in neighborhoods, then quit the FAMS operation.

In BAMS;
Step4: If an improved fitness is obtained, then the altered individual is copied as the

best so far.
Step5: Restore to the previous individual, and back to Step 2.
Step6: If there is no good individual in neighborhoods, then quit the BAMS operation.
Step7: Replace the best as a new individual to the previous individual.

7.2. New fitness

Differences of fitness function make some interesting differences for obtained solutions,
which were reported and cleared in [7]. Specifically, when the identification system uses
the original fitness function (4), undesirable approximate solutions are obtained in many
cases (refer to Table 2, Table 3). Hereupon next two fitnesses have been tested.
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Fitness 2 =
1
n

n

∑
i=1

|input(i)−out put(i)|
|input(i)| ∗100. (5)

New f itness = max
( |input(i)−out put(i)|

|input(i)| ∗100
)
. (6)

(input(i): i-th observed datum, out put(i): i-th output datum obtained by the system)

As a result, a new very simple fitness function (6) has been introduced in [7]. In
formula (4) and (5), it is cleared that more observed data are given, the more averaging
fitness is obtained because the fitness is divided by the total number of observations n.
In other words, it is reasonable to assume that approximate solutions might be brought
instead of the right solution.

Table 5. Testing results when the fitness value functions are different.

Fitness function
Obtained function (6) (5)

Y = 1
2 gt2 47 22

Y = 1
2 gt2 ±β t 1 14

Y = 1
2 gt2 ±β 0 4

Y = 1
2 gt2 ±β t + γ 0 9

Don’t find 2 1
β ,γ: constant value

7.3. Experimental conditions

In all experiments, the limited time is 5 minutes. Therefore, the upper bound of genera-
tions does not set. The evaluation of convergence is New f itness < 5% The number of
individuals in the function chromosome and pointer chromosome are Fm = Pm = 100.
The number of constant chromosome individuals is Cc = 50. The initial length of func-
tion chromosome and pointer chromosome is 31. The constant chromosome length is
T = 10 (5 bits for integer part, 5 bits for after the decimal point). The length of operator
chromosome is 6 including equal operator. Each mutation rate of the function chromo-
some, the pointer chromosome, and constant chromosome is 30%. The rate of crossover
for function chromosome and pointer chromosome, and constant chromosome is around
70% because of excluding mutated chromosomes. To keep diversity of population, the
most of chromosomes excluded the elite take gene manipulation in each generation. The
proposed method has three exception processes are shown as follows:

• Multiple power operator prohibition: e.g. f (x) = x35

• Overflow prevention: e.g. f (x) = x ·1001000

• Zero-divide prevention: e.g. f (x) = x · (1/100)1000

7.4. Selection from LSMs-TCS

It is necessary for the proposed GA-based identification system to take one of LSMs-
TCS in each generation. However, it is not known in advance which LSM is the best one
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to get good solution at the moment. Therefore, the experiments (W), (F), and (B) were
performed in [7]. Here, (W) means with no LSMs and is for the verification experiment,
(F) uses local search method with FAMS, and (B) uses local search method with BAMS.
In the experiments, the only elite chromosome is chosen for manipulation by LSMs-
TCS because many “0.0” gene were frequently appeared in the population in preliminary
experiments. Even under such conditions, “0.0” gene were often made in the experiment.
For example, the “0.0” gene appearance frequency of function identification for (b) were
3/69 in (W), 44/73 in (F), and 57/80 in (B) (refer to Table 6).

7.5. Target functions for experiments

The target functions of identification are composed of (a)-(h) excluding (e) in Section 5.
And a new famous natural law called Kepler’s the third law, that is T = k ·a2/3,k ∼= 1, is
added as (e).

7.6. Experiment using local search methods

The experimental results using proposed local search methods are shown in Table 6 and
Table 7. Table 6 and Table 7 show better results in comparison with original identification
method ((W) in tables) in Table 2, 3, and 4. Table 6 shows that LSMs-TCS gets good
results in many cases excluding identification for function (c). Table 7 shows LSMs-
TCS gets good improvement rate in finding time and the good results of statistical test.
Here, +, * symbols in Table 7 are the results of Wilcoxon rank-sum test which is a Non-
parametric test of mean difference. (F)-imp. and (B)-imp. are the improvement rate.

Table 6. Number of successes and improvement rate.

Func. (W) (F) (B) (F)-imp. (%) (B)-imp. (%)

(a) 88 94 94 6.8 6.8
(b) 69 73 80 5.7 15.9
(c) 28 26 17 -7.1 -39.2
(d) 82 82 78 0.0 -4.8
(e) 95 99 100 4.2 5.2
(f) 0 1 2 - -
(g) 53 59 68 11.3 28.3
(h) 0 0 0 - -

Table 7. Average times(sec.) and improvement rate.

Func. (W) (F) (B) (F)-imp. (%) (B)-imp. (%)

(a) 11.60 8.76* 8.75** 24.4 24.5
(b) 30.71 10.41** 11.72** 66.1 61.8
(c) 163.71 146.28 124.05 10.6 24.2
(d) 53.43 71.19++ 88.95++ -33.2 -66.4
(e) 15.48 16.86 19.61 -8.9 -26.6
(f) - 90.68 275.77 - -
(g) 1.16 0.89 0.64** 23.2 44.8
(h) - - - - -

*,+ / **,++: significance level 5%/1%(two-tailed test).
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Table 8. Average length of expression of successfully identified functions.

Func. ML (W) (F) (B) (F)-imp. (%) (B)-imp. (%)

(a) 5 6.63 6.51 7.23 1.8 -9.0
(b) 7 9.17 11.57 12.30 -26.1 -34.1
(c) 5 8.42 8.23 9.47 2.2 -12.4
(d) 11 11.17 11.75 12.15 -5.1 -8.7
(e) 3 4.43 4.49 4.86 -1.3 -9.7
(f) 9 - 27.0 11.0 - -
(g) 3 4.01 4.32 5.23 -7.7 -30.4
(h) 9 - - - - -

ML:Minimum Length of function.

Table 8 shows that when LSMs-TCS is used, the length of found function become
longer. For example, in the meaning of function, both function f (x,r,m) = m · r+ tan(x)
and f (x,r,m) = m ·r+ tan(x)+0.0−0.0/x2 are the same. However, the length of former
function is 5, but the later one becomes 13. It is certain that the found function has some
0.0 term more than expected when zeroizing method of LMSs is used.

8. Boolean function identification

The target Boolean functions have single output and single/multi variable input. The
identification of a Boolean function is different from function identification through sym-
bolic regression in the following respect: Abbreviated forms of Boolean function are
critical when constructing circuits, and one aim of the proposed method is to produce
the most efficient Boolean representation. To find Boolean function by the proposed ap-
proach, Tree Chromosome Structure and Hierarchical Tree Chromosome Structure de-
scribed above have to be modified for Boolean function identification.

8.1. Tree chromosome structure for identifying Boolean function

Figure 6 shows that the modified chromosome structure has one function chromosome
and one pointer chromosome of one-to-one correspondence, one variable chromosome,
and one operator chromosome. The variable chromosome is composed only of the vari-
able and its negative form. The operator chromosome has (NAND, NOR, AND, OR, =).
Here, Boolean operators are defined to be left-associative, and their order of priority is
as follows: ↑,↓< ∩,∪ <=. The factors and function chromosome is shown in Figure 7.
Figure 8 is the HTCSF for Boolean function.

8.2. Fitness for identifying Boolean function

The fitness is calculated by the following two target functions. Here, Fitness b1 means
the fitness until GA detects a complete form. Only when the derived expression is a
complete form, is Fitness b2 used. In the Boolean function identification, the aspired
goal is a complete expression and length minimization. The former is essential as an
existence of error in a detected Boolean function is fatal. One the other hand, the latter
is also an important concept when considering the manufacturing costs for an actual
electric circuit.
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Fitness b1 =
1
n

n

∑
i=1

1.0
1.0+α · |Ri −Truth tablei| (7)

Fitness b2 = (7)+
1.0

(LDF +1.0)
(8)

(n: Truth table, R: Output of detected function, α: constant > 0, LDF : Length of Detected
function)
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Figure 6. TCS for Boolean function identification.

Figure 7. Factors and function chromosome.
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Figure 8. Representation of the HTCSF for
Boolean function.
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8.3. Experiments

The test functions used for the experiments in the paper are as follows:
(A) f = a⊕b (Exclusive - OR)
(B) f = b∩ c∪a
(C) f = (a∪b)∩ (a∪ c)
(D) f = (a ↑ b ↓ c∪d)
(E) f = (a∩b∪ c∪d ∪ e)∩ (c∪d ↑ e) ↑ (a ↓ b∩d)
(F) f = (a∩b∪ c∪d ∪ e)∩ (c∪d ↑ b) ↑ (a ↓ b∩d)
(G) f = (a∩b∪ c∪d ∪ e)∩ (c∪d ↑ d ∩ e) ↑ (a ↓ b∩d)

Where (B) and (C) have the same truth tables; (B) is the disjunctive canonical form,
and (C) is the conjunctive canonical form. (D), (E), (F), and (G) are Boolean functions
prepared for experiment, possible abbreviations for wich are unknown. The truth tables
of the above functions act as the input observation data for the identification system.

8.4. Condition and results

Conditions are indicated in Table 9. In all experiments, the upper bound of generations
is 1000. Mutation rates of both the function chromosome and the pointer chromosome
are 10%. The number of individuals in the function chromosome and the pointer chro-
mosome are Fm = Pm = 500. Further, each chromosome length is 31, and α = 5.0. Ten
experimental runs were executed for each problem in Table 9. The number of input data
varied with the size of the relevant truth table. The experiment ends when the generation
reaches the upper bound or the value of Fitness b2 equal or exceeds 1.1. Here, ‘Rate of
[1](%)’ means the appearance rate of output 1 in each truth table, and ‘Variables’ means
the total number of variables (the sum of input and output variables).

Table 9. Experimental Examination Conditions for Three Chromosome Structure.

Function (A) (B) (C) (D) (E) (F) (G)

Variables 3 4 4 5 6 6 6

Rate of [1](%) 50.0 62.5 62.5 6.25 81.25 78.125 87.5

Table 10 indicates that the proposed method succeeds in the identification of ab-
breviated forms of Boolean functions. However, functions (E) could not be identified,
despite function (E) being very similar in form to (F) and (G) (refer to Section 8.3).

Table 10. Results for identification of factored expression of Boolean functions. : Using HTCSF.

The best detected function Average of detected functions

Number Function Length Generation Time(s) Length Generation Time(s)

(A) a ↓ b ↓ a∩b 7 5 0.19 8.0 38.8 1.27

(B) a ↑ c∪b 5 0 0.06 6.4 36.6 2.1

(C) b∩ c∪a 5 1 0.11 6.6 36.0 2.06

(D) d ↑ b ↓ c∪a 7 0 0.10 7.6 127.4 13.34

(E) − − − − − − −
(F) e ↑ c ↓ e∪d ↓ a ↑ b 11 103 198.2 19.4 103 199.1

(G) d ↓ e ↑ a 5 0 0.20 6.0 61.8 12.6
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9. Conclusion and future work

This paper introduces the studies of function identification by simple GA with Tree Chro-
mosome Structure, and also aims to show and to make understand some directly related
studies written in Japanese. The unique point of the introduced GA-based identification
approach is the Tree Chromosome Structure. By using the chromosome structure, GA
can identify algebraic functions, primary transcendental functions, time series functions
including chaos function, user-defined one-variable functions, and Boolean functions.
The results show good performances in each function identification, so that it is not too
much to say that the introduced approaches are so powerful.

An eventual research topic is to detect concealed laws from observed raw data such
as empirical data of engineering, psychological, social research, and so on, by the use of
the introduced methods that still remains to be done as a future work.
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