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Abstract. Schaffrin and Toutenburg [1] proposed a weighted mixed estimation
based on the sample information and the stochastic prior information, and they also
show that the weighted mixed estimator is superior to the ordinary least squares es-
timator under the mean squared error criterion. However, there has no paper to dis-
cuss the performance of the two estimators under the Pitman’s closeness criterion.
This paper presents the comparison of the weighted mixed estimator and the or-
dinary least squares estimator using the Pitman’s closeness criterion. A simulation
study is performed to illustrate the performance of the weighted mixed estimator
and the ordinary least squares estimator under the Pitman’s closeness criterion.
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1. Introduction

In this paper, we discuss the following multiple linear regression model

Y = Xβ + ε (1)

where Y shows an n× 1 vector of observation, X denotes an n× p known matrix of
rank p, β shows a p× 1 vector of unknown parameters, ε defines an n× 1 vector of
disturbances with E(ε) = 0 and Cov(ε) = σ2In.

By the Gauss-Markov theorem, the classical ordinary least squares (OLS) estimator
is given as follows:

β̂OLS = (X ′X)−1X ′Y (2)

Besides the model (1), we suppose that we have the following stochastic linear re-
strictions

r = Rβ + e, e ∼ N(0,σ2V ) (3)
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where R shows a j× p known matrix with rank(R) = j, e shows a j× 1 vector of dis-
turbances with E(e) = 0 and Cov(e) = σ2V , V is assumed to be a known and positive
definite matrix, and we suppose that E(r) = Rβ . And we also assumed that the random
vector ε is stochastically independent of e [2].

Using (1) and (3), Durbin [3], Theil and Goldberger [4] and Theil [5] have presented
the mixed estimator (ME):

β̂ME = (X ′X +R′V−1R)−1(X ′Y +R′V−1r) (4)

When the sample information given by (1) and the prior information depicted by
(3) are to be assigned not necessarily equal weights on the basis of some extraneous
considerations in the estimation of regression parameters, Schaffrin and Toutenburg [1]
introduced a weighted mixed estimator (WME)

β̂ (w) = (X ′X +wR′V−1R)−1(X ′Y +wR′V−1r), 0 ≤ w ≤ 1 (5)

The weighted mixed estimator is unbiased estimator.
If we put w = 0 in (5), the estimator can be written as

β̂ (0) = (X ′X)−1X ′Y = β̂OLS

which is the ordinary least squares estimator.
If we put w = 1 in (5), the estimator reduces to

β̂ (1) = (X ′X +R′V−1R)−1(X ′Y +R′V−1r) = β̂ME

which is the mixed estimator proposed by Durbin [3], Theil and Goldberger [4] and Theil
[5]. This estimator give equal weight to sample (1) and prior information (3).

Although mean squared error (MSE) has been regards as the best criterion for com-
paring different estimators, Pitman’s [6] closeness (PC) criterion has got a great deal of
attention in recent years. This criterion is to calculate the probability that one estimator
is closer than another to an unknown parameter of interest. Although PC is a meaning-
ful alternative criterion to MSE, it never got widespread acceptance among statisticians,
since it is difficulties to compute it. Since Keating and Mason [7] and Rao [8], Rao et al.
[9], PC criterion has got considerable attention as a method for comparing the estimators
[10].

Many authors have compared estimators using PC criterion in linear regression
model. For example, Wencheko [11] compared some shrinkage estimator using PC crite-
rion. Reif [12] compared general pre-test estimator with some regression estimator under
PC criterion. Yang et al. [13] compared united biased estimators in linear model. Özkale
and Kaçıranlar (2008) [10,14] and Li et al. [15] compared r− k class estimator with or-
dinary least squares estimator under PC criterion. Wu [16] compared the estimators in
two normal linear models for some of the identical parameters under Pitman’s closeness
criterion.

We will compare the weighted mixed estimator to the OLS estimator under the PC
criterion in this paper. A simulation study is presented to illustrate that the weighted
mixed estimator is always superior to the OLS estimator.
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2. Main results

Firstly we list some definitions.
Definition 2.1. Suppose that θ̂1 and θ̂2 be two estimators of the unknown p-dimensional
vector θ . The PC of θ̂1 relative to θ̂2 in estimating θ under a loss function L(.,θ) is
defined as PMC(θ̂1, θ̂2,θ) = Pr(θ̂1, θ̂2,θ) = Pr(Δ(θ̂1, θ̂2) ≥ 0), where

Δ(θ̂1, θ̂2) = L(θ̂2,θ)−L(θ̂1,θ) (6)

In this paper, we conisder the following quadratic loss function L(θ̂ ,θ) = (θ̂ −
θ)′U(θ̂ −θ), where U is a given positive definite matrix.

Definition 2.2. θ̂1 is said to be better than θ̂2 for all θ ∈ Θ in PC if

PMC(θ̂1, θ̂2,θ) = Pr(θ̂1, θ̂2,θ) = Pr(Δ(θ̂1, θ̂2) ≥ 0) ≥ 1
2
, f or all θ ∈ Θ (7)

Then we give the comparison results of the two estimators.

Theorem 2.1. The PC of β̂ (w) relative to β̂OLS is given by

PMC(β̂ (w), β̂OLS,β )

= Pr{ε ′1[(I j +wMj)−2 − I j]ε1 +wε ′1(I j +wMj)−2M
1
2
j e1

+we′1(I j +wMj)−2M
1
2
j ε1 +w2e′1(I j +wMj)−2Mje1 ≤ 0} (8)

Proof As matrices X ′X and R′V−1R are positive definite, they can be diagonalizable
simultaneously, that is, there exists a reversible matrix Q such that

Q′X ′XQ = Ip (9)

Q′R′V−1RQ = diag(m1, ...,m j,0, ...,0) = Mp (10)

where m1, ...,m j denote the positive eigenvalues of matrix R′V−1R(X ′X)−1.
Denote:

Q′X ′ε =
(

ε1
ε2

)
(11)

Mj = diag(m1, ...,m j) (12)

and

(M+
p )

1
2 Q′R′V−1e =

(
e1
0

)
(13)

where ε1 and e1 denote j-dimension column random vector and M+
p denotes Moore-

Penrose inverse of matrix Mp. Now let U = X ′X . Thus, we can get:

L(β̂OLS,β ) = (β̂OLS −β )′X ′X(β̂OLS −β ) = (Q′X ′ε)′Q′X ′ε (14)
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and

L(β̂ (w),β ) = (β̂ (w)−β )′X ′X(β̂ (w)−β )

= [(X ′X +wR′V−1R)−1(X ′Y +wR′V−1r)−β ]′X ′X

×[(X ′X +wR′V−1R)−1(X ′Y +wR′V−1r)−β ]

= (Q′X ′ε +wQ′R′V−1e)′(Ip +wMp)−2(Q′X ′ε +wQ′R′V−1e) (15)

Then we can obtain

PMC(β̂ (w), β̂OLS,β )

= Pr(L(β̂ (w),β ) ≤ L(β̂OLS,β ))

= Pr{(Q′X ′ε +wQ′R′V−1e)′(Ip +wMp)−2(Q′X ′ε +wQ′R′V−1e)

≤ (Q′X ′ε)′Q′X ′ε}
= Pr{(Q′X ′ε)′(Ip +wMp)−2Q′X ′ε +w(Q′X ′ε)′(Ip +wMp)−2(Q′R′V−1e)

+w(Q′R′V−1e)′(Ip +wMp)−2Q′X ′ε +w2(Q′R′V−1e)′(Ip +wMp)−2

×(Q′R′V−1e) ≤ (Q′X ′ε)′Q′X ′ε} (16)

Thus, by (11)-(14), we have

(Q′X ′ε)′(Ip +wMp)−2(Q′R′V−1e) = ε ′1(I j +wMj)−2M
1
2
j e1 (17)

(Q′R′V−1e)′(Ip +wMp)−2(Q′R′V−1e) = e′1(I j +wMj)−2Mje1 (18)

(Q′R′V−1e)′(Ip +wMp)−2(Q′X ′ε) = e′1(I j +wMj)−2M
1
2
j ε1 (19)

(Q′X ′ε)′[(Ip +wMp)−2 − Ip](Q′X ′ε) = ε ′1[(I j +wMj)−2 − I j]ε1 (20)

Thus put (17)-(20) into (16), we have

PMC(β̂ (w), β̂OLS,β )

= Pr{ε ′1[(I j +wMj)−2 − I j]ε1 +wε ′1(I j +wMj)−2M
1
2
j e1

+we′1(I j +wMj)−2M
1
2
j ε1 +w2e′1(I j +wMj)−2Mje1 ≤ 0} (21)

Theorem 2.2. β̂ (w) always dominates β̂OLS in the Pitman’s closeness criterion for 0 <
w < 1.
Proof By Theorem 2.1, we have

PMC(β̂ (w), β̂OLS,β )

= Pr{ε ′1[(I j +wMj)−2 − I j]ε1 +wε ′1(I j +wMj)−2M
1
2
j e1
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+we′1(I j +wMj)−2M
1
2
j ε1 +w2e′1(I j +wMj)−2Mje1 ≤ 0}

= Pr{−ε ′1(I j +wMj)−2(2wMj +w2M2
j )ε1 +wε ′1(I j +wMj)−2M

1
2
j e1

+we′1(I j +wMj)−2M
1
2
j ε1 +w2e′1(I j +wMj)−2Mje1 ≤ 0}

≥ Pr{−wε ′1(I j +wMj)−2Mjε1 + ε ′1(I j +wMj)−2M
1
2
j e1

+e′1(I j +wMj)−2M
1
2
j ε1 +we′1(I j +wMj)−2Mje1 ≤ 0} (22)

Now we calculate:

Pr{−wε ′1(I j +wMj)−2Mjε1 + ε ′1(I j +wMj)−2M
1
2
j e1

+e′1(I j +wMj)−2M
1
2
j ε1 +we′1(I j +wMj)−2Mje1 ≤ 0} (23)

Denote η1 = e1 and η2 = −ε1. Then (23) becomes :

Pr{−wη ′
2(I j +wMj)−2Mjη2 −η ′

2(I j +wMj)−2M
1
2
j η1

−η ′
1(I j +wMj)−2M

1
2
j η2 +wη ′

1(I j +wMj)−2Mjη1 ≤ 0} (24)

Since ε1 ∼ N(0,σ2I j), e1 ∼ N(0,σ2I j), and ε1 is independent of e1. We have: η1 ∼
N(0,σ2I j), η2 ∼ N(0,σ2I j), and η1 is independent of η2, thus we can change ε1 as η1
and change e1 as η2 in (23), we obtain

Pr{−wη ′
1(I j +wMj)−2Mjη1 +η ′

1(I j +wMj)−2M
1
2
j η2

+η ′
2(I j +wMj)−2M

1
2
j η1 +wη ′

2(I j +wMj)−2Mjη2 ≤ 0}

= 1−Pr{−wη ′
2(I j +wMj)−2Mjη2 −η ′

2(I j +wMj)−2M
1
2
j η1

−η ′
1(I j +wMj)−2M

1
2
j η2 +wη ′

1(I j +wMj)−2Mjη1 ≤ 0} (25)

On the other hand (24) and (25) is equivalent to (23), we have

Pr{−wη ′
1(I j +wMj)−2Mjη1 +η ′

1(I j +wMj)−2M
1
2
j η2

+η ′
2(I j +wMj)−2M

1
2
j η1 +wη ′

2(I j +wMj)−2Mjη2 ≤ 0}

= Pr{−wη ′
2(I j +wMj)−2Mjη2 −η ′

2(I j +wMj)−2M
1
2
j η1

−η ′
1(I j +wMj)−2M

1
2
j η2 +wη ′

1(I j +wMj)−2Mjη1 ≤ 0} =
1
2

(26)

Thus:

PMC(β̂ (w), β̂OLS,β ) ≥ 1
2

(27)
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Table 1. The PMC of WME relative to OLS when n = 50

γ = 0.9 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.8084 0.7998 0.7979 0.7896 0.7907
w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0
0.7793 0.7672 0.7769 0.7687 0.7680

γ = 0.99 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.8690 0.8530 0.8468 0.8336 0.8279
w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0
0.8262 0.8107 0.8130 0.8042 0.8044

γ = 0.999 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.8960 0.8849 0.8866 0.8794 0.8805
w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0
0.8800 0.8771 0.8789 0.8779 0.8728

The proof of Theorem 2.2 is completed.

Remark 2.1. From Theorem 2.2, we can see that the weighted mixed estimator is supe-
rior over the OLS estimator in the PC criterion. In fact, these results are easy to be un-
derstand. Because by adding the prior information, we have got more information about
the unknown regression parameters, and naturally hope that the new estimator may have
good accuracy.

3. A simulation study

In this section, we do some simulation to illustrate the performance of the weighted
mixed estimator (WME) over the OLS estimator under the PC criterion.

By the methods proposed by Liu [17] and Kibria [18], we have

xi j = (1− γ2)1/2wi j + γwip, i = 1,2, ...,n, j = 1,2, ...,4 (28)

and

yi = (1− γ2)1/2wi + γwi4, i = 1,2, ...,n, j = 1,2, ...,4 (29)

where wi j are independent standard normal pseudo-random numbers and the correlation
between any two explanatory variables is given by γ2. We consider γ = 0.9, 0.99 and
0.999, and we choose n = 50 and 100, σ2 = 1.

Let us discuss the following restrictions

r = Rβ + e,R = (1−1−1 0), r = 1, e ∼ N(0, σ̂2) (30)

For Tables 1–2, we can see that the PC of WME relative to OLS estimator is greater
than 0.5, that is to say the WME is better than the OLS estimator in the PC criterion.
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Table 2. The PMC of WME relative to OLS when n = 100

γ = 0.9 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.8626 0.8670 0.8587 0.8573 0.8547
w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0
0.8528 0.8528 0.8555 0.8479 0.8469

γ = 0.99 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.8362 0.8374 0.8282 0.8196 0.8118
w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0
0.8095 0.8030 0.7952 0.7937 0.7926

γ = 0.999 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.9132 0.8922 0.8899 0.8911 0.8850
w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 1.0
0.8858 0.8907 0.8872 0.8810 0.8840

4. Conclusion

In this paper, we make the comparison between the weighted mixed estimator and the
ordinary least squares estimator in the PC criterion and we show that the weighted mixed
estimator is always superior to the ordinary least squares estimator in the PC criterion. A
simulation simulation is given to show that the weighted mixed estimator is better than
the ordinary least squares estimator in the PC criterion.
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