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Abstract. We extend the classical approach in supervised classification based on
the local likelihood estimation to the functional covariates case. The estimation pro-
cedure of the functional parameter (slope parameter) in the linear model when the
covariate is of functional kind is investigated. We show, on simulated as well on real
data, that classification error rates estimated using test samples, and the estimation
procedure by local likelihood seem to lead to better estimators than the classical
kernel estimation. In addition, this approach is no longer assuming that the linear
predictors have a specific parametric form. However, this approach also has two
drawbacks. Indeed, it was more expensive and slower than the kernel regression.
Thus, as mentioned earlier, kernels other than the Gaussian kernel can lead to a
divergence of the Newton-Raphson algorithm. In contrast, using a Gaussian kernel,
4 to 6 iterations are then sufficient to achieve convergence.
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1. Introduction

A regular problem encountered in many scientific fields is the discrimination between
curves. Generally, these curves describe the evolution of a quantity over time (monthly
totals of precipitation, temperature evolution, patient walk curves with Parkinson’s dis-
ease, . . . ) or when there are changes in absorbance depending on the wavelength (e.g.,
spectra provided by near infrared spectroscopy).
The collected data are in general considered as simple vectors of Rp, but are curves ob-
tained from observations at discretized random times of continuous functions of time.
Traditionally, these observations are dependent on a time index which is a discretization
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grid. Thus, for each curve, the times of the grid in which the functions are observed, can
be identical or different, uniformly distributed or not. Indeed, these data are in an infinite
dimensional space, so they are called Functional Data.
In this work, we consider that each curve is associated with a qualitative variable admit-
ting two terms, i.e., each curve is associated with a label. A classic example of label is
“sick” or “healthy”, “good” or “bad”, 0 or 1. Therefore, the aim is to calculate the dis-
crimination of curves. In other words, the goal is to explain the value of the label by the
values of the curve in its entirety. Thus, another goal is the prediction: once a new curve
is obtained, we predict the value that takes its label.
As part of the functional discrimination, most authors make some adaptations to extend
the classical statistical models to functional case. We can mention, without being exhaus-
tive, James and Hastie [1] applying the linear discriminant analysis of Fisher in case of
functional variables. In 2002, James [2] offered the functional generalized linear model
with a solution based on the EM algorithm (Expectation-Maximization) and Ferraty and
Vieu [3] also offer non-parametric estimation methods of conditional probabilities based
on kernel methods (see also [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19] and [20] and references therein). Müller and Stadtmüller [21] pro-
pose the functional quasi-likelihood model. Moreover, Escabias et al. [22] and [23] offer
to perform a logistic regression on principal components. Preda et al. [24] provide so-
lutions to the wrong problem, the cover on infinite dimensional data, using partial least
squares (PLS), and then, applying a linear analysis discriminant on the PLS components.
Recently, Aguilera et al. [25] are interested in the same suite of PLS components used by
Preda et al. [24], then they show that the PLS approach for functional data is equivalent
to a multivariate PLS finished by using the coefficients of the approximations in basic
functions as a predictor. Note that their method also applies in cases where the dependent
variable is binary. Finally, Aguilera et al. [26] offer a functional logistic regression with
three steps: first, functional data must be smoothed using penalized B-spline bases. Then,
the principal components are extracted from the smoothed data. Finally, a logistic model
is created using these components.
This paper is organized as follows. The first section presents the procedure of the func-
tional principal components analysis generally used to reduce the dimension, and we re-
call some generalities about the generalized linear model. Then in Section 2, we briefly
describe the approach of Ferraty and Vieu [3], with which we make comparisons to eval-
uate the performance of our approach. Then, in Section 3, we propose an extended func-
tional version of multidimensional local likelihood. Section 4 focuses on implementation
of the proposed method and that of Ferraty and Vieu [3] using real and simulated data.

2. Preliminaries on the eigenfunctions and the generalized linear model

Functional Principal Components Analysis (FPCA)

We consider, in what follows, that the functional variable X and μX (·) = E(X)(·) exist
and belong to L2[0,1]. The covariance operator is given by

ΓX (η) = E[(X −μX )⊗ (X−μX )(η)],
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such that, for all η ∈ L2[0,1]

(X−μX )⊗ (X−μX )(η) = 〈X −μX ,η〉(X−μX ), (1)

where 〈·, ·〉 denotes the usual scalar product on L2[0,1].
The principal components analysis of X is based on the Karhunen-Loeve decomposi-
tion, breaking down the functional process on the basis of deterministic orthonormal
functions. Indeed, there is a positive decreasing sequence (λk)k≥1 of eigenvalues of
ΓX , where ∑∞

k=1 λk < ∞, and an orthonormal family of functions ψ1,ψ2, . . ., such that
ΓX (ψk) = λkψk, k = 1,2, . . . This family of functions {ψk}k≥1 forms an orthonormal
base of functions in L2[0,1]:

X = μX +
∞

∑
k=1

θkψk, (2)

where θk = 〈X−μX ,ψk〉, k= 1,2, . . . are random coordinates (functional principal com-
ponent scores), centered, of variance λk and not correlated. We can truncate this decom-
position and keep only the J > 1 first terms.

3. Functional discrimination by local likelihood

As indicated above, our explanatory variables are assumed to be curves which are ob-
served on all their trajectories. Thus, a natural generalization is obtained by replacing the
finite sum by a definite integral on an infinite space [2],

g(E[Y | X ]) = α +
∫

β (t)X(t)dt, (3)

where α ∈ R and where the β (t) functions are assumed smooth and square integrable.
Thus, the goal is to model the relationship between a curve which corresponds to the
functional variable X and a denoted membership to the class Y . We are in the context of
an i.i.d. sample (Xi,Yi), i = 1, . . . ,n, where X ∈ L2[0,1] and Y is of Bernoulli type.

The linear predictor is given by ηi = α +
∫

β (t)Xi(t)dt, and accordingly, the generalized

linear functional model is written in the form

Yi = g−1(ηi)+ ei, i = 1,2, . . . ,n. (4)

where g(.) is the link function. The errors ei are supposed to be independent and of
zero mean. To simplify the notations, we set g−1(ηi) = π(Xi), where π assumed to be
smooth enough, and is the inverse of g. So we define as part of a regression model
Yi = π(Xi)+ ei, i = 1, . . .n. Then it is easy to write that

π(x) = E(Y |X = x) = P(Y = 1|X = x) with 0≤ π(x)≤ 1.

In the case of a dichotomous response variable, the likelihood associated with the sam-
ple size n is ∏n

i=1 π(Xi)
yi(1−π(Xi))

yi . Thus, the overall log likelihood is thus written:
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L (π) = ∑n
i=1 �(yi,π(Xi)) where �(y,π) = y logπ +(n− y) log(1−π).

Unlike the generalized linear model, the approach of the local likelihood no longer as-
sumes that η has a rigid parametric form. Assuming that η is a smooth function con-
tinuously differentiable, the idea is to approximate it locally by a polynomial of order 1
within a viewing window. It follows, via the Taylor expansion around x, that

η(Xi)� η(x)+ 〈β ,Xi− x〉,

when Xi is located in a neighborhood of x, with η(x) scalar noted α , β = β (x) ∈ L2[0.1]
and 〈·, ·〉 denoting the scalar product on L2[0,1]. In the same way, the regression function
π in Xi is approximated by the local logistic function:

π(Xi)≈ eα+〈β ,Xi−x〉

1+ eα+〈β ,Xi−x〉 . (5)

Moreover, the transformation logit is written, for i = 1, . . . ,n, as follows:

g(Xi) = α + 〈β ,Xi− x〉= α +
∫
[0,1]

(
β (t)(Xi(t)− x(t)

)
dt,

In order to estimate the model (6), we choose to adopt the local functional regression
by Baı́llo and Grané [28], whose response variable is scalar. Indeed, our minimization
problem is:

n

∑
i=1

(
g(Xi)− (α + 〈β ,Xi− x〉)2K

(
d(Xi,x)

h

)
(6)

where K is a kernel whose role is to involve the variables Xi which belong to a ball
centered at x and of radius h, also called the bandwidth h, and d is a semi-metric defining
a measure of proximity between the curves, such that d(Xi,x)≤ h. The choice of a semi-
metric d is discussed in Benhenni et al. [27], and the section 3.2 is devoted to the choice
of the bandwidth h.

3.1. Estimation of the likelihood

In order to reduce the size of the parameter β , Baı́llo and Grané [28] use an orthonormal
basis {φ j}1≤ j≤J of dimension J over L2[0,1]:

β =
J

∑
j=1

β jφ j and Xi− x =
J

∑
j=1

ci jφ j,

with β j = 〈β ,φ j〉 and ci j = 〈Xi− x,φ j〉.
So we choose our base φ by calculating the eigenfunctions of the empirical covariance
operator (see Barrientos et al. [29]):

1
|A | ∑

i∈A

(Xi−X)t(Xi−X), where A is the learning sample.
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Therefore, for a fixed curve x, the experience planning matrix is written as follows:

Xx =

⎛
⎜⎜⎜⎝

1 c11 · · · c1J
1 c21 · · · c2J
...

...
...

1 cn1 · · · cnJ

⎞
⎟⎟⎟⎠ .

Now, let’s define a local log-likelihood. Indeed, the location is carried out via a nonneg-
ative weighting function which depends on the distance between the curves:

Lx(α,β ) =
n

∑
i=1

K
(d(Xi,x)

h

)(
Yi(α + 〈β ,Xi− x〉)− log(1+ eα+〈β ,Xi−x〉)

)
, (7)

By passing to the matrix notation, we can write

Lx(γ) = W�(Y,Xxγ), (8)

where W is a diagonal matrix (n×n) whose elements are the weights K
(

d(Xi,x)
h

)
for

i = 1, . . . ,n and γ = (α β1 . . .βJ)
T is the vector of coefficients.

The solution of (8) is obtained by maximizing the log-likelihood. Generally, this solution
is not analytical. Indeed, the optimal solution will be found by iterative methods, the most
popular being the algorithms of Newton-Raphson and Fisher. The study of the maximum
log-likelihood requires knowledge of derivatives. In the following, the first and second
derivative of �(y,η) with respect to η will be denoted respectively �̇(y,η) and �̈(y,η).
So because we are part of a logistic regression, we can write the derivatives as follows:

�̇(y,η) = y−h(η), �̈(y,η) = −h(η)(1−h(η)), where h(η) = eη/(1+ eη).

The estimated parameter vector γ̂ is therefore a solution for the local log-likelihood equa-
tion:

XT
x W�̇(Y,Xxγ) = 0 (9)

To find the local likelihood estimators at x fixed, we numerically solve the equation (9).
Note that the system of equations (9) is convex, then it can be solved by the Newton-
Raphson algorithm. Therefore, at iteration k, the estimator of Newton-Raphson is up-
dated by the following equation

γ(k+1) = γ(k) + (XT
x WVXx)

−1XT
x W�̇(Y,Xxγ(k)), (10)

where V is a diagonal matrix whose diagonal elements are −(�̈(Yi,X
i
xγ)

)
.

Notice that the concavity of �̈(Yi,X
i
xγ) implies that the matrix XT

x WVXx is positive defi-
nite, and that the matrix XT

x W is full rank, which therefore causes the uniqueness of γ̂ .
Finally, once the parameters have been estimated, the estimator of π(x) for x set is cal-
culated using the equation (5):
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π̂(x)� eα̂(x)

1+ eα̂(x)
(11)

Therefore, the probability for the class {Y = 0} is given by:

P(Y = 0|X = x) = 1− π̂(x).

Thus, a new curve x is assigned to the class {Y = 1} if P(Y = 1|X = x)> 0.5.
We note that, for among existing kernels, we used the Gaussian kernel K(u) =

1√
2π

exp
{
−u2

2

}
. Indeed, other kernels provide smaller neighborhoods. Therefore, it

is possible that all curves observed on a neighborhood (window) are from the same
membership class. This then causes a divergence of the Newton-Raphson algorithm.

3.2. The bandwidth choice

The bandwidth parameter selection consists in applying a cross-validation procedure on
a subset of smoothing parameters calculated from a k nearest neighbors (kNN) estimator.
The idea is to consider neighborhoods whose size adapts automatically locally through
a single parameter k. In other words, the bandwidth h is replaced by hk(x). More pre-
cisely, if hk(x) is the quantity associated for with exactly k curves xi1 , . . . ,xik , such as
card{i : d(xi,x) < hk(x)} = k, then π(−i)

g,k (x) is the leave-out one curve estimator of the
local maximum likelihood dependency hk(x) built using a sample of the observed curves.
Therefore, the optimal number kopt of neighbors is defined as follows:

kopt = argmin
k

∑
i

1

∑
g=0

(
11[Yi=g]−π(−i)

g,k (x)
)2

(12)

Once the number of neighboring curves is optimized, then the selection process allows
us to subsequently evaluate the estimator π in each curve x, by using the best local
bandwidth h(x) := hkopt (x).

4. Application on real and simulated data

In this section, we apply our method to three real data sets and a set of simulated data. In
this way, we can compare our method with that of Ferraty and Vieu [3].

4.1. NIR spectroscopic data

Data were obtained from the analysis of samples of minced meat by near-infrared spec-
troscopy (NIR: Near Infrared Spectroscopy). Using this technology, the intensity of the
absorption of near infrared ray and the wavelength (wavelengths between 850 and 1050
nanometers) have been measured. Thus, the chemical analysis was to evaluate the nutri-
tional quality of meat.
There are 215 spectrometric curves corresponding to absorbance (equal to− log10(trans
mittance) measured by the apparatus) for 100 wavelengths evenly spaced between 850

-
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nm, of the corresponding fat. Moreover, these data can be regarded as random
functions of the accomplishments: Xi = {Xi(λ ),λ ∈ (850,1050)}, for i = 1, . . . ,215.
Meat samples are divided into two classes: those that contain more than 20 % fat and
those that contain less than 20 %. Figure 1 represents 20 curves for each class. The statis-
tical discrimination allows avoiding chemical analysis, expensive and time consuming.
These data, called Tecator data, and their detailed description are available on the site of
StatLib2.
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Figure 1. The two classes of data

In order to show the effectiveness of our method of estimation in the context of an
anticipation, the sample is randomly divided between a learning subset noted A with
card(A ) = 160, and a subset of test T with card(T ) = 55. Thus, the optimal number
of neighbors kopt will be calculated using A , while T enables us to predict the classes
of values Ŷi, i ∈ T . Accordingly, the prediction quality is evaluated by the forecasting
error (wrong-through rates) defined as follows:

Error rate =
1
|T | ∑

i∈T

11[Yi �=Ŷi]

We then apply the two methods, using a semi-metric based on derivatives of order 2
justified by the regular appearance of data. Thus, our method is evaluated on a grid of
values of the parameter J representing the basis of size, to optimize within the meaning
of the error rate. Therefore, we take J = 5 as the number of key components. After
the experience of separation repeated 100 times data, the percentage of classification
errors and the standard deviation associated to each method are given in Table 1. We will
denote by KFV the classical kernel method in Ferraty and Vieu [37], and by LL the Local
Likelihood method, showing the superiority of the second method.

4.2. Mass spectroscopic data

We consider a MALDI-TOF mass spectrometry dataset issued from a study on colorectal
cancer (see Alexandrov et al. [30]). The sample set includes serum profiles of 64 subjects
with colorectal cancer and 48 non-cancer control subjects. Each serum profile consists
of 16331 recorded intensities corresponding to distinct m/z values.

and 1050
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Method Mean error rate Standard deviation

KFV 0.023 0.024
LL 0.018 0.016

Table 1. Tecator data: error rate on 100 test samples.

Figure 2. Example of spectra for each group coming from colorectal cancer dataset

Method Mean error rate Standard deviation

KFV 0.072 0.033
LL 0.060 0.034

Table 2. colorectal cancer: error rate on 100 test samples

The number of major components used to construct the semi-metric and reduce the size
of the parameter β equals 4. Thus, Table 2 summarizes the results from 100 iterations,
so that at each iteration the data is partitioned randomly into a training set of size 80 and
a test set of size 32.

4.3. Chromatography Data derived from HPLC

The data comes from a study seeking to differentiate olive oil from several types of
vegetable oils [31] and [32]. These data are composed of 115 oil samples analyzed
by high performance liquid chromatography HPLC (High-performance liquid chro-
matography) coupled to an aerosol detector. Thus, the analysis provides 115 spectra
of length 4001, also called chromatograms, 71 correspond to the olive oil and 44 are
associated with other vegetable oils. The HPLC method provides profiles of triglyc-
erides 3, which are a characteristic of different oils. Figure 3 represents 10 curves for
each class (olive oil, vegetable oils). These data may be downloaded from the web-
site: http://www.models.life.ku.dk/oliveoil. The data separation procedure is repeated 100
times, so that each training set of size 80, and each test set of size 35. Thus, a semi-metric

2http ://lib.stat.cmu.edu/datasets/tecator
3Triglycerides are molecules belonging to the class of lipids.
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Figure 3. Oils analyzed by HPLC: 10 curves for each class

based on four main components is carried out. Moreover, the dimension J of the space
base is also equal to 4. Finally, the results of the predictive performance of the two meth-
ods are summarized in the Table 3, showing anew the superiority of the second method.

Method Mean error rate Standard deviation

KFV 0.024 0.022
LL 0.008 0.013

Table 3. Data on Oils: error rate on 100 test samples

4.4. Simulated Data: “the waveform data”

As in Preda et al. [24], we plan to implement our method on simulated data, called
Breiman waveform. This is a two class problem. Each class of curves is generated by
linear combination of functions discretized into 101 points uniformly distributed in the
interval [1,21] and generated by the following equations:

Class {Y = 0} : X(t) =Uh1(t)+(1−U)h2(t)+ ε(t),

Class {Y = 1} : X(t) =Uh1(t)+(1−U)h3(t)+ ε(t),

where U is a uniform random variable on [0,1], ε(t) are independent and identically dis-
tributed normal standard variables, h1(t) = max{6− |t − 11|,0},h2(t) = h1(t − 4) and
h3(t) = h1(t +4). Figure 4 represents 20 curves for each class. The simulated curves are

5 10 15 20

−
2

2
4
6

Class Y=0

5 10 15 20

−
2

2
6

Class Y=1

Figure 4. Simulated data: 20 curves for each class

randomly divided into two samples: a sample of 350 curves (175 per class), constituting
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Method Mean error rate Standard deviation

KFV 0.040 0.022
LL 0.029 0.016

Table 4. Waveform data: error rate for 500 test samples

the learning base and a sample of 150 curves (75 per class) the test database. The opti-
mum number of major components used to construct the semi-metric and the dimension
of the projection base φ is 3. Thus, Table 4 gives the error rate resulting from the 50 first
iterations.
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[14] J. Demongeot, A. Laksaci, M. Rachdi and S. Rahmani (2014). On the local linear modelization of the
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