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Abstract. This paper presents LVBERT — the first publicly available monolingual
language model pre-trained for Latvian. We show that LVBERT improves the state-
of-the-art for three Latvian NLP tasks including Part-of-Speech tagging, Named
Entity Recognition and Universal Dependency parsing. We release LVBERT to fa-
cilitate future research and downstream applications for Latvian NLP.
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1. Introduction

Pre-trained contextualized text representation models, especially BERT — the Bidirec-
tional Encoder Representations from Transformers [1], have become very popular and
helped to achieve state-of-the-art performances in multiple Natural Language Process-
ing (NLP) tasks [2]. Previously, the most common text representations were based on
word embeddings that aimed to represent words by capturing their distributed syntactic
and semantic properties [3], [4]. However, these word embeddings do not incorporate
information about the context in which the words appear. This issue was addressed by
BERT and other pre-trained language models. The success of BERT and its variants has
largely been limited to the English language. For other languages, one could use exist-
ing pre-trained multilingual BERT-based models [1], [5] and optionally fine-tune them,
or retrain a language-specific model from scratch [6], [7]. The latter approach has been
proven to be superior [8].
Our contributions are as follows:

* We present a methodology to pre-train the BERT model on a Latvian corpus.

* We evaluate LVBERT and show its superiority on three NLP tasks: Part-of-Speech
(POS) tagging, Named Entity Recognition (NER) and Universal Dependency
(UD) parsing.

« We make LVBERT model publicly available?.
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Table 1. Number of sentences and tokens in the pre-training dataset from each source

Source #Sentences (M)  #Tokens (M)
Balanced Corpus 0.7 12
Wikipedia 1.3 25
Comments 5 80
News 20 380
Total 27 500

2. LVBERT

2.1. Model

In our experiments, we used the original implementation of BERT on TensorFlow
with the whole-word masking and the next sentence prediction objectives. We used
BERTgasg configuration with 12 layers, 768 hidden units, 12 heads, 128 sequence
length, 128 mini-batch size and 32,000 token vocabulary. The model was trained on a
single TPUv2 for 10,000,000 steps that took about 10 days.

2.2. Pre-training Dataset

The original BERT was trained on 3.3B tokens extracted from English Wikipedia and the
Book Corpus [9]. Latvian Wikipedia dump is relatively small compared to English. To
increase lexical diversity, we included texts from the Latvian Balanced corpus LVK2018
[10], Wikipedia, comments and articles from various news portals (see Table 1). Dataset
contains 5S00M tokens.

2.3. Sub-Word Unit Segmentation

Sub-word tokenization is one of the problems of the multilingual BERT model that uses
110k shared sub-word token vocabulary. Because Latvian is under-represented in the
training dataset, tokenization into sub-word units is very fragmented, especially for less
frequent words. We trained SentencePiece model [11] on the pre-training dataset to pro-
duce a vocabulary of 32,000 tokens that was then converted to WordPiece format used
by BERT. For sentence tokenization, we used LVTagger [12]. mBERT’s sub-words tend
to be shorter and less interpretable, for example:

mBERT: So #fi #ja a #8i ie #sl #& #dz #as sa #va m #a #ja .
LVBERT: Sofija a #8381 ieslédz #as sava maja

3. Evaluation

We evaluated LVBERT on three Latvian NLP tasks: POS, NER, UD. We compared
LVBERT model results with the multilingual BERT model (mBERT) results and the cur-
rent state-of-the-art on each task. We also fine-tuned multilingual BERT model (mBERT-
adapted) on our pre-training dataset and evaluated it to assess usefulness of additional
target language data. All model results were averaged over three runs.
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Table 2. Named entity dataset statistics

Train Dev  Test

GPE 1600 218 207
entity 168 18 29
event 214 22 22
location 538 54 84
money 29 3 12
organization 1354 237 251
person 2466 320 306
product 231 31 31
time 967 144 115

3.1. Part-of-Speech Tagging

For POS tagging, we used bidirectional LSTM architecture and compared results to the
current state-of-the-art Latvian morphological tagger [13]. We only evaluated the POS
tag accuracy ignoring full morphological tag.

3.2. Named Entity Recognition

For training and evaluating NER, we used a recently published multi-layer text corpus
for Latvian [14]. Named entity layer includes annotation of nine entity types: person,
organization, geopolitical entity (GPE), location, product, event, time (relative or abso-
lute date, time, or duration), money, and unclassified entity. In this work, only the outer
level entities are considered, ignoring hierarchical annotation of named entities. We use
the same train/development/test data split as for Universal Dependency layer to preserve
corpus distribution of genres and to prevent document overlap between splits (see table
2).

We used a standard neural architecture consisting of bidirectional LSTM with a
sequential conditional random fields layer above it. IOB2 (Inside, Outside, Beginning)
tagging scheme was used to model named entities that span several tokens. The current
best Latvian NER model based on GloVe word embeddings [15] was re-evaluated on the
same dataset and compared to the BERT-based models.

3.3. Universal Dependency Parsing

For dependency parsing, we used a model based on biaffine classifiers on top of a bidi-
rectional LSTM [16], specifically, AllenNLP? implementation, and compared results to
the current state-of-the-art [15] re-evaluated on the latest Universal Dependency release.
4. Results

The main results of our experiments are presented in Table 3. LVBERT models achieved

the best results in all three tasks. The most significant improvement was visible in the
UD task. Multiligual BERT model under-performed in the NER and POS tagging tasks

3https://allennlp.org/
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Table 3. Performance of LVBERT on Latvian NLP tasks compared to multilingual BERT and previous state-
of-the-art

Task Metric Previous Best mBERT mBERT-adapted LVBERT

POS  Accuracy 97.9 96.6 98.0 98.1
NER  Fl-score 78.4 79.2 81.9 82.6
UD LAS 80.6 85.7 88.1 89.9
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Figure 1. NER learning curve

compared to relatively simple word embedding based models showcasing its shortcom-
ings for less resourced languages. To fully utilize the potential of BERT, the multilin-
gual model should be at least fine-tuned on the specific language texts. Fine-tuned BERT
model performed surprisingly well when compared to LVBERT given its vocabulary dis-
advantage. NER learning curve (see Figure 1) shows that pre-trained contextualized text
representation models can more fully utilize limited amount of training data compared
to simple word embeddings, especially if just a relatively small part of the annotated
training corpus is used.

5. Conclusion

This paper showcases that even a relatively small language specific BERT model can
significantly improve results over non-contextual representations and also multilingual
BERT model. LVBERT sets a new state-of-the-art for several Latvian NLP tasks. By
publicly releasing LVBERT model, we hope that it will serve as a new baseline for these
tasks and that it will facilitate future research and downstream applications for Latvian
NLP.
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