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Abstract. There exist counterexamples to Schulz and Toni’s theorems which are
the basis of their approach for justifying answer sets using assumption-based argu-

mentation (ABA) whose language contains explicit negation. Against their claims,

we present theorems showing the correspondence between answer sets of a consis-

tent extended logic program and consistent stable extensions of the ABA instanti-

ated with it. We show such ABA is not ensured to satisfy the consistency postu-

lates. We also propose the novel notion of consistency for admissible dispute trees

to avoid consistency problems in ABA applications containing explicit negation.

We show the condition under which ABA consistency is ensured.
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1. Introduction

Consistency in assumption-based argumentation (ABA, for short) [1] is crucial to avoid

anomalies in ABA applications whose languages contain explicit negation. In ASPIC+

[9], for example, as the ways in which arguments can be in conflict, it allows the rebutting

attack between two arguments having the mutually contradictory conclusions w.r.t. ex-

plicit negation along with undercutting and undermining attacks, while some conditions

(e.g. ensuring closure under transposition or contraposition) under which ASPIC+ satis-

fies rationality postulates [2] have been proposed to avoid anomalous results. In contrast,
ABA allows only attacks against the support of arguments as defined in terms of a notion

of contrary, while the ab-self-contradiction axiom [7] was proposed as the condition to
guarantee the consistency property in an ABA framework containing explicit negation.

Recently as one of ABA applications containing explicit negation, extended abduc-

tion in ABA [14] was presented on the basis of the newly proposed definition of consis-
tency in a flat ABA framework, which is slightly different from the notion of satisfying
the consistency property [7] or the direct consistency postulate [2].

On the other hand, as another ABA application, Schulz and Toni proposed the ap-

proach of justifying answer sets using argumentation [11], where they used flat ABA

frameworks instantiated with consistent extended logic programs (ELPs, for short) con-

taining classical negation [8], i.e. explicit negation. However they took account of neither

rationality postulates in such ABAs nor inconsistent extensions. As a result, it reveals the
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serious problem that there exist counterexamples to their theorems [11, Theorems 1, 2]

such that answer sets of a consistent ELP are captured by stable extensions of the ABA
framework instantiated with the ELP, though they are the basis of their approach for jus-

tifying why a literal belongs to an answer set of an ELP based on ABA. Besides regard-

ing their computational machinery, we found that according to their lemma [11, Lemma

11], there may arise admissible abstract dispute trees whose defence sets are inconsistent
though they are admissible. To the best of our knowledge, the notion of consistency for
the defence set of an admissible dispute tree [5] has not been taken into account so far.

In this paper, first we discuss consistent extensions and ABA consistency. Secondwe

show counterexamples to Schulz and Toni’s theorems [11, Theorems 1, 2]. Then against

their claims, we present the theorems showing that there is a one-to-one correspondence

between answer sets of a consistent ELP and (not stable extensions but) consistent stable
extensions of the ABA instantiated with the ELP. Besides we show that such ABA in-

stantiated with a consistent ELP is not ensured to satisfy the consistency property, which

implies that their theorems are incorrect. Third as another serious problem, we show

the admissible abstract dispute tree whose defence set is inconsistent though it is ad-
missible as derived due to their lemma [11, Lemma 11]. Then to detect and avoid such
anomaly, we propose the novel notion of consistency for admissible dispute trees. So far
a simplified assumption-based framework [5] (a simplified ABA, for short) having the

restricted form w.r.t. explicit negation has often been used to illustrate admissible dispute

trees without addressing consistency. Instead, thanks to our notion of consistency, we can

show that the serious consistency problems addressed above never occurs in a simplified

ABA since any defence set of its admissible dispute tree is consistent. Finally we present

the condition to ensure ABA consistency in comparison with the ab-self-contradiction
axiom to guarantee consistency-property in ABA.

The rest of this paper is as follows. Section 2 shows preliminaries. Section 3 dis-

cusses consistency in ABA. Section 4 shows counter examples to their theorems, presents

the corrected theorems, proposes (in)consistent admissible dispute trees and shows the

condition to ensure ABA consistency. Section 5 discusses related work and concludes.

2. Preliminaries

Definition 1 An ABA framework (or ABA) [6,1] is a tuple 〈L,R,A,¯̄ 〉, where (L,R)
is a deductive system, consisting of a language L (a set of sentences) and a set R of
inference rules of the form: b0 ← b1, . . . , bm (bi ∈ L for 0 ≤ i ≤ m), A ⊆ L is a set
of assumptions, and ¯̄ is a total mapping from A into L. α is referred to as the contrary
of α ∈ A. For a rule r ∈ R of the form b0 ← b1, . . . , bm, let the head be head(r) = b0

(resp. the body body(r) = {b1, . . . , bm}).

We enforce that ABA frameworks are flat, namely assumptions do not occur in the head
of rules. In ABA, arguments and attacks are defined as follows [6]:

• an argument for c∈L (the conclusion or claim) supported by K ⊆A (K � c in
short) is a (finite) tree with nodes labelled by sentences in L or by τ 	∈ L denoting
“true”, such that the root is labelled by c, leaves are labelled either by τ or by
assumptions inK , and each non-leaf nodeN is labelled by b 0 =head(r) for some
rule r ∈ R, where N has a child labelled by τ if body(r) = ∅; otherwise N has

m children, each of which is labelled by bj∈body(r)={b1, . . . , bm}(1≤j≤m).
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• an argument K1�c1 attacks an argument K2�c2 iff c1 = α for α∈K2 (1)

Let AFF = (AR, attacks) be the abstract argumentation framework generated from a
flat ABA frameworkF . ForArgs ⊆ AR, letArgs+ = {B ∈ AR |A attacks B forA∈
Args}. Args is conflict-free iff Args ∩ Args+ = ∅. Args defends an argument A iff

each argument that attacks A is attacked by an argument in Args.

Definition 2 (ABA semantics) [1,4] Let 〈L,R,A,¯̄ 〉 be a flat ABA framework, and AR
the associated set of arguments. ThenArgs⊆AR is: admissible iffArgs is conflict-free
and defends all its elements; a complete argument extension iffArgs is admissible and
contains all arguments it defends; a preferred (resp. grounded ) argument extension iff

it is a (subset-)maximal (resp. (subset-)minimal) complete argument extension; a sta-

ble argument extension iff it is conflict-free and Args ∪ Args+ = AR; an ideal ar-

gument extension iff it is a (subset-)maximal admissible set contained in every preferred

argument extension.

Hereafter let σ ∈ {complete, preferred, grounded, stable, ideal}. The various ABA
semantics is originally given by sets of assumptions called assumption extensions. There

is a one-to-one correspondence between σ assumption extensions and σ argument exten-
sions such that for a σ assumption extension Asms, Asms2Args(Asms) = {K � c ∈
AR | K ⊆ Asms} is a σ argument extension, and for a σ argument extension Args,
Args2Asms(Args) = {α∈K | K � c∈Args, K⊆A} is a σ assumption extension [3].
Let claim(Ag) be the claim (or conclusion) of an argument Ag. Then the conclusion of
a set of arguments E is Concs(E) = {c ∈ L | c = claim(Ag) for Ag ∈ E}, while the
consequences of a set of assumptionsA ⊆ A is Cn(A)={s ∈ L | ∃A′ � s for A′ ⊆ A}.

Definition 3 (Dispute trees) [5] Given a flat ABA framework 〈L,R,A,¯̄ 〉, an abstract
dispute tree for an initial argument a is defined as a (possibly infinite) tree T such that
1. Every node of T is labelled by an argument and is assigned the status of proponent
node or opponent node, but not both. 2. The root is a proponent node labelled by a. 3.
For every proponent node N labelled by an argument b, and for every argument c that
attacks b, there exists a child ofN , which is an opponent node labelled by c. 4. For every
opponent node N labelled by an argument b, there exists exactly one child of N which

is a proponent node labelled by an argument which attacks some assumption α in the
set supporting b. α is said to be the culprit in b. 5. There are no other nodes in T except
those given by 1-4 above.

The set of all assumptions belonging to the proponent nodes in T is called the de-
fence set of T , denoted by D(T ). An abstract dispute tree T is admissible if and only
if no culprit in the argument of an opponent node belongs to D(T ). If T is an admissi-
ble abstract dispute tree for an argument a, then D(T ) is an admissible set of assump-
tions. If a is an argument supported by a set of assumptions A0⊆E where E is admis-

sible, then there exists an admissible dispute tree T for a with defence set D(T ) and
A0⊆D(T )⊆ E andD(T ) is admissible [5, Theorem 5.1].

Satisfying Caminada and Amgoud’s rationality postulates [2] or the closure and
consistency properties in ABA [7] is stated as follows.

Definition 4 (Rationality postulates) [7,2] Let 〈L,R,A,¯̄ 〉 be a flat ABA framework.
A set X ⊆ L is said to be contradictory iff X is contradictory w.r.t. ¯̄ , i.e. there exists
an assumption α ∈ A such that {α, α} ⊆ X ; or X is contradictory w.r.t. ¬, i.e. there
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exists s ∈ L such that {s,¬s} ⊆ X if L contains an explicit negation operator ¬. Let
CNR : 2L→2L be a consequence operator. For a set X ⊆ L, CNR(X) is the smallest
set such that X ⊆ CNR(X), and for each rule r ∈ R, if body(r) ⊆ CNR(X) then
head(r) ∈ CNR(X). X is closed iff X = CNR(X). A set X ⊆ L is said to be
inconsistent iff its closureCNR(X) is contradictory.X is said to be consistent iff it is not

inconsistent. A flat ABA framework F = 〈L,R,A,¯̄ 〉 is said to satisfy the consistency-
property (resp. the closure-property) if for each complete extension E of AFF generated
from F , Concs(E) is consistent (resp. Concs(E) is closed) [7].

Definition 5 An extended logic program (ELP, for short) [8] is a set of rules of the form:
L0←L1,. . ., Lm, not Lm+1,. . ., not Ln (n≥m≥0), (2)

where each Li is a literal, i.e. either an atom A or ¬A preceded by classical negation

¬. not represents negation as failure (NAF). A literal preceded by not is called a NAF-
literal. Let LitP be the set of all ground literals in the language of an ELP P . The seman-
tics of an ELP is given by answer sets [8] (resp. paraconsistent stable models or p-stable
models, for short [10]) defined as follows.

First, let P be a not-free ELP (i.e., for each rule m = n). Then, S ⊆ LitP is an

answer set of P if S is a minimal set satisfying the following two conditions (i),(ii):
(i) For each ground instance of a rule L0←L1, . . . , Lm in P , if {L1, . . . , Lm}⊆S, then
L0 ∈ S. (ii) If S contains a pair of complementary literals L and ¬L, then S = LitP .

Second, let P be any ELP and S ⊆ LitP . The reduct of P by S is a not-free ELP P S

which contains L0←L1, . . . , Lm iff there is a ground rule of the form (2) in P such that
{Lm+1, . . . , Ln}∩S=∅. Then S is an answer set of P if S is an answer set of P S .

In contrast, p-stable models are regarded as answer sets defined without the condi-

tion (ii). An answer set is consistent if it is not LitP ; otherwise it is inconsistent. An ELP
P is consistent if it has a consistent answer set; otherwise P is inconsistent under answer
set semantics. On the other hand, a p-stable model is inconsistent if it contains a pair
of complementary literals; otherwise it is consistent. For an ELP P , P is consistent if it
has a consistent p-stable model; otherwise it is inconsistent under paraconsistent stable
model semantics.

3. Consistency in Assumption-Based Argumentation

We discuss ABA consistency and consistent extensions in an ABA framework whose
language contains explicit negation. The following theorem holds in ABA.

Theorem 1 [14] Let F = 〈L,R,A,¯̄ 〉 be a flat ABA framework and E be a complete
argument extension of AFF generated from F .

1. F satisfies the closure-property.
2. F satisfies the consistency-property iff for every E , Concs(E) is consistent

iff for every E , Concs(E) is not contradictory w.r.t. explicit negation ¬.

Item 2 in Theorem 1 denotes that an ABA F satisfies the consistency-property iff AFF
satisfies the direct consistency postulate [2] under complete semantics. In contrast, ABA
consistency is differently defined as follows.
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Definition 6 (Consistent argument extensions)[14] Given a flat ABA frameworkF , let
E be a complete argument extension of AFF generated from F . Then the extension E is
said to be consistent if Concs(E) is not contradictoryw.r.t.¬; otherwise it is inconsistent.

Definition 7 (ABA consistency) [14] A flat ABA frameworkF = 〈L,R,A,¯̄ 〉 is said to
be consistent under σ semantics if AFF generated from F has a consistent σ argument
extension; otherwise it is inconsistent.

Note that if a flat ABA framework F satisfies the consistency-property, F is consistent
under complete semantics, but not vice versa. ABA consistency can be also stated in

terms of consistent assumption extensions based on the theorem shown below.

Proposition 1 (Consistent conflict-free sets of assumptions) Let F= 〈L,R,A,¯̄ 〉 be a
flat ABA framework and A⊆A be a conflict-free set of assumptions. Then A is consistent
iff CNR(A) is not contradictory w.r.t. ¬.

Proof. (i) Since A ⊆ A is conflict-free, it holds that 	 ∃α∈ A such that A ′� ᾱ for A′⊆A.
(ii) Since F is flat, it holds that Cn(A) ∩ A = A (iii) It holds that for a set A ⊆ A,
CNR(A)=Cn(A). Then due to (i),(ii),(iii), there exists no assumption α∈A such that
{α, α}⊆Cn(A) = CNR(A), which means that CNR(A) is not contradictory w.r.t. ¯̄ .
Hence a conflict-free set A⊆A is consistent iff CNR(A) is not contradictory w.r.t. ¬. �

The following is derived based on Proposition 1.

Corollary 1 (Consistent admissible set of assumptions/ consistent assumption exten-
sions) Let A be any one of an admissible set of assumptions and an assumption extension.
Then A⊆A is consistent iff CNR(A) is not contradictory w.r.t. ¬.

Theorem 2 (ABA consistency) A flat ABA framework F = 〈L,R,A,¯̄ 〉 is consistent
under σ semantics iff F has a consistent σ assumption extension; otherwise it is incon-
sistent.

Proof. (⇐) Let A⊆A be a consistent σ assumption extension in F . For A, there is a σ
argument extension E in F such that E=Asms2Args(A). Then it holds that CNR(A)=
Cn(A) = {c ∈ L | ∃K � c, K ⊆ A} = {c ∈ L | ∃K � c ∈ E} = Concs(E). Besides
since the assumption extension A⊆A⊆L is consistent, CNR(A) is not contradictory
w.r.t. ¬ due to Corollary 1. Therefore F has the consistent σ argument extension E since
Concs(E) = CNR(A) is not contradictory w.r.t. ¬. Hence F is consistent.
(⇒) The converse is also proved similarly. �

The following example illustrates the difference between satisfaction of the consistency-

property and ABA consistency.

Example 1 The following ELP P1
2 expresses “Married John” [2] extended with the

rule, ¬wr ← not hw:

P1 = {wr ←, go←, m← wr, not ¬m, b← go, not ¬b,
hw← m, ¬hw← b, ¬b← hw, ¬m← ¬hw, ¬wr ← not hw}.

P1 has the unique consistent answer setM1 = {wr, go, m,¬b, hw},
while it has two p-stable models,M1 andM2 = {wr, go,¬m, b,¬hw,¬wr},
2This ELP P1 was inspired in a personal communication with Dr. Martin Caminada.
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whereM1 is consistent butM2 is inconsistent. Hence P1 is consistent under answer set

semantics as well as under paraconsistent stable model semantics.

In contrast, in the ABA framework FP1 = 〈L, P1,A,¯̄ 〉 instantiated with P1 where

A = {not ¬m, not ¬b, not hw}, not ¬m = ¬m, not ¬b = ¬b, not hw = hw, there
are arguments and attacks as follows:

A1 :{} � wr, A2 :{} � go, A3 :{not ¬m} � m, A4 :{not ¬b}�b,
A5 :{not ¬m}�hw, A6 :{not ¬b}�¬hw, A7 : {not ¬m} � ¬b,
A8 : {not ¬b} � ¬m, A9 : {not hw} � ¬wr, A10 : {not ¬m} � not ¬m,
A11 : {not ¬b} � not ¬b, A12 : {not hw} � not hw,
attacks = {(A7, A4), (A7, A6), (A7, A8), (A7, A11), (A8, A3), (A8, A5), (A8, A7),

(A8, A10), (A5, A9), (A5, A12)}.
Then it has three complete argument extensions E1, E2, E3 as follows:

E1 = {A1, A2, A3, A5, A7, A10},
E2 = {A1, A2, A4, A6, A8, A9, A11, A12},
E3 = {A1, A2},

where Concs(E1) = {wr, go, m, hw,¬ b, not ¬m},
Concs(E2) = {wr, go, b,¬ hw,¬m,¬wr, not ¬b, not hw}, Concs(E3) = {wr, go}.
Note that E1, E2 are stable extensions such that Concs(Ei) ∩ LitP1 = Mi (i = 1, 2).

Regarding classical negation ¬ contained in P1 as explicit negation in FP1 , both

E1 and E3 are consistent, while E2 is inconsistent. Therefore the ABA FP1 is consistent

under stable (resp. complete) semantics since it has the consistent stable extension E 1,

while FP1 does not satisfy the consistency-property (i.e. violates the direct consistency

postulate) since it has the inconsistent E2.

4. Consistency Required in ABA Applications

4.1. Counterexamples to Schulz and Toni’s Theorems

In [11], an argumentK � c in a flat ABA framework 〈L,R,A,¯̄ 〉 is denoted by (K, F )�
c, where F = {�N | �N ←∈ R} is the set of heads of rules with an empty body singled
out from the set R ⊆ R of inference rules used in the construction of the argument
K � c. Then in their approach, the relation attacks is defined by using arguments whose
form is (K, F )�c instead ofK �c in (1) as follows:

• an argument (K1, F1)�c1 attacks an argument (K2, F2)�c2 iff c1 = α for α∈K2.

Given an ELP P , they defined the translated ABA framework ABAP = 〈LP , RP

AP ,¯̄ 〉, i.e. the ABA instantiated with P , where NAF P = {not �|� ∈ LitP }, LP =
LitP ∪NAFP , RP = P , AP = NAFP , and not � = � for every not � ∈ AP . For

S⊆LitP , ΔS = {not �∈NAFP |� /∈S} is the set of NAF-literals. If S is an answer set
of P , SNAF = S∪ΔS is called an answer set with NAF literals of P . According to [11,
Notation 2], �MP denotes derivability using modus ponens on← as the only inference

rule. When used on P ∪ ΔS , �MP treats NAF literals syntactically like facts. Then to

justify why a literal belongs to an answer set of an ELP based on ABA, Schulz and Toni

claimed their theorems and lemma [11, Theorems 1, 2 and Lemma 1] for a logic program

P 3, i.e. a consistent ELP as follows.

3In [11, Section 2.1], it is described that “if not stated otherwise, we assume that logic programs are consis-

tent”.
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(c1) [11, Theorem 1]. Let P be a logic program and let ABAP = 〈LP ,RP ,AP ,¯̄ 〉.
Let X be a set of arguments in ABAP and let T = {k | ∃(AP, FP ) � k ∈ X}
be the set of all conclusions of arguments inX .X is a stable extension ofABAP

if and only if T is an answer set with NAF literals of P .

(c2) [11, Theorem 2]. Let P be a logic program and let ABAP = 〈LP ,RP ,AP ,¯̄ 〉.
Let T ⊆ LitP be a set of classical literals and let X = {(AP, FP ) � k | AP ⊆
ΔT } be the set of arguments in ABAP whose assumptions are in ΔT . T is an
answer set of P if and only if X is a stable extension of ABAP .

(c3) [11, Lemma 1]. Let P be a consistent logic program and let S ⊆ LitP .

(i) S is an answer set of P if and only if S = {� ∈ LitP | P ∪ΔS �MP �}.
(ii) SNAF = S ∪ ΔS is an answer set with NAF literals of P if and only if

SNAF = {k |P ∪ΔS �MP k}.

There exist counterexamples to their claims (c1), (c2) as follows.

Example 2 (Counterexamples to (c1), (c2)) Consider the following ELP P 2 [14],

P2 = {¬p←not a, a←p, not b, p←, b←not a},

where LitP2 = {a, b, p,¬a,¬b,¬p}. P2 has the unique consistent answer set S1 =
{a, p}, where S1NAF = S1∪ΔS1 = {a, p, not b, not ¬a, not ¬b, not ¬p} is the an-
swer set with NAF literals of P2, while P2 has two p-stable models, S1 = {a, p} and
S2 = {¬p, p, b}, where ΔS2 = {not a, not ¬a, not ¬b}. Thus S1 is consistent but

S2 is inconsistent. Hence P2 is consistent under answer set semantics as well as under

paraconsistent stable model semantics.

In contrast, ABAP2= 〈LP2 , P2,AP2 ,¯̄ 〉 is constructed from P2, which has argu-

ments and attacks as follows:
A1 : ({not a}, ∅) � ¬p, A2 : ({not b}, {p}) � a, A3 : (∅, {p}) � p,
A4 : ({not a}, ∅) � b, A5 : ({not a}, ∅) � not a, A6 : ({not b}, ∅) � not b
A7 : ({not p}, ∅) � not p, A8 : ({not ¬a}, ∅) � not ¬a,
A9 : ({not ¬b}, ∅) � not ¬b, A10 : ({not ¬p}, ∅) � not ¬p,
attacks = {(A1, A10), (A2, A1), (A2, A4), (A2, A5), (A3, A7), (A4, A2), (A4, A6)}.

Then ABAP2 has two stable extensions E1, E2 as follows.
E1 = {A2, A3, A6, A8, A9, A10}, E2 = {A1, A3, A4, A5, A8, A9},

where Concs(E1) = {a, p, not b, not ¬a, not ¬b, not ¬p} = S1NAF ,

Concs(E2) = {¬p, p, b, not a, not ¬a, not ¬b} = S2 ∪ΔS2 .

Hence E1 is consistent but E2 is not. Besides Concs(Ei) = Si ∪ ΔSi (or Concs(Ei) ∩
LitP2 = Si) holds for Ei and Si (i = 1, 2). In the following, it is shown that claims (c1),
(c2) do not hold for this consistent ELP P2.

(1) Suppose that (c1) holds. Let X be the stable extension E2 of ABAP2 . Then due

to (c1), T = {k|∃(AP, FP )� k ∈E2}= Concs(E2) should be the answer set with NAF
literals of P2. However Concs(E2)=S2 ∪ΔS2 is not the answer set with NAF literals of

P2 since S2 is not the answer set of P2. Contradiction. Thus (c1) does not hold for P2. �

(2) Suppose that (c2) holds. For T = {¬p, p, b} andΔT = {not a, not ¬a, not ¬b},
X ={(AP, FP )�k |AP ⊆ΔT }={A1, A3, A4, A5, A8, A9}=E2 is obtained, where E2
is the stable extension of ABAP2 . Then due to (c2), T =S2 should be the answer set of
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P2. However S2 is not the answer set. Contradiction. Hence (c2) does not hold for P 2. �

Remark: The ELP P1 in Example 1 is also a counterexample to (c1), (c2) [11, Theorems

1,2]. (Details are omitted due to space limitations.)

The reason why their theorems [11, Theorems 1, 2] do not hold is that they proved

them based on the claim (c3), to which there exists also a counterexample.

Example 3 (Counterexample to (c3) [11, Lemma 1]) Consider the consistent ELP P 2

and S2 = {¬p, p, b} in Example 2.

• Suppose that (c3) (i) holds. For P2 and ΔS2 , {� ∈ LitP2 | P2 ∪ΔS2 �MP �} =
{¬p, p, b} = S2 is derived. Then due to (c3) (i), S2 should be the answer set of

P2. However S2 is not the answer set of P2 but the p-stable model. Contradiction.

Thus (c3) (i) does not hold.

• Similarly we can easily show that (c3) (ii) does not hold. �

4.2. Correspondence between Consistent Answer Sets and Consistent Stable Extensions

Two theorems [13, Theorems 3, 4] for an ELP were presented as Extended Logic Pro-
gramming as Argumentation, whereas Schulz and Toni claimed (c1), (c2) [11, Theorems
1, 2] for a consistent ELP, i.e. the subclass of an ELP.

In [13, Theorems 3, 4], the following notations are used. Given an ELP P ,

F(P ) = 〈LP , P, Litnot,¯̄ 〉
is the ABA framework instantiated with P , where Litnot = {not L | L ∈ LitP},
LP = LitP ∪Litnot and not L = L for not L ∈ Litnot. AFF (P ) denotes the abstract
argumentation framework generated from the ABA F(P ). For an ELP P , let

Ptr
def= P ∪ {L← p,¬p | p ∈ LitP , L ∈ LitP},

be the ELP obtained from P by incorporating the trivialization rules [10]. Then
F(Ptr) = 〈LP , Ptr, Litnot,¯̄ 〉 is the ABA framework instantiated with Ptr, where

LitPtr =LitP and LPtr =LP . Besides forM ⊆ LitP , ¬.CM ={notL | L∈LitP \M}
is the set of NAF literals.

Hence for an ELP P , F(P ) (resp. Litnot) corresponds toABAP (resp.AP ) in [11],

while forM ⊆ LitP ,M ∪ ¬.CM (resp. ¬.CM ) coincides withM ∪ΔM (resp.ΔM ).

Thus for an answer setM ,M ∪ ¬.CM denotesMNAF = M ∪ΔM called the answer
set with NAF literals. Theorems for an ELP are shown as follows.

Theorem 3 [13, Theorem 3]. Let P be an ELP. Then M is a p-stable model of P iff
there is a stable extension E of AFF (P ) such that M ∪ ¬.CM = Concs(E) (in other
words, M = Concs(E) ∩ LitP ).

Theorem 4 [13, Theorem 4]. Let P be an ELP. Then M is an answer set of P iff there
is a stable extension Etr of the ABA F(Ptr) (or AFF (Ptr) such that M ∪ ¬.CM =
Concs(Etr) (in other words, M = Concs(Etr) ∩ LitP ).

Example 2 illustrates that Theorem 3 holds for the p-stable model S i of P2 since

Concs(Ei) = Si ∪ ΔSi = Si ∪ ¬.CSi holds w.r.t. the stable extension Ei (i = 1, 2),
while the following illustrates that Theorem 4 holds for answer sets of P2.
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Example 4 (Cont. Ex. 2) For P2, Ptr is obtained as follows.

Ptr =P2∪{L←a,¬a |L∈LitP2}∪{L←b,¬b |L∈LitP2}∪{L←p,¬p |L∈LitP2}.
Then the ABA F(Ptr) (i.e. ABAPtr ) has the unique stable extension Etr = E1 such that
Concs(Etr) = S1∪¬.CS1 = S1∪ΔS1 = S1NAF for the answer set with NAF literals

S1NAF , where S1 is the unique consistent answer set of P2.

In what follows, we prove and present the correct theorems against their claims. First

of all, we provide the following lemmas regarding a consistent ELP.

Lemma 1 Let P be an ELP. M is a consistent answer set of P iff there is a consistent
p-stable model M of P .
Proof. (⇐) Let M be a consistent p-stable model of P . Then M does not contain a pair of
complementary literals. Since M is also a p-stable model of the reduct P M according to
Def. 5, M is a minimal set satisfying the condition (i) for P M which is the not-free ELP.
Then since M does not contain a pair of complementary literals, M is also a minimal
set satisfying both conditions (i) and (ii) for P M . This denotes that M is the answer set
of P M which does not contain a pair of complementary literals. Thus M is the answer
set of P M and it is not LitP . Hence since the answer set M of P M which is not LitP is
the answer set of P , M is the consistent answer set of P .
(⇒) The converse is proved in a similar way. �

The following corollary is the direct result of Lemma 1.

Corollary 2 An ELP P is consistent under answer set semantics iff P is consistent under
paraconsistent stable model semantics.

Lemma 2 Let P be a consistent ELP. If M is an answer set of P , M is a p-stable model
of P , but not vice versa.
Proof. (⇒) Since P is consistent, its answer set M is consistent. Thus due to Lemma 1,
M is a p-stable model of P .
(⇐) A consistent ELP P has a consistent p-stable model which is the answer set of P .
Moreover it may have an inconsistent p-stable model M containing a pair of comple-
mentary literals L and ¬L. Then suppose that such inconsistent p-stable model M is
also the answer set of P . Since M is the answer set of P , M is a minimal set satisfy-
ing the condition (i),(ii) in Def. 5 for the reduct P M . Thus M is LitP due to (ii) since
M contains a pair of complementary literals. However P has a consistent answer set
S ⊂ LitP because P is consistent. Thus M which is LitP is not minimal. Hence M is
not the answer set of P . Contradiction. �

Hereby given a consistent ELP, we can obtain the following theorems.

Theorem 5 Let P be a consistent ELP. Then M is an answer set of P iff there is a
consistent stable extension E of the ABA framework F(P ) (or AFF (P )) such that M ∪
¬.CM = Concs(E).
Proof. (⇐) Let E be a consistent stable extension of the ABA F(P ). Then Concs(E) is
consistent, i.e. not contradictory w.r.t. ¬. Due to Theorem 3, for the stable extension E ,
there is the p-stable model M of P such that M ∪¬.CM = Concs(E). Since Concs(E)
does not contain a pair of complementary literals, M ∪ ¬.CM as well as the p-stable
model M are consistent. Hence due to Lemma 1, M is the consistent answer set of P .
(⇒) The converse is also proved in a similar way. �
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A+
1: ({not a}, { })    p                   proponent: A1: ({not a}, { })   p

A-
2: ({not b}, {p}) a                     opponent: A2: ({not b}, {p}) a

A+
4: ({not a}, { })  b                     proponent: A4: ({not a}, { })   b

A-
2: ({not b}, {p})   a                     opponent: A2: ({not b}, {p})  a

Figure 1. The admissible dispute tree TE2 (A1) (right) vs.
the positive attack tree attTree+E2

(A1) (left) in Ex. 5

proponent:   {   q }     p

proponent:   {   q }     p

 opponent: { a } q

opponent:     { a }  q

Figure 2. The admissible dispute tree
T for {¬q} � p in Ex. 6

Theorem 6 Let P be a consistent ELP. If M is an answer set of P , there is a stable
extension E of the ABA framework F(P ) such that M ∪ ¬.CM = Concs(E), but not
vice versa.

Proof. This is proved based on Lemma 2 and Theorem 3. �

Corollary 3 Let P be a consistent ELP. E is a consistent stable extension of the ABA
framework F(P ) iff E is a stable extension of the ABA framework F(Ppr).

Theorem 5 and Theorem 6 state that there is a one-to-one correspondence between

answer sets of a consistent ELP P and (not stable extensions but) consistent stable ex-
tensions of the ABA F(P ) contrary to their claims (c1), (c2).

As for rationality postulates, the following theorem generally holds as illustrated in

Example 1, which implies that Schulz and Toni’s theorems are incorrect.

Theorem 7 Let P be a consistent ELP. Then the ABA framework F(P ) instantiated with
P is consistent under complete (resp. stable) semantics, while it is not guaranteed to
satisfy the consistent property or the direct consistency postulate.

Proof. There is an answer set of P . Then there is a consistent stable extension of F(P )
based on Theorem 5. Hence F(P ) is consistent under those semantics. Similarly there
may be an inconsistent p-stable model of P . Then F(P ) may have an inconsistent stable
extension based on Theorem 3. Thus the latter is proved. �

4.3. Consistency for Admissible Dispute Trees

Admissibility is defined for abstract (resp. concrete) dispute trees [5]. However consis-
tency has not been taken into account for admissible dispute trees so far even though the
following serious consistency problem may arise in ABA containing explicit negation.

Example 5 (Cont. Ex. 2) Consider ABAP2 where classical negation ¬ in P2 is re-

garded as explicit negation. In Figure 1, the left is the positive Attack tree attTree +
E2

(A1)
of the argument A1 : ({not a}, ∅) � ¬p with respect to the stable extension E2 =
{A1, A3, A4, A5, A8, A9} of ABAP2 , while the right is the admissible abstract dis-

pute tree TE2(A1) for A1 translated from attTree+
E2

(A1) according to [11, Lemma 11].
Though there exists a fact p, i.e. p← ∈P2 in ABAP2 , the belief ¬p is concluded to be
admissible since the root of TE2(A1) is labelled with A1 whose claim is ¬p, that im-
plies contradiction. In fact, its defence set D(TE2(A1)) = {not a} is inconsistent since
CNP2({not a}) = {¬p, p, b, not a} is contradictory w.r.t. ¬.
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To detect and avoid such anomaly in ABA whose language contains explicit negation,

we introduce the notion of consistency into admissible dispute trees.

Definition 8 (Consistent admissible dispute trees)Given a flat ABA framework 〈L,R,A,
¯̄ 〉, an admissible abstract (resp. concrete) dispute tree T is consistent if its defence set
D(T ) is consistent; otherwise it is inconsistent.

Proposition 2 (Consistent defence sets) The defence set D(T ) ⊆ A of an admissible
dispute tree T is consistent iff CNR(D(T )) is not contradictory w.r.t. ¬.

Proof. This is proved due to Corollary 1 since D(T ) is admissible. �

A simplified assumption-based framework [5] is often used to illustrate an admissible

dispute tree without stating consistency. The following ensures its consistency.

Proposition 3 A simplified assumption-based framework (a simplified ABA, for short)
[5] is an ABA frameworkF = 〈L,R,A,¯̄ 〉, where F is flat, all sentences in L are atoms
p, q, . . . or negations of atoms ¬p,¬q, . . . and p=¬p for p∈A (resp. ¬p=p for ¬p∈A).
Then any admissible abstract (resp. concrete) dispute tree T in F is consistent.

Proof. Let α = p for p ∈ A (resp. α = ¬p for ¬p ∈ A). Then {α, α} = {p,¬p}
for p ∈ A (resp. ¬p ∈ A) is derived, which means that contradictoriness w.r.t. ¬ in
F becomes contradictoriness w.r.t. ¯̄ in F . Now let T be an admissible dispute tree in
F . Since D(T ) is admissible, it is conflict-free. Besides F is flat. Then due to the proof
of Proposition 1, CNR(D(T )) is not contradictory w.r.t. ¯̄ in F . Hence CNR(D(T ))
is also not contradictory w.r.t. ¬ in F . Therefore any admissible dispute tree T in F is
consistent since any D(T ) is consistent based on Proposition 2. �

Proposition 3 denotes that the consistency problem shown in Example 5 never arises in

a simplified ABA. However the ABA F(P ) (i.e. ABAP ) instantiated with an ELP P is
not a simplified ABA.

Example 6 Consider the ABA F = 〈L,R,A,¯̄ 〉, where R = {p ←¬q, q←a,¬p←},
A = {¬q, a}, ¬q = q and a = p. F is not a simplified ABA. It has three complete
extensions E1, E2, E3 such that Concs(E1) = {q,¬p, a}, Concs(E2) = {p,¬p,¬q},
Concs(E3) = {¬p}, where E1, E2 are stable extensions. E1, E3 are consistent but E2
is not. Then F is consistent under stable (resp. complete) semantics, while it does not
satisfy the consistency property. Figure 2 shows the admissible abstract dispute tree

T for the argument {¬q} � p. Its defence set D(T ) = {¬q} is inconsistent since
CNR({¬q}) = {p,¬p,¬q} is contradictory w.r.t. ¬. Hence T is inconsistent though it
is admissible. In contrast, the admissible abstract dispute tree T ′ for {a} � q is consistent
since D(T ′) = {a} is consistent due to CNR({a}) = {q,¬p, a}.

4.4. The Necessary and Sufficient Condition to Guarantee ABA Consistency

We show the condition to guarantee ABA consistency. Given an ABA framework F =
〈L,R,A,¯̄ 〉 whose set of arguments is finite, let Π be the ELP translated from F with
no hypotheses (i.e.H = ∅) defined in [14, Definition 13].

Then based on [14, Lemma 1], the requirement that the ELP Π (resp. Π ∪ {←
undec(X)} where H = ∅ [14] should be consistent under answer set semantics is the
necessary and sufficient condition that guarantees ABA consistency such that the ABA
framework F is consistent under complete (resp. stable) semantics.
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5. Related Work and Conclusion

Dung and Thang presented the sufficient condition referred to as the ab-self-contradiction
axiom that guarantees closure- and consistency-properties in a flat ABA framework [7].

On the other hand, in [12], though it is shown that not the standard ABA but the

generalized ABAmapped from a defeasible framework under some assumptions satisfies

the closure and consistency postulates, Toni presented no results about satisfaction of

those postulates in a standard flat ABA framework.

In this paper, we showed counterexamples to Schulz and Toni’s theorems [11, The-

orems 1, 2]. Then against their claims, we presented Theorems 5 and 6 showing that an-

swer sets of a consistent ELP are captured by not stable extensions but consistent stable
extensions of the ABA instantiated with the ELP. Theorem 7 shows such ABA instanti-

ated with a consistent ELP is not ensured to satisfy the consistency postulate, that implies

incorrectness of their theorems. We proposed the novel notion of consistency for admis-

sible dispute trees to avoid anomalies in ABAs containing explicit negation. Finally we

showed the condition to ensure ABA consistency. Our future work is to implement the

method to compute consistent reasoning over ABA in answer set programming [8] (e.g.

by using the ELPΠ withH = ∅ based on [14, Lemma 1]).
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