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Abstract. The recent Control Argumentation Framework (CAF) is a generalization
of Dung’s Argumentation Framework which handles argumentation dynamics un-
der uncertainty; especially it can be used to model the behavior of an agent which
can anticipate future changes in the environment. Here we provide new insights on
this model by defining the notion of possible controllability of a CAF. We study the
complexity of this new form of reasoning for the four classical semantics, and we
provide a logical encoding for reasoning with this framework.
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1. Introduction

Abstract argumentation [1] has become an important subfield of Knowledge Represen-
tation and Reasoning research in the last decades. Intuitively, an abstract argumentation
framework (AF) is a directed graph where nodes are arguments and edges are relations
(usually attacks) between these arguments. The outcome of such an AF is an evaluation
of the arguments’ acceptance (through extensions [1,2], labellings [3] or rankings [4]).
The question of argumentation dynamics has arisen more recently, and many different
approaches have been proposed (see e.g. [5,6,7,8,9,10,11,12,13,14]). Roughly speaking,
the question of these works is “how to modify an AF to be consistent with a given piece
of information?”. Such a piece of information can be “argument a should be accepted
in the outcome of the AF”. A particular version of this problem is called extension en-
forcement [7,15,10,12,13]: it consists in modifying an AF s.t. a given set of arguments
becomes (included in) an extension of the AF. The recently proposed Control Argumen-
tation Framework (CAF) [14] is a generalization of Dung’s AF which incorporates dif-
ferent notions of uncertainty in the structure of the framework. The controllability of a
CAF w.r.t. a set of arguments is the fact that, whatever happens in the uncertain part of
the CAF (i.e. whatever is the real situation of the world), the target set of arguments is
accepted. This is somehow a generalization of extension enforcement, where uncertainty
is taken into account.

In this paper, we study what we call possible controllability (and then, controllability
defined in [14] can be renamed as necessary controllability). The idea of possible con-
trollability w.r.t. a target set of arguments is that this target should be accepted in at least
one of the possible completions of the uncertain part. Necessary controllability trivially
implies possible controllability, while the converse is not true. This form of reasoning
can be applied in different situations. Possible controllability makes sense in situations
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where an agent is unable to guarantee some result (the fact that some argument a is ac-
cepted), but she wants to be sure that the opposite result (a is rejected) is not necessary
true. For instance, possible controllability is similar to the reasoning of the defendant’s
lawyer during a trial. Thanks to the principle of presumption of innocence, the lawyer
does not have to prove that the defendant is innocent, but he has to prove that the defen-
dant may be innocent. This means that if there is some uncertainty in the case, the lawyer
wants to exhibit the fact that one possible world encompassed by this uncertainty im-
plies that his client is innocent.1 This means that the lawyer’s knowledge about the case
can be represented by a CAF, and the lawyer wants to guarantee that the argument “the
defendant is innocent” is accepted in at least one completion of the CAF, i.e. one pos-
sible world. In this kind of scenario, possible controllability is particularly useful since
it is (presumably) easier to search for one completion that accepts the target instead of
checking that the target is accepted in each of the (exponentially many) completions.

The paper is organized as follows. We first recall the background notions of logic and
introduce the CAF setting in Section 2. In Section 3 we define formally this new form of
controllability, and we determine the complexity of this reasoning problem for the four
classical semantics introduced by Dung. We also propose a QBF-based encoding which
allows to determine whether a CAF is possible controllable w.r.t. a target and the stable
semantics (and moreover, which allows to determine how to control it). We describe the
related work in Section 4, and finally Section 5 concludes the paper and draws interesting
future research tracks.

2. Background

2.1. Propositional Logic and Quantified Boolean Formulas

We consider a set V of Boolean variables, i.e. variables which can be assigned a value
in B = {0,1}, where 0 and 1 are associated respectively with false and true. Such vari-
ables can be combined with connectives {∨,∧,¬} to build formulas. x∨ y is true if at
least one of the variables x,y is true; x∧ y is true if both x,y are true; ¬x is true is x is
false. Additional connectives can be defined, e.g. x ⇒ y is equivalent to ¬x∨ y; x ⇔ y is
equivalent to (x ⇒ y)∧ (y ⇒ x). The definition of the connectives is straightforwardly
extended from variables to formulas (e.g. if φ and ψ are formulas, then φ ∧ψ is true
when both formulas are true). A truth assignment on the set of variables V = {x1, . . . ,xn}
is a mapping ω : V → B.

Quantified Boolean Formulas (QBFs) are an extension of propositional formu-
las with the universal and existential quantifiers. For instance, the formula ∃x∀y(x ∨
¬y) ∧ (¬x ∨ y) is satisfied if there is a value for x such that for all values of y the
proposition (x ∨¬y)∧ (¬x ∨ y) is true. More formally, a canonical QBF is a formula
Q1X1Q2X2 . . .QnXnΦ where Φ is a propositional formula, Qi ∈ {∃,∀}, Qi 
= Qi+1, and
X1,X2, . . . ,Xn disjoint sets of propositional variables such that X1 ∪X2 ∪ . . .∪Xn =V .2 It
is well-known that QBFs span the polynomial hierarchy. For instance, deciding whether
the formula ∃X1∀X2 . . .QiXiΦ is true is Σp

i -complete. The decision problem associated

1On the opposite, necessary controllability [14] is close to the reasoning of the prosecutor.
2If some variable x ∈V does not explicitly belong to any Xi, i.e. X1 ∪ ·· ·∪Xn ⊂V , then it implicitly means

that x can be existentially quantified at the rightmost level.
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to QBFs of the form ∃V,Φ is equivalent to the satisfiability problem for propositional
formulas (SAT), which is well-known to be NP-complete. For more details about propo-
sitional logic, QBFs and complexity theory, we refer the reader to [16,17,18].

2.2. Abstract Argumentation and Control Argumentation Frameworks

An argumentation framework (AF), introduced in [1], is a directed graph A F = 〈A,R〉,
where A is a set of arguments, and R ⊆ A×A is an attack relation. The relation a attacks
b is denoted by (a,b) ∈ R. In this setting, we are not interested in the origin of arguments
and attacks, nor in their internal structure. Only their relations are important to define the
acceptance of arguments.

In [1], different acceptability semantics were introduced. They are based on two
basic concepts: conflict-freeness and defence. A set S ⊆ A is:

• conflict-free iff ∀a,b ∈ S, (a,b) 
∈ R;
• admissible iff it is conflict-free, and defends each a ∈ S against its attackers.

The semantics defined by Dung are as follows. An admissible set S ⊆ A is:

• a complete extension iff it contains every argument that it defends;
• a preferred extension iff it is a ⊆-maximal complete extension;
• the unique grounded extension iff it is the ⊆-minimal complete extension;
• a stable extension iff it attacks every argument in A\S.

The sets of extensions of an A F , for these four semantics, are denoted (respec-
tively) co(A F ), pr(A F ), gr(A F ) and st(A F ).

Our approach could be adapted for any other extension semantics. Based on these
semantics, we can define the status of any (set of) argument(s), namely skeptically ac-
cepted (belonging to each σ -extension), credulously accepted (belonging to some σ -
extension) and rejected (belonging to no σ -extension). For more details about argumen-
tation semantics, we refer the reader to [1,2].

We introduce now the notions of CAF and (necessary) controllability [14].

Definition 1. A Control Argumentation Framework (CAF) is a triple C A F =
〈F ,C ,U 〉 where F is the fixed part, U is the uncertain part and C is the control part
of C A F with:

• F = 〈AF ,→〉 where AF is a set of arguments and →⊆ (AF ∪AU )× (AF ∪AU ) is
an attack relation.

• U = 〈AU ,(� ∪ ���)〉 where AU is a set of arguments, �⊆ (((AU ∪AF)× (AU ∪
AF))\ →) is a conflict relation and ���⊆ (((AU ∪AF)× (AU ∪AF))\ →) is an
attack relation, with � ∩ ���= /0.

• C = 〈AC,�〉 where AC is a set of arguments, and �⊆ {(ai,a j) | ai ∈ AC, a j ∈
AF ∪AC ∪AU} is an attack relation.

AF ,AU and AC are disjoint subsets of arguments.

The different sets of arguments and attacks have different meanings. The fixed part
F represents the part of the system which cannot be influenced either by the agent or by
the environment. This means that if a ∈ AF , then it is sure that a is an “active” argument
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(for instance, all of its premises are true, and cannot be falsified). Similarly, if (a,b) ∈→,
the attack from a to b is actually part of the system and cannot be removed.

U is the uncertain part of the system. This means that it cannot be influenced by the
agent, but it can be modified by the environment (in a wide way, this can also represent
the possible actions of other agents). The uncertainty can appear in different ways. First,
if a ∈ AU , this means that there is some uncertainty about the presence of an argument
(for instance, the agent is not sure whether her opponent in the debate will state argument
a, or she is not sure whether the premises of a will be true at some moment). If (a,b)∈�,
then the agent is sure that there is a conflict between a and b, but she is not sure of the
direction of the attack (this could be an attack (a,b), an attack (b,a), or even both at the
same time). This is possible, for instance, if the agent is not sure about some preference
between a and b [19]. Finally, (a,b) ∈��� means that the agent is not sure whether there
is actually an attack from a to b.

The last part C is the control part. This is the part of the system which can be influ-
enced by the agent. This means that the agent has to choose which arguments she will
actually use (uttering them in the debate, or making an action to switch their premises
to true). When the agent uses a subset Acon f ⊆ AC, called a configuration, this defines a
configured CAF where the arguments from AC \Acon f (and the attacks concerning them)
are removed. We illustrate these concepts on an example adapted from [14].

Example 1. We define C A F = 〈F,C,U〉 as follows:

• F = 〈{a1,a2,a3,a4,a5},{(a2,a1),(a3,a1),(a4,a2),(a4,a3)}〉;
• U = 〈{a6},� ∪ ���〉, with �= {(a6,a4)}, and ���= {(a5,a1)};
• C = 〈{a7,a8,a9},{(a7,a5),(a7,a9),(a8,a6),(a8,a7),(a9,a6)}〉.

C A F is given at Figure 1a. The configuration of C A F by Acon f = {a7,a9} yields
the configured CAF C A F ′ described at Figure 1b. On the figures, arguments from AF ,
AU and AC are respectively represented as circle nodes, dashed square nodes and plain
square nodes. Similarly, the attacks from →, �, ��� and � are represented (respec-
tively) as plain, double-headed dashed, dotted and bold arrows.

a1 a2

a3 a4a5

AF

a6 AUa7 a8

a9AC

(a) The CAF C A F

a1 a2

a3 a4a5

AF

a6 AUa7

a9AC

(b) C A F configured by Acon f = {a7,a9}

Figure 1. A CAF and a configured CAF
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Now we recall the notion of completion, borrowed from [20], and adapted to CAFs
in [14]. Intuitively, a completion is a classical AF which describes a situation of the world
coherent with the uncertain information encoded in the CAF.

Definition 2. Given C A F = 〈F,C,U〉, a completion of C A F is A F = 〈A,R〉, s.t.

• A = AF ∪AC ∪Acomp where Acomp ⊆ AU ;
• if (a,b) ∈ R, then (a,b) ∈→∪� ∪ ��� ∪�;
• if (a,b) ∈→, then (a,b) ∈ R;
• if (a,b) ∈� and a,b ∈ A, then (a,b) ∈ R or (b,a) ∈ R;
• if (a,b) ∈� and a,b ∈ A, then (a,b) ∈ R.

Example 2 (Continuation of Example 1). We describe two possible completions of
C A F ′. First, we consider a completion A F 1 where the attack (a5,a1) is not included,
while the argument a6 (with the attack (a6,a4)) is included. Another possible completion
is A F 2, where a6 is not included (so, neither the attacks related to it) while the attack
(a5,a1) is included.

a1 a2

a3 a4

a5 a6a7 a9

(a) A F 1

a1 a2

a3 a4

a5a7 a9

(b) A F 2

Figure 2. Two possible completions of C A F ′

Now, a CAF is necessary controllable w.r.t. a target T ⊆ AF if the agent can con-
figure it in a way which guarantees that T is accepted in every completion of the con-
figured CAF. This necessary controllability has two versions, depending on the kind of
acceptance under consideration (skeptical or credulous).

Definition 3. Given a set of arguments T ⊆ AF and a semantics σ , C A F is necessary
skeptically (resp. credulously) controllable w.r.t. T and σ iff ∃Acon f ⊆ AC s.t. T is in-
cluded in each (resp. some) σ -extension of each completion of C A F ′ = 〈F,C′,U〉, with
C′ = 〈Acon f ,{(ai,a j) ∈�| ai,a j ∈ (AF ∪AU ∪Acon f )}〉.

[14] proposes a QBF-based method to determine whether a CAF is necessary con-
trollable, and to obtain the corresponding configuration if it exists.

3. Possible Controllability

3.1. Formal Definition of Possible Controllability

The intuition of necessary controllability is that the agent is satisfied when its target is
reached in every possible world encoded by the uncertain information in the CAF. While
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this is an interesting property (especially for applications like negotiation [21]), this may
seem unrealistic for some applications, where the graph is built in such a way that some
completions cannot accept the target. Here, we adapt the definition of controllability to
consider that the agent is satisfied whether there exists at least one possible world (i.e.
one completion) which accepts the target.

Definition 4. Given a set of arguments T ⊆ AF and a semantics σ , C A F is possibly
skeptically (resp. credulously) controllable w.r.t. T and σ iff ∃Acon f ⊆ AC s.t. T is in-
cluded in each (resp. some) σ -extension of some completion of C A F ′ = 〈F,C′,U〉, with
C′ = 〈Acon f ,{(ai,a j) ∈�| ai,a j ∈ (AF ∪AU ∪Acon f )}〉.
Observation 1. Given a set of arguments T ⊆ AF and a semantics σ , if C A F is neces-
sary skeptically (resp. credulously) controllable w.r.t. T and σ , then C A F is possibly
skeptically (resp. credulously) controllable w.r.t. T and σ . The converse is false.

Example 3 (Continuation of Example 1). We observe that C A F from the previous
example is not necessary skeptically controllable w.r.t. the target {a1}. Indeed,

• if Acon f = {a7,a8,a9}, then because of the attack (a8,a7), the target is not de-
fended against the potential threat (a5,a1) ∈���. The same thing happens if
Acon f = {a7,a8} or Acon f = {a8,a9}.

• if Acon f = {a7,a9}, this time the target is not defended against the potential threat
coming from a6 (in the completions where a6 belongs to the system, along with
the attack (a6,a4), a1 is not accepted).

• if Acon f is one of the three possible singletons, then again a1 is not accepted in
every completion (since either a5 or a6 is unattacked).

On the opposite, it is possible to configure C A F is such a way that a1 is skeptically
accepted in at least one completion. For instance, Figure 3a describes such a configured
CAF, with a successful completion given at Figure 3b.

a1 a2

a3 a4a5

AF

a6 AUa7 AC

(a) C A F configured by Acon f = {a7}

a1 a2

a3 a4a5

a6a7

(b) A successful completion
of the CAF

Figure 3. A configured CAF and a successful completion

3.2. Computational Complexity of Possible Controllability

Now we focus on the computational complexity of deciding whether a CAF is possi-
bly controllable. Formally, for x ∈ {sk,cr} standing respectively for “skeptically” and
“credulously”, and σ ∈ {co,pr,gr,st}, we study the decision problem:
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ControlC A F ,T
σ ,p,x Is the CAF C A F possibly x-controllable w.r.t. σ and T ?

Proposition 1. The complexity of ControlC A F ,T
σ ,w,x , for x∈ {sk,cr} and σ ∈ {co,pr,gr,st},

is given at Table 1.

σ sk cr

st ΣP
2 -complete NP-complete

co NP-complete NP-complete
gr NP-complete NP-complete
pr ΣP

3 -complete NP-complete

Table 1. The complexity of ControlC A F ,T
σ ,p,x , for x ∈ {sk,cr}

Detailled proofs are omitted for space reasons. However, we can explain lower
bounds from existing results. In [22], the decision problems σ -PSA (possible skeptical
acceptance) and σ -PCA (possible credulous acceptance) for Incomplete Argumentation
Frameworks (IAFs) have been studied. A IAF corresponds to a CAF where �= /0 and
AC = /0 (and obviously, � is empty too). Thus, an argument a is skeptically (resp. credu-
lously) accepted in some completion of the IAF iff the corresponding CAF is skeptically
(resp. credulously) controllable w.r.t. the target {a}. This means that if σ -PSA (resp.
σ -PCA) is C-hard (for some class C of the polynomial hierarchy), then ControlC A F ,T

st,p,sk

(resp. ControlC A F ,T
st,p,cr ) is C-hard as well.

For upper bounds, we obtain some of them from the known complexity of skeptical
or credulous acceptance in Dung’s AFs [23]. Indeed, a completion that skeptically (resp.
credulously) accepts the target is a witness that the CAF is possibly skeptically (resp.
credulously) controllable w.r.t. the target. This leads to the upper bounds for possible
skeptical controllability, as well as the possible credulous controllability under grounded
semantics. The possible credulous controllability for the other semantics can be reduced
to SAT, so they belong to NP (the method is given in details for stable semantics in the
next part of the paper).

Let us also briefly discuss the complexity of possible controllability for simplified
CAFs, defined by [14] as CAFs with no uncertainty (i.e. AU =�=���= /0). Such a CAF
has only one completion for each control configuration, thus possible and necessary con-
trollability are equivalent in this case, and complexity remains the same as in the general
case, described at Table 1.

3.3. Possible Controllability Through QBFs

Inspired by [14], we propose a QBF-based method to compute possible controllability
for the stable semantics. Let us first give the meaning of the propositional variables used
in the encoding.

Given A F = 〈A,R〉,
• ∀xi ∈ A, accxi represents the acceptance status of the argument xi;
• ∀xi,x j ∈ A, attxi,x j represents the attack from xi to x j.

Φst is the formula Φst =
∧

xi∈A[accxi ⇔
∧

x j∈A(attx j ,xi ⇒¬accx j)]. This modified version
of the encoding from [24] describes in a generic way the relation between the structure
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of an AF (i.e. the set of attacks) and the arguments’ acceptance (i.e. the extensions) w.r.t.
stable semantics.

When the att-variables are assigned the truth value corresponding to the attack re-
lation of A F (i.e. attxi,x j is assigned 1 iff (xi,x j) ∈ R), the models of Φst (projected on
the acc-variables) correspond in a bijective way to st(A F ).

Given A F = 〈A,R〉, we define the formula ΦR
st = Φst ∧ (

∧
(xi,x j)∈R attxi,x j) ∧

(
∧

(xi,x j)/∈R¬attxi,x j) which represents this assignment of att-variables corresponding to a
specific AF. For any model ω of ΦR

st , the set {xi | ω(accxi) = 1} is a stable extension of
A F . In the other direction, for any stable extension ε ∈ st(A F ), ω s.t. ω(accxi) = 1
iff xi ∈ ε is a model of ΦR

st .
These variables and formula are enough to encode the stable semantics of AFs.

But to determine the controllability of a CAF, we need also to consider propositional
variables to indicate which arguments are actually in the system:

• ∀xi ∈ AC ∪AU , onxi is true iff xi actually appears in the framework.

Now, we can recall the encoding which relates the attack relation and the arguments
statuses in C A F = 〈F,C,U〉 [14]:
Notation: A = AF ∪AC ∪AU , R =→∪� ∪ ��� ∪�

Φst(C A F ) =
∧

xi∈AF
[accxi ⇔

∧
x j∈A(attx j ,xi ⇒¬accx j)]∧∧

xi∈AC∪AU
[accxi ⇔ (onxi ∧

∧
x j∈A(attx j ,xi ⇒¬accx j))]∧∧

(xi,x j)∈→∪� attxi,x j)∧ (
∧

(xi,x j)∈� attxi,x j ∨attx j ,xi)∧ (
∧

(xi,x j)/∈R¬attxi,x j)

The first line states that an argument from AF is accepted when all its attackers are
rejected (similarly to the case of classical AFs). Then, the next line concerns arguments
from AC and AU ; since these arguments may not appear in some completions of the CAF,
we add the condition that onxi is true to allow xi to be accepted. The last line specify the
case in which there is an attack in the completion: attacks from → and � are mandatory,
and their direction is known; attacks from � are mandatory, but the actual direction is not
known. We do not give any constraint about ���, which is equivalent to the tautological
constraint attxi,x j ∨¬attxi,x j : the attack may appear or not. Finally, we know that attacks
which are not in R do not exist.

Given a set of arguments T , the fact that T must be included in all the stable exten-
sions is represented by:

Φsk
st (C A F ,T ) = Φst(C A F )⇒

∧

xi∈T

accxi

Given a set of arguments T , the fact that T must be included in at least one stable
extension is represented by:

Φcr
st (C A F ,T ) = Φst(C A F )∧

∧

xi∈T

accxi

Now we give the logical encodings for possible controllability for σ = st.

Proposition 2. Given C A F and T ⊆ AF , C A F is possibly skeptically controllable
w.r.t. T and the stable semantics iff
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∃{onxi | xi ∈ AC}∃{onxi | xi ∈ AU}
∃{attxi,x j | (xi,x j) ∈��� ∪�}∀{accxi | xi ∈ A}
[Φsk

st (C A F ,T )∨ (
∨

(xi,x j)∈�(¬attai,a j ∧¬atta j ,ai))]
(1)

is valid. In this case, each valid truth assignment of the variables {onxi | xi ∈ AC} corre-
sponds to a configuration which reaches the target.

This encoding is not a direct adaptation of the encoding proposed in [14]. We have to
explicitly exclude the joint assignment of the variables attxi,x j and attx j ,xi to false, when
(xi,x j) ∈�, which would be in contradiction with the definition of this conflict relation.
Another method is used in [14] to rule out these assignments, but it does not yield a
QBF in prenex form. But this is the method that was proposed in [21], when necessary
controllability has been applied to automated negotiation.

The following result holds for possible credulous controllability:

Proposition 3. Given C A F and T ⊆ AF , C A F is possible credulously controllable
w.r.t. T and the stable semantics iff

∃{onxi | xi ∈ AC}∃{onxi | xi ∈ AU}
∃{attxi,x j | (xi,x j) ∈��� ∪�}∃{accxi | xi ∈ A}
[Φcr

st (C A F ,T )∨ (
∨

(xi,x j)∈�(¬attai,a j ∧¬atta j ,ai))]
(2)

is valid. In this case, each valid truth assignment of the variables {onxi | xi ∈ AC} corre-
sponds to a configuration which reaches the target.

We notice that in the case of possible credulous controllability, the problem reduces
to SAT since all the quantifiers are existential. This corresponds to the NP upper bound
for possible credulous controllability under stable semantics (Proposition 1). We keep
the QBF-style notation for homogeneity with Equation 1.

Example 4 (Continuation of Example 1). Let us describe the logical encoding for pos-
sible controllability with C A F as described previously and T = {a1}. We give here the
example for possible skeptical controllability:

∃ona7 ,ona8 ,ona9 ,∃ona6 ,∃atta5,a1 ,atta6,a5 ,atta4,a6 ,
∀acca1 ,acca2 , . . . ,acca9 ,
[Φsk

st (C A F ,T )∨ (
∨

(xi,x j)∈�(¬attai,a j ∧¬atta j ,ai))]

Below, we give the formula Φsk
st (C A F ,T ). For a matter of readability, several simpli-

fications are made. For instance, an implication like attx j ,xi ⇒ ¬accx j can be removed
when attx j ,xi is known to be false (because x j does not attack xi), and can be replaced
by ¬accx j when attx j ,xi is known to be true. Only the uncertain attacks need to be kept
explicit in the encoding. The first three lines give the condition for the acceptance of the
fixed arguments. Then, two lines give the condition for the acceptance of the control and
uncertain arguments. The other lines describe the structure of the graph (i.e. the attack
relations), and the implication gives the target for skeptical acceptance.
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[[acca1 ⇔¬a2 ∧¬a3 ∧ (atta5,a1 ⇒¬acca5)]
∧

[acca2 ⇔¬acca4)]∧ [acca3 ⇔¬acca4)]
∧

[acca4 ⇔ (atta6,a4 ⇒¬acca6)]∧ [acca5 ⇔¬acca7)]
∧

[acca6 ⇔ (ona6 ∧¬acca8 ∧¬acca9 ∧ (atta4,a6 ⇒¬acca4))]
∧

[acca7 ⇔ (ona7 ∧¬acca8)]∧ [acca8 ⇔ ona8 ]∧ [acca9 ⇔ (ona9 ∧¬acca7))]
∧

atta2,a1 ∧atta3,a1 ∧atta4,a2 ∧atta4,a3 ∧atta7,a5 ∧atta7,a9 ∧atta8,a6 ∧atta8,a7 ∧atta9,a6
atta4,a6 ∨atta6,a4∧
(xi,x j)/∈R¬attxi,x j

]⇒ acca1

4. Related Work

Qualitative uncertainty has been considered in other frameworks. Partial AFs [20] are
special instances of CAFs where only ��� is considered. They are used as a tool in a
process of aggregating several AFs. Then [25] studies the complexity of verifying in a
PAF whether a set of arguments is an extension of some (or every) completion. [26] con-
ducts a similar study for argument-incomplete AFs, i.e. there is some uncertainty about
the presence of arguments (the part called AU )in our framework). Finally, [27] combines
both. Let us notice than in [25,26,27], both versions of the verification problem (exis-
tential and universal w.r.t. the set of completions) are studied. As mentioned previously,
[22] gives the complexity of skeptical and credulous acceptance for IAFs. While being
a quite general model of uncertainty, this Incomplete AF is strictly included in the CAF
setting: [26] does not allow to express the uncertainty about the direction of a conflict
(i.e. our � relation cannot be encoded in this framework). Moreover, none of these works
[20,25,26,27] is concerned with argumentation dynamics.

Quantitative models of uncertainty have also been used; while being an interesting
approach, they require more input information than qualitative models like ours. This
approach is out of the scope of this paper and is kept for future work. In particular,
probabilistic CAFs based on the constellations approach [28] are a promising research
tracks.

Argumentation dynamics has received a lot of attention in the last ten years. Except
the initial paper about CAFs [14], most of the existing work consider complete infor-
mation about the input (i.e. no uncertainty of the initial AF is considered). As far as we
know, the only proposal which can encompass uncertainty is the update of AFs through
the YALLA language [11]. However, YALLA pays the price of its expressiveness, and
we are not aware of any efficient computational approach for reasoning with it, contrary
to our QBF-based approach for CAFs.
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5. Conclusion

In this paper, we push forward the study of the Control Argumentation Frameworks. We
define a ”weaker” version of controllability, where a target set of arguments needs to be
accepted in at least one completion (instead of every completion). This kind of reasoning
is related to a lawyer’s plea: at the end of a trial, the lawyer needs to pick arguments (in
our setting, the configuration Acon f ) such that the target (“the defendant is innocent”) is
accepted in at least one completion. Somehow, possible controllability is to necessary
controllability what credulous acceptance is to skeptical acceptance.

Many research tracks are still open. We plan to propose logical encodings and to
study the complexity of controllability for other extension-based semantics. Also, other
methods can be used for computing control configuration, especially SAT-based counter-
example guided abstract refinement (CEGAR), that was successfully used for reasoning
problems at the second level of the polynomial hierarchy [12]. An interesting other form
of controllability to be studied is ”optimal” controllability, i.e. finding a configuration that
allows to reach the target in as many completions as possible. This is useful in situations
where a CAF is not necessary controllable, and possible controllability seems too weak.
Techniques like CEGAR or QBF with soft variables [29] may be helpful for solving this
problem. Also, as mentioned previously, we will study quantitative models of uncertainty
in the context of CAFs. In particular, it would be interesting for real world applications
to define a form of controllability w.r.t. the most probable completion, or w.r.t. the set
of completions with a probability higher than a given threshold. Finally, we think that
an important work to be done, in order to apply CAFs to real applications scenarios, is
to determine how CAFs and controllability can be defined when the internal structure of
arguments (e.g. based on logical formulas or rules) is known.
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