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Abstract. This paper studies explanation semantics of argumentation by using a
principle-based approach. In particular, we introduce and study explanation seman-
tics associating with each accepted argument a set of such explanation arguments.
We introduce various principles for explanation semantics for abstract argumenta-
tion, and list various relations among them. Then, we introduce explanation seman-
tics based on defence graphs, and show which principles they satisfy.
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1. Introduction

In this paper we consider the use of formal argumentation for explainable AI [15]. Ac-
cording to the empirical results reported by Ye and Johnson [19], justification is the most
effective type of explanation to bring about changes in user attitudes toward the sys-
tem. Formal argumentation, as a formalism for representing and reasoning with incon-
sistent and incomplete information [1,8], provides various ways for explaining why a
claim or a decision is made, in terms of justification, dialogue, and dispute trees [11].
Besides some application specific methods such as argumentation-based explanation in
case-based reasoning [5] and in scientific debates [18], etc., there are some approaches
for defining general theories of explanation about acceptance of arguments in terms of
the notion of defense [9,20]. Along this line of work, in this paper, we study a related
notion of explanation for abstract argumentation as a kind of semantics: an argument
is accepted because some other arguments are accepted, and propose a new semantics,
called explanation semantics.

Some basic notions of explanation semantics are illustrated by the following
example. The graph below represents an argumentation framework, of which the
nodes are called arguments, and the arrows represent attacks between arguments.
The graph contains three strongly connected components (SCCs), {a, b}, {c, d} and
{e, f, g, h}, which represents the graph-theoretic property that there is a path from
each element to each other element of the SCC. The three preferred extensions are
{{a, c, f, h}, {a, d, e, g}, {b, d, e, g}}.

a �� b�� �� c ��

��

e

��

h��

d ��

��

f �� g

��
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Dauphin et al. [6] observe that in such examples, every strongly connected compo-
nent can be seen as a choice to accept some attack-free set of arguments of the SCC. For
example, if argument a is chosen in the first SCC, then either c or d can be chosen in the
second SCC. However, if b is chosen in the first SCC, then only d can be chosen in the
second SCC. Thus, the choice in the first SCC determines the set of alternatives in the
second SCC. Likewise, whatever is chosen in the first or second SCC, in the third SCC
there is only one alternative.

The explanation extensions may be {{aa, cc, f c, hc}, {aa, dd, ed, gd}, {bb, db, eb, gb}}.
For the first choice between accepting argument a or accepting argument b, each ar-
gument is labeled by itself, which expresses that the choice does not depend on other
choices. For the choice between accepting argument c and accepting argument d, it par-
tially depends on the first choice. If accepting argument a is chosen, then the choice be-
tween accepting c or d is not restricted. Alternatively, if accepting argument b is chosen,
then the only choice is to accept d. Finally, either accepting c or accepting d is chosen,
the remaining choice is unique.

Thus we say that the reason that g is accepted, is because d is accepted in case a
is accepted, or because b is accepted. Distinguishing this kind of explanations provides
more information than only the acceptance or rejection of g. Also, we can distinguish
direct from indirect reasons, and more.

The layout of this paper is as follows. In Section 2 we introduce the standard ter-
minology of Dung’s abstract argumentation and our variant of explanation semantics.
In Section 3 we introduce various principles/properties of explanation semantics, and in
Section 4 and 5 we introduce some concrete examples of explanation semantics.

2. Abstract Argumentation and Explanation

In this section, we recall some basic notions of abstract argumentation that are used in
this paper, and then we introduce explanation semantics.

2.1. Traditional semantics

All notions in this paper are defined on abstract argumentation frameworks, which is a
directed graph in which nodes are called arguments and arrows represent attacks between
arguments. As usual, we write a− for the set of attackers of a, and a+ for the set of
arguments a attacks.

Definition 1 (Argumentation framework) An argumentation framework is a pair F =
(A,→) where A is a set of arguments and →⊆ A×A is a binary relation over A, called
attacks. An argument a attacking an argument b is written as a → b. A set of arguments
B attacks a, written as B → a, if there exists b ∈ B such that b → a. Given a ∈ A, we
define a−F = {b ∈ A | b → a} and a+F = {b ∈ A | a → b}. When a−F = ∅, we say that
a is unattacked, or a is an initial argument. When the context is clear, we also write a+

and a− for a+F and a−F respectively.

Definition 2 (Traditional argumentation semantics) Let F be the set of all argumen-
tation frameworks F = (A,→). Let an extension of F be a subset of A. Traditional
argumentation semantics is a function σ from F to sets of their extensions, associating
with each argumentation framework F a subset of 2A, denoted as σ(F ).
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Given an argumentation framework F = (A,→), various types of argument exten-
sions of F can be defined as follows.

Definition 3 (Dung’s argumentation semantics) Let F = (A,→) be an argumenta-
tion framework, E ⊆ A be a set of arguments, and a ∈ A be an argument. E is conflict-
free if and only if there exist no a, b ∈ A such that a → b. E defends a if and only if for
each b ∈ a−F , E → b. E is admissible if and only if E is conflict-free, and each argument
in E is defended by E .

• E is a complete extension if and only if E is admissible, and each argument in A
that is defended by E is in E .

• E is the grounded extension if and only if E is the minimal (with respect to set-
inclusion) complete extension.

• E is a preferred extension if and only if E is a maximal (with respect to set-
inclusion) complete extension.

• E is a stable extension if and only if E is conflict-free and E attacks each argument
that is not in E .

2.2. Explanation semantics

In the following definition, an explanation semantics is a function from graphs to sets
of explanation extensions, where each explanation extension is a set of explanation ar-
guments, where each explanation is a set of arguments. We use the letter E for exten-
sion, and we use the letter R for explanation, which expresses that the explanation is the
reason the argument is accepted.

Definition 4 (Explanation semantics) Let an explanation of each argument in F be a
subset of A, and let an explanation extension of F be a subset of A, of which each
argument is labeled with an explanation. Explanation semantics is a function Σ from F
to sets of their explanation extensions, denoted as Σ(F ). We write aR for the argument
a with explanation R. When R contains a single argument (say, b), aR is also written as
ab for conciseness.

Each explanation semantics induces a traditional semantics, simply by stripping the
labels. In such a case, we say that the explanation semantics explains the traditional
semantics.

Definition 5 (Explaining argumentation semantics) Explanation semantics Σ explains
traditional semantics σ iff for all F , we have σ(F ) = {{x | xR ∈ E} | E ∈ Σ(F )}.

Definition 6 (Explainable semantics) A traditional semantics is explainable with re-
spect to properties X iff there is an explanation semantics satisfying properties X, ex-
plaining the traditional semantics.

3. Principles for explanation semantics

We start with three elementary properties. The first property is called U for Uniqueness
and says that each accepted argument has a unique explanation.
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Property 1 (Uniqueness) For all argumentation frameworks F , all explanation exten-
sions E of F , and all explained arguments aR, aS ∈ E, we have R = S.

The second property is called A for Acceptance and says that an explanation consists
of a set of accepted arguments.

Property 2 (Acceptance) For all argumentation frameworks F , all explanation exten-
sions E of F , and all explained arguments aR ∈ E, the explanation R consists of argu-
ments that are part of the extension {x | xS ∈ E}, i.e., R ⊆ {x | xS ∈ E}.

The third property says that the explanation defends the accepted argument, possibly
recursively. It uses the following characteristic function returning all arguments in F
recursively defended by the arguments in S, which we write as c.

Definition 7 (Characteristic function) c0(S, F ) = {a ∈ F | S defends a}. ci+1(S, F ) =
c0(S ∪ ci(S, F ), F ). c∞(S, F ) = ∪∞i=0ci(S, F ).

The third property is called I for Indirect Defense and says that for all aR ∈ E, if
we iteratively apply the characteristic function to explanation R, then we get a set of
arguments containing a.1

Property 3 (Indirect Defense) For all argumentation frameworks F , all explanation
extensions E of F , and all explained arguments aR ∈ E, we have a ∈ c∞(R,F ).

The fourth property strengthens indirect defense to direct defense. Obviously prop-
erty D implies property I, in the sense that if an explanation semantics satisfies property
D, it also satisfies property I.

Property 4 (Direct defense) For all argumentation frameworks F , all explanation ex-
tensions E of F , and all explained arguments aR ∈ E, we have a ∈ c0(R,F ).

Example 1 (Two-three cycle) Consider the following widely discussed two-three cycle
framework:

a �� b ���� c �� d

��
e

��

There are two preferred extensions {a} and {b, d} under Dung’s argumentation
semantics. The unique explanation extensions satisfying Properties UAID and explaining
these preferred extensions are {aa} and {bb, db}.

Proposition 1 (Explainable semantics, Prop. UAID) All traditional Dung semantics
are explainable with respect to Properties UAID.

1Alternatively, we could require that for all aR ∈ E, if we iteratively apply the characteristic function to
label R, then we get a set of conflict-free arguments containing a. However, since all semantics we consder are
conflict free, in the sense that the accepted arguments do not attack each other, we do not consider this variant
of Property 3.
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Proof For all E ∈ σ(F), ∀a ∈ E , since E defends a, there exist a set of sets
R1, . . . , Rn ⊆ E where n ≥ 1, such that a ∈ c0(Ri, F ) where i = 1, . . . , n. Let Ra ∈
{R1, . . . , Rn} be a minimal set with respect to set inclusion. Let E = {aRa | a ∈ E}. It
holds that E satisfies Properties UAID. �

The fifth property says that explanations are minimal in the sense that they do not
contain superfluous arguments.

Property 5 (Minimality) For all argumentation frameworks F , all explanation exten-
sions E of F , and all explained arguments aR ∈ E, for all S ⊂ R we have
a /∈ c∞(S, F ).

Example 2 (Four-cycle) Consider the following four-cycle framework:

a �� b

��
d

��

c��

There are two preferred extensions {a, c} and {b, d}. For {a, c}, there are four
different choices for the explanation extensions satisfying Properties UAIM, {aa, ca},
{ac, cc}, {aa, cc}, {ac, ca}, but only the latter also satisfies Property D.

Note that concerning Properties UAIDM, in contrast to Proposition 1, not all tradi-
tional Dung semantics are explainable. Consider the following counterexample.

Example 3 (Direct defense vs Minimality) For the argumentation framework below,
there is only one complete extension {a, c, e}, and only E = {a{}, c{a}, e{c}} satisfies
Properties UAID, but E does not satisfy Property M, since E′ = {a{}, c{}, e{}} is also
a complete explanation extension.

a �� b �� c �� d �� e

We therefore consider only UAIM in the following two propositions.

Proposition 2 For all explanation semantics satisfying Properties UAIM, the label of
each element of the grounded explanation extension is an empty set.

Proof Assume that there is an element aR such that R is not an empty set. Since a∅

satisfies Properties AIM, according to Properties U and M, it turns out that aR is not an
element of the explanation extension. Contradiction. �

Proposition 3 (Explainable semantics, Prop. UAIM) All traditional Dung semantics
are explainable with respect to Properties UAIM.

Proof For all E ∈ σ(F), ∀a ∈ E , since E defends a, there exist a set of sets
R1, . . . , Rn ⊆ E where n ≥ 1, such that a ∈ c∞(Ri, F ) where i = 1, . . . , n. Let Ra ∈
{R1, . . . , Rn} be a minimal set with respect to set inclusion. Let E = {aRa | a ∈ E}. It
holds that E satisfies Properties UAIM. �

The sixth property relates explanations by a kind of transitivity.
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Property 6 (Transitivity) For all argumentation frameworks F , all explanation exten-
sions E of F , and all explained arguments aR, bS ∈ E, if b ∈ R, then S ⊆ R.

Example 4 (Continue Example 2) Among {aa, cc}, {aa, ca}, {ac, cc} and {ac, ca},
only {ac, ca} does not satisfy Property T, while others do.

Transitivity together with the properties UAIM has as a surprising consequence that
explanation arguments are themselves self-explanatory.

Proposition 4 (Self-explanation) For all explanation semantics satisfying Properties
UAIMT, if aR ∈ E and b ∈ R, then there exists bS ∈ E; when S is a singleton, bb ∈ E,
i.e. b is self-explanatory.

Proof According to Property A, b is in the corresponding extension {x | xT ∈ E} under
Dung’s argumentation semantics. So, there exists S ⊆ {x | xT ∈ E} such that bS ∈ E.
Then, according to Property T, S ⊆ R. Assume that b is not in S. Then, we may remove
b from R to obtain R′ = R \ {b} and aR

′ ∈ E. So, R is not minimal, contradicting
Property M. Therefore, b ∈ S. When S is a singleton, S = {b}. So, bb ∈ E. �

Note that in Proposition 4, when S is a not singleton, it might not hold that bb ∈ E.

Example 5 Consider the argumentation framework below. We have an explanation ex-
tension E = {b{b,d}, dd}. It holds that b{b,d} ∈ E and b ∈ {b, d} , but bb /∈ E.

a �� b�� c�� �� d��

Proposition 5 (Explainable semantics, Prop. UAIMT) All traditional Dung semantics
are explainable with respect to Properties UAIMT.

Proof We need only to verify that Property T holds for each explanation extension, on
the condition that Properties UAIM hold. According to the proof of Proposition 3, for all
minimal sets aRa , bRb ∈ E, when b ∈ Ra, let R′a = (Ra \ {b}) ∪ Rb. Since we have
b ∈ c∞(Rb, F ) and Rb is minimal, after replacing b with Rb, R′a is minimal. So, there
exists E′ = (E \ {aRa}) ∪ {aR′

a} such that Rb ⊆ R′a. �

The following example further illustrates the idea in the above proof.

Example 6 Continue Example 2, for E = {ac, ca}, let Ra = {c} and Rc = {a}. Since
c ∈ Ra, let R′a = (Ra \ {c}) ∪Rc = {a}. Let E′ = (E \ {aRa}) ∪ {aR′

a} = {aa, ca}.
So, E′ is an explanation extension satisfying Properties UAIMT.

Let the defense set of aR ∈ E be the set {xS ∈ E | ∃y : x → y → a}.

Property 7 (Explanation Inheritance) For all aR ∈ E and b ∈ R, there is a cS in the
defense set of aR such that b ∈ S.

The following example illustrates property E.
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Example 7 Consider again the four cycle framework:

a �� b

��
d

��

c��

For {a, c}, the explanation extensions satisfying property UAIMTE are {aa, ca}, and
{ac, cc}.

The following example is from Rienstra et al. [17].

Example 8 (Eating out) The argumentation framework shown below represents the de-
cision making of an agent planning to eat out.

m �� f�� �� r

��

d�� �� t��

c �� w��

He will eat meat or fish (m or f) and take a taxi or drive himself (t or d). He drinks
red wine (r) but not with fish or when driving (f and d attack r). Finally, he drinks either
cola or water (c or w), but no cola if he drinks red wine (r attacks c).

The direction of the attacks implies that the agent first chooses independently be-
tween m and f and between t and d. Then he determines the status of r, which depends on
f and d. Finally he chooses between c and w, which depends on r. Note that we can, of
course, imagine different scenarios, but this would involve different directions of attack.
E.g., if the decision about r came before the decision between t and d, then the attack of
d on r would be reversed.

Now consider the preferred extenson {m, t, r, w}. The possible explanation ex-
tensions satisfying UAIMT are {mm, tt, rm, wm}, {mm, tt, rt, wt}, {mm, tt, rm, wt},
{mm, tt, rt, wm}, {mm, tt, rm, wr}, {mm, tt, rt, wr}, {mm, tt, rm, ww}, {mm, tt, rt, ww}.
In other words, the explanation of r is either m or t, and the explanation of w is either
m, t, r or w. Only the latter four satisfy property D.

Explanation {mm, tt, rm, wt} and {mm, tt, rt, wm} do not satisfy property E.

Proposition 6 All traditional Dung semantics are explainable with respect to Properties
UAIMTE.

Proof We need only to verify that Property E holds on the conditions that Properties
UAIMT hold. For an explanation extension E satisfying Properties UAIMT, and for all
aR ∈ E, since a ∈ {x | xT ∈ E}, there exists c, y ∈ A such that c → y → a and
c ∈ {x | xT ∈ E}. So, there exists S′ such that cS

′ ∈ E. According to Proposition
5, given that b ∈ R, if c = b ∈ R, then S′ ⊆ R. Then, according to the proof of
Proposition 4, b ∈ S′. In this case, let S = S′, we have b ∈ S. Otherwise, b �= c. Let
S = (S′ \ c∞({b}, F )) ∪ {b}. It holds that cS satisfies Properties UAIMT. In this case,
it holds that b ∈ S. �

Example 9 Consider again the four-cycle framework: For {a, c}, {aa, cc} satisfies
Properties UAIM but not Property E, since a /∈ {c}. Given that c∞({a}, F ) = {a, c},
let S = ({c} \ {a, c}) ∪ {a} = {a}. As a result, we have {aa, ca} as an explanation
extension satisfying Property E.
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4. Examples of explanation semantics

Based on the principles introduced in the previous section, we may define various expla-
nation semantics.

Definition 8 Let F = (A,→) be an argumentation framework, and XF = {aR | a ∈
A,R ⊆ A}. For all E ⊆ XF ,

• E is conflict-free if and only if {a | aR ∈ E} is conflict-free.
• E is direct if and only if it is conflict-free and satisfies Properties UAID.
• E is a minimal explanation extension if and only if it is conflict-free and satisfies

Properties UAIM.
• E is transitive if and only if it is a minimal explanation extension and satisfies

Property T.
• E is explanation inherited if and only if it is transitive and satisfies Property E.

Meanwhile, orthogonally, we say that E is complete (respectively, preferred, stable,
and grounded), if and only if {x | xR ∈ E} is complete (respectively, preferred, stable,
and grounded) under Dung’s argumentation semantics.

The set of explanation extensions is represented as Σσ(F ), where Σ ∈ {D,M,T,E},
indicating direct, minimal, transitive and explanation inherited semantics, respectively,
and σ is a Dung’s semantics.

Example 10 Consider again the four-cycle framework:

a �� b

��
d

��

c��

• Mpr(F ) = {E1, . . . , E8}, where E1 = {aa, ca}, E2 = {ac, cc}, E3 = {aa, cc},
E4 = {ac, ca}, E5 = {bb, db}, E6 = {bd, dd}, E7 = {bb, dd}, and E8 =
{bd, db}.

• Dpr(F ) = {E4, E8}.
• Tpr(F ) = {E1, E2, E3, E5, E6, E7}.
• Epr(F ) = {E1, E2, E5, E6}.

According to Definition 8, it is obvious that for all F , Eσ(F ) ⊆ Tσ(F ) ⊆ Mσ(F ).
Meanwhile, according to Example 10, it seems that for all F , Dσ(F ) ⊆ Mσ(F ).

Unfortunately, this is not the case in general: remember that in Example 3, Dσ(F ) =
{E}, Mσ(F ) = {E′}, E �= E′, and therefore Dσ(F ) �⊆ Mσ(F ).

5. Explanation based on weak defense graphs

In this section, we formulate two examples of explanation semantics based on a kind of
meta-argumentation framework, of which the nodes are no longer arguments, but pairs
of arguments, reflecting a weak notion of defense.

Before we formally introduce this meta-argumentation theory, we introduce this
weak notion of defense, which we call defense graphs. We start by making two obser-
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vations concerning the role of defense in Dung’s theory. The first observation is that the
notion of defense by itself is too weak to capture all relevant properties of an argumenta-
tion framework. For example, an argumentation framework with three arguments, each
attacking the next one in the sequence a �� b �� c has a defense graph where
a defends c, but nothing is said about b. If we represent the defense relation by a double
arrow, then the defense graph may be visualized by a �� c b

We cannot take this defense graph as the basis for formal argumentation, because
it is no longer clear whether argument b can be accepted or not. Thus, a defense graph
represents some information about argumentation frameworks, but not everything.

The second observation concerning the notion of defense in formal argumentation is
that it is not a binary relation over arguments, like the attack relation is a binary relation
over arguments, but it is a relation between a set of arguments and an argument. In this
sense, the defense relation is different from the so-called support relation, which is often
studied in abstract argumentation.

The following definition of defense graph deals with these two issues in the fol-
lowing way. First, a defense graph is defined relatively to an argumentation framework.
Thus, it is not meant to replace the attack relation, but it is used in addition to it. Also,
we consider arguments defended by the empty set, i.e. arguments which are not attacked
(called initial arguments in graph theory). Second, whereas a set of arguments S defends
argument b when it attacks all attackers of b, we say that a defends b when a attacks some
attacker of b. In defense graphs, we are thus slightly abusing the word “defense” for a
similar but distinct notion. We could distinguish the two notions by writing ∀defends and
∃defends, but since the difference is always clear from context, we prefer to overload the
concept of defense.

Definition 9 (Weak defense) Let F = (A,→) be an argumentation framework. For
a, b ∈ A,

• 〈a, b〉 is a weak defense if and only if ∃c ∈ A such that a → c and c → b.
• 〈ø, b〉 is a weak defense iff b is initial.

The set of weak defenses of F is denoted as DEFF . Given a weak defense 〈a, b〉
or 〈ø, b〉 ∈ DEFF , we call a the defender, and b the defendee, of the defense. Given a
set D ⊆ DEFF , we write defendee(D) = {b | 〈a, b〉, 〈ø, b〉 ∈ D} to denote the set of
defendees in D, defender(D) = {a | 〈a, b〉 ∈ D} to denote the set of defenders in D,
and arg(D) = defendee(D) ∪ defender(D) be the set of arguments who are defendees
and defenders in D.

We now define the attacks of the meta-argumentation framework, which are attacks
between weak defenses.

Definition 10 (Attacks between weak defenses) For all 〈x, a〉, 〈y, b〉 ∈ DEFF where
x, y ∈ A∪{ø} and a, b ∈ A, we say that 〈x, a〉 attacks 〈y, b〉, denoted as 〈x, a〉 → 〈y, b〉
iff x → y, or x → b , or a → y, or a → b.

The set of attacks between weak defenses and their defeaters is denoted as →F . We
call DGF = (DEFF ,→F ) a defense graph. Given an extension E of F under Dung’s
argumentation semantics, let defense(E) = {〈x, y〉 ∈ DEFF | x ∈ E ∪{ø}, y ∈ E}.

We have the following proposition, corresponding to Theorems 1, 2 and Corollaries
1, 2 in [13] with slightly modified notations.
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Proposition 7 Given F = (A,→) and its defense graph DGF = (DEFF ,→F ), it holds
that ∀D ∈ σ(DGF ), arg(D) ∈ σ(F ); and ∀E ∈ σ(F ), defense(E) ∈ σ(DGF ).

Definition 11 Given F = (A,→) and its defense graph DGF = (DEFF ,→F ), ∀D ∈
σ(DGF ), let E = {aRa | 〈x, a〉 ∈ D} where Ra = {b | 〈b, a〉 ∈ D} \ {ø}. We call
E a Direct explanation extension. The set of Direct explanation extensions is denoted
Direct(F ).

Proposition 8 Direct explanation semantics satisfies Properties UAID.

Proof According to Definition 11, Properties UAID hold by definition. �

In this paper, we view a defense as a transitive relation, i.e., if 〈a, b〉 and 〈b, c〉 then
〈a, c〉. Based on this notion, we have the following definition.

Definition 12 Given F = (A,→) and its defense graph DGF = (DEFF ,→F ), ∀D ∈
σ(DGF ), let D∗ be the transitive closure of D. let E = {aRa | 〈x, a〉 ∈ D} where
Ra = {a | 〈a, a〉 ∈ D∗} ∪ {b | 〈b, a〉 ∈ D∗, 〈b, b〉 ∈ D∗}. We call E a Root explanation
extension. The set of Root explanation extensions is denoted Root(F ).

Proposition 9 Root explanation semantics satisfies Properties UAITE.

Proof First, since for each aRa ∈ E, Ra is unique, Property Uniqueness is satisfied. Sec-
ond, according to Proposition 7, it holds that if 〈a, b〉 ∈ D then there exists 〈c, a〉 ∈ D.
So, in terms of Definition 12, Ra ⊆ arg(D) and {b ∈ E | bRb} = arg(D). So,
Ra ⊆ {b ∈ E | bRb}, and Property Acceptance is satisfied. Third, according to Defi-
nition 12, a ∈ c∞(Ra, F ), and therefore Properties Indirect Defense hold. Fourth, for
all aRa , bRb ∈ E, if b ∈ Ra, assume that Rb �⊆ Ra. Then, exists c ∈ Rb such that
c /∈ Ra. So, 〈c, a〉 /∈ D∗. Since when b �= a �= c, 〈b, a〉 ∈ D∗ and 〈c, b〉 ∈ D∗. As a
result, 〈c, a〉 ∈ D∗. Contradiction. So, Property Transitivity holds. Fifth, if a = b, then
let cS = aRa . In this case, Property Explanation Inheritance holds. Otherwise, a �= b. In
this case, 〈b, a〉 ∈ D∗ and 〈b, b〉 ∈ D∗. Let cS = bRb where b ∈ Rb. Property Explana-
tion Inheritance also holds. �

Note that Root explanation semantics does not satisfy Properties Direct defense and
Minimality, as illustrated by the following examples.

Example 11 Given F1 and DGF1 below, under preferred semantics, there are two ex-
tensions of DGF1

: D1 = {〈a, c〉, 〈c, e〉, 〈e, a〉}, D2 = {〈b, d〉, 〈d, f〉, 〈f, b〉}. So,
D∗1 = D1 ∪ {〈a, e〉, 〈a, a〉, 〈c, a〉, 〈c, c〉, 〈e, c〉, 〈e, e〉} and D∗2 = D2 ∪ { 〈b, f〉,
〈b, b〉, 〈d, b〉, 〈d, d〉, 〈f, d〉, 〈f, f〉}. So, we have two Root explanation extensions:
E1 = {a{a,c,e}, c{a,c,e}, c{a,c,e}}, and E2 = {b{b,f,d}, f{b,f,d}, d{b,f,d}}, which do not
satisfy Property Minimality.

a �� b

��

〈a, c〉 ��

��

��

〈b, d〉��

��

		

F1 : f

��

c

��

DGF1
: 〈f, b〉

��

��

��

〈c, e〉

��

��

��

e

��

d�� 〈e, a〉

��

��





〈d, f〉

��

��

��
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Example 12 Given F2 and DGF2
below, under preferred semantics, there are two ex-

tensions of DGF1 : D1 = {〈f, f〉, 〈f, b〉, 〈b, d〉}, D2 = {〈a, a〉, 〈a, c〉, 〈c, e〉}. So,
D∗1 = D1 ∪ {〈f, d〉} and D∗2 = D2 ∪ { 〈a, e〉}. So, we have two Root explanation ex-
tensions: E1 = {f{f}, b{f}, d{f}}, and E2 = {a{a}, c{a}, e{a}}, which do not satisfy
Property Direct defense.

a ��

��

b

��

〈f, f〉 ��

��

〈a, c〉��

��

		

F2 : f

��

c

��

DGF2 : 〈a, a〉

��

��

��

〈b, d〉

��

��
e d�� 〈f, b〉

��

��





〈c, e〉

��

��

6. Conclusions and future work

We study explanation semantics of argumentation by using a principle-based approach.
More specifically, in this paper we introduce the explanation principles Uniqueness, Ac-
ceptance, Indirect defense, Direct defense, Minimality, Transitivity, Explanation Inher-
itance. Furthermore, we define various examples of explanations of traditional abstract
argumentation semantics. In further work, the formal approach in this paper needs to be
extended to informal argumentation as well [3,7].

The work in this paper can be further developed in many ways for both the principles
and the explanation semantics. For example, instead of only explaining why an argument
is accepted, we can also explain why it is rejected. Explanations can be restricted to
core arguments or to representations [14]. Explanation semantics can be combined with,
for example, labeling semantics and ranking semantics can be used to rank explanations
as well. Moreover, support relations or numerical arguments or attacks can be used to
define more sophisticated notions of explanation. The abstract theory of explanation can
be further developed for structured argumentation. For example, explanation arguments
can refer to evidence or to ethical or legal principles. We believe that such a study of
explanation in structured argumentation can also inspire new theories of explanation in
abstract argumentation.

More concepts from the general theory of explanation [15] can be studied in formal
argumentation, and a general theory of explanation for abstract argumentation can be
developed, combining explanation semantics with other notions of explanation in formal
argumentation, for example in dialogue [4]. A striking similarity between both is that
the notion of defense plays a central role, and such a unified theory of argumentation
explanation may lead to a more formal argumentation in which attack and defense are at
par. This may also bring the theory of formal argumentation closer to theories of attack
and defense in other disciplines such as security [12,10] and in biology [16,2].

Acknowledgement

This material is based in part upon work supported by the “2030 Megaproject” - New
Generation Artificial Intelligence of China under Grant No. 2018AAA0100904, the Nat-

B. Liao and L. Van Der Torre / Explanation Semantics for Abstract Argumentation 281



ural Science Foundation of Zhejiang Province under Grant No. LY20F030014, and the
National Social Science Foundation of China No.18ZDA290 and No.17ZDA026.

References

[1] Pietro Baroni, Dov Gabbay, Massimiliano Giacomin, and Leendert van der Torre, editors. Handbook of
formal argumentation, volume 1. College Publications, 2018.

[2] Howard Barringer, Dov M. Gabbay, and John Woods. Temporal dynamics of support and attack net-
works: From argumentation to zoology. In Mechanizing Mathematical Reasoning, Essays in Honor of
Jörg H. Siekmann on the Occasion of His 60th Birthday, pages 59–98, 2005.

[3] Marcos Cramer and Mathieu Guillaume. Empirical study on human evaluation of complex argumenta-
tion frameworks. In JELIA 2019, pages 102–115, 2019.

[4] Kristijonas Cyras, David Birch, Yike Guo, Francesca Toni, Rajvinder Dulay, Sally Turvey, Daniel Green-
berg, and Tharindi Hapuarachchi. Explanations by arbitrated argumentative dispute. Expert Syst. Appl.,
127:141–156, 2019.

[5] Kristijonas Cyras, Ken Satoh, and Francesca Toni. Explanation for case-based reasoning via abstract
argumentation. In COMMA 2016, pages 243–254, 2016.

[6] Jérémie Dauphin, Marcos Cramer, and Leendert W. N. van der Torre. Abstract and concrete decision
graphs for choosing extensions of argumentation frameworks. In COMMA 2018, pages 437–444, 2018.
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