Computational Models of Argument 251
H. Prakken et al. (Eds.)

© 2020 The authors and IOS Press.

This article is published online with Open Access by 10S Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200509

Revisiting SAT Techniques for Abstract
Argumentation

Jonas KLEIN and Matthias THIMM
University of Koblenz-Landau, Germany

Abstract. We present MINIAF, a general SAT-based abstract argumentation solver
that can be used with any SAT solver. We use this general solver to evaluate 12
different SAT solvers wrt. their capability of handling abstract argumentation prob-
lems. While our results show that the runtime performance of different SAT solvers
are generally comparable, we also observe some statistically significant differences.

Keywords. abstract argumentation, algorithms, satisfiability

1. Introduction

Approaches to formal argumentation [2] encompass non-monotonic reasoning tech-
niques that focus on the interplay between arguments. One of the most influential models
in this area is that of abstract argumentation [18] which represents argumentation scenar-
ios as directed graphs, where arguments are identified with vertices and an “attack” be-
tween one argument and another is modelled via a directed edge. In order to reason with
abstract argumentation frameworks one considers extensions, i. e., sets of arguments that
are mutually acceptable, given some formal account to “acceptability” [6]. Many of the
reasoning problems have been shown to be intractable in general [19] and there has been
an increased effort in recent years to develop algorithms and systems to solve problems
of practically relevant sizes [32,23]. One of the predominant paradigms for algorithms
in this context, is to reduce the reasoning problem to one or more calls to a satisfiability
(SAT) solver [9]. Systems following this paradigm are, e. g., ArgSemSAT [14,15], pyglaf
[1], p-toksia [29], argmat-sat [30], and many more. The actual systems differ in some
subtleties how the reasoning problem is encoded in a SAT problem, strategies for iterative
calls to SAT solvers, and, in particular, the employed SAT solver. For example, ArgSem-
SAT uses MiniSAT! [20] while pyglaf and p-toksia use Glucose [3], and argmat-sat uses
CryptoMiniSat5°.

In this paper, we revisit SAT-based techniques for reasoning with abstract argumen-
tation and, in particular, ask the question if and how the choice of a concrete SAT solver
may influence the performance of the overall argumentation system. In order to address
this question independently of any existing SAT-based argumentation solver (that may
be tailored towards the use of a concrete SAT-solver), as a first contribution we present
MINIAF, a minimal implementation of a reasoning engine making use of SAT-solving

! Although [15] also reports on an experimental comparison with using Glucose.
*https://github.com/msoos/cryptominisat

252 J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation

techniques. This solver can be parametrised by any SAT solver following the command
line interface of the SAT competition®. As a second contribution, we perform an exten-
sive experimental analysis of running MINIAF with 12 different SAT solvers in order to
compare the SAT solvers performance on the ICCMA17 [23] benchmark set. Our find-
ings are that most SAT solvers exhibit a similar performance, although certain deviations
can be observed. In summary, the contributions of this paper are as follows.

1. We present MINIAF, a minimal and flexible SAT-based argumentation solver
(Section 3).

2. We perform an extensive experimental evaluation parametrising MINIAF with 12
different SAT solvers (Section 4).

We discuss relevant preliminaries in Section 2 and conclude in Section 5.

2. Preliminaries

An abstract argumentation framework AF is a tuple AF = (A R) where A is a set of
arguments and R is a relation R C A x A. For two arguments a,b € A the relation aRb
means that argument a attacks argument b. For a € A define a= = {b | bRa} and a™ =
{b| aRb}. We say that a set S C A defends an argument b € A if for all a with aRb then
there is ¢ € § with cRa.

Semantics are given to abstract argumentation frameworks by means of extensions
[18]. An extension E is a set of arguments E C A that is intended to represent a coherent
point of view on the argumentation modelled by AF. Arguably, the most important prop-
erty of a semantics is its admissibility. An extension E is called admissible if and only
if

1. E is conflict-free, i. e., there are no arguments a,b € E with aRb and

2. E defends everya € E,

and it is called complete (CO) if, additionally, it satisfies
3. if E defends a thena € E.

Different types of classical semantics can be phrased by imposing further constraints. In
particular, a complete extension £

o is grounded (GR) if and only if E is minimal,
e is preferred (PR) if and only if E is maximal, and
e is stable (ST) if and only if A=EU{b | Ja € E : aRb}.

All statements on minimality/maximality are meant to be with respect to set inclusion.
Note that the grounded extension is uniquely determined and that stable extensions may
not exist [18].

Example 1. Consider the abstract argumentation framework AF; depicted as a directed
graph in Figure 1. In AF; there are three complete extensions Ej, E», E3 defined via

3http://www.satcompetition.org

J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation 253

00080

Figure 1. Abstract argumentation framework AF; from Example 1.

E ={a}
E> ={ay,a3}
Ez ={ai,a4}

E| is also grounded and E, and E3 are both stable and preferred.

Let 6 € {CO,GR,ST,PR} be some semantics and AF = (A,R) be an abstract ar-
gumentation framework. Then, an argument a € A is skeptically accepted in AF if a is
contained in every c-extension. An argument a € A is credulously accepted in AF if a is
contained in some G-extension.

An equivalent way of defining different types of semantics is by means of labellings,
rather than extensions [5,12]. Given a set of arguments S, a labelling is a total function
L:S— {in,out,undec}. An argument a € S is either labelled in-meaning a is accepted,
labelled out-meaning a is rejected-or labelled undec-meaning the status of a is unde-
cided. Given an AF = (A,R), the set of all labellings is denoted as £(AF). A labelling
L € £(AF) is called a complete labelling if and only if for any a € A holds:

1. L(a) =in < Vb€ a™,L(b) = out;
2. L(a) =out < 3bca,L(b) =1in;

Comparable to the extension-based definition of semantics, other semantics can be
phrased by imposing further constraints to a complete labelling. Let AF = (A,R) be an
argumentation framework. A complete labelling L € £(AF)

e is grounded if and only if L is maximising the set of arguments labelled undec,
e is preferred if and only if L is maximising the set of arguments labelled in, and
e is stable if and only if there is no argument labelled undec.

The following definition further emphasises the inherent connection between exten-
sions and labellings: Let in(L) = {a@ € A|L(a) = in} and out(L) resp. undec(L) be de-
fined analogously. A labelling L is a complete (grounded, preferred, stable) labelling if
and only if in(L) is a complete (grounded, preferred, stable) extension.

3. A minimal SAT-based solver: miniAF

MINIAF* is a lightweight SAT-based solver for reasoning tasks in abstract argumenta-
tion. It is implemented in the C programming language and based on the {j} ArgSemSAT
[14,16] approach. To solve any reasoning task for a given AF, MINIAF traverses the
search space of a complete extension via a SAT solver. In general, this task can be bro-
ken down in three sub-tasks: (1) Encoding the constraints analogous to a complete la-

4Source code available at https://github.com/jklein94/miniAF.

254 J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation

belling of the AF as a propositional formula; (2) iteratively modify or generate new for-
mule based on previous found models and the reasoning task; and (3) using an external
SAT solver to search for models of these formulz.

The system is capable of solving the following tasks:

EE-o: Given AF = (A,R) enumerate all sets E C A that are o-extensions.
SE-o: Given AF = (A,R) return some set E C A that is a G-extension.

DC-o: Given AF = (A,R), a € A decide if a is credulously accepted under o.
DS-o: Given AF = (A,R), a € A decide if a is skeptically accepted under o.

for 0 € {CO,GR,ST,PR}. The MINIAF solver is parameterisable with any
SAT solver, specified by a absolute path, following the commandline interface of the
SAT competition. As input MINTAF supports abstract argumentation frameworks in the
ASPARTIX format [22] and the Trivial Graph Format.’

In the following section, a more detailed explanation of the used algorithms is given.
Since all algorithms are based on traversing the search space of a complete extension, the
encoding of a corresponding complete labeling is first defined. Based on this encoding,
the procedures for solving the above-stated problems are described for each semantics
c.

3.1. Complete semantics

For a given AF = (A, R), MINIAF constructs a propositional formula ITag, so that each
satisfying assignment of ITar corresponds to a complete labelling of AF. In particular, the
following SAT encoding is used [13]. Given AF = (A,R), with |A| = k and the bijection
¢ :{1,...,k} = A an indexing of A. Let V (AF) £ U, <;<ja| {Ii, 0;,U;} be the variables of
AF. The conjunction of clauses (1)—(6), defined of the variables V (AF), is an encoding
of a complete labelling:

N\ ((LVOiVU) A=V =0) A(=I;V =U;) A (=0; V —Uy) (1)
ie{l,...k}
/\ (I A\—0; AU;) 2
{il¢(i)~=0}

N A A 3)

{ilo()=7#0} \{ilo()—e()}

A LV V(-0 4
{ilo (i)~ #0} {19 ()=o)}

3See http://en.wikipedia.org/wiki/Trivial_Graph_Format

J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation 255

A |0V V I ©)

{ilo()~#0} {ile()—9 @)}

N N Vo, (6)

{ilo()~#0} \{jlo()—¢()}

The resulting formula is in conjunctive normal form (CNF), as from SAT solvers de-
manded. To enumerate all extensions, each time a solution s is found, the formula ITar
is updated to the conjunction ITar A-—s, thus excluding the previous result. This for-
mula is then passed back to the SAT solver to find a solution, i. e. an additional complete
labelling. The procedure is repeated until no satisfying assignment is found, therefore
enumerating all extensions.

To decide the credulous acceptance of an argument a, ITar is updated to IIap A
I¢71<a). If some extension with a labelled as in exists, i.e. there is a solution to ITag A
Iy-114). @ is credulously accepted. To determine whether a is contained in every complete
extension and thus skeptically accepted, MINIAF uses the grounded extension.

3.2. Stable semantics

The stable labellings are complete labellings with no argument labelled undec. Conse-
quently, they are the solutions to the formula ITyp := ITap A Ayea “Us-1(a)» which ex-
cludes the label undec for every argument. The enumeration of all stable extensions is
computed the same way as for the complete semantics.

An argument a is credulously accepted, if there is a solution to the formula
I, ¢ Ny-1(q)- The question of whether a is labelled as in in every stable labelling can be
rephrased as: Is there a stable labelling where a is labelled as out? The equivalent for-
mula to this question is HfAF A 0¢71 (@) [16]. If there is a solution to the formula, a is not
accepted. In the case that there is no solution and a stable labelling exist, a is skeptically
accepted.

3.3. Preferred semantics

The preferred labellings are computed by using an evolution of the PrefSAT algorithm
[16]. In general the algorithm consists of two routines: (1) Iterating over a set of complete
labellings to identify the preferred ones and (2) an optimization procedure to maximise
complete labellings wrt. set inclusion. The credulous acceptance of an argument a is
decided by finding—analogous to the complete semantics—a solution to the formula
J NS Ny-1(q)- To check whether a is contained in every preferred labelling, MINIAF
subsequently enumerates all preferred labellings until it finds a labelling, where a is
not in the set of arguments labelled in. If no counterexample is found, the argument is
skeptically accepted.

256 J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation

3.4. Grounded semantics

Grounded labellings, i.e. complete labellings maximising the set of undec arguments,
are computed with basically the same optimization procedure as the preferred labellings.°
However, the arguments labelled undec are maximized, rather than the arguments la-
belled in. Since the grounded extension is unique, the problem of credulous and skeptical
acceptance of an argument a are equivalent. If @ is contained in the grounded labelling,
it is credulously and skeptically accepted.

4. Experiments

In this section, we present the results of an experimental analysis, in which we investi-
gated the impact of various state-of-the-art SAT solvers on the performance of MINTAF.
This analysis aims to give an overview if and how the overall performance of a SAT-
based system is affected by the choice of the exploited SAT-solver. Below, we give a brief
description of the investigated SAT solvers and the experimental setup and subsequently
discuss our findings.

4.1. Experimental setup

In our experiments, we compared a total of 12 SAT solvers:

CADICAL [8]: is based on conflict-driven clause learning (CDCL) [27] with inprocess-
ing [24].

GLUCOSE (Version 4.1) [4]: is a CDCL solver heavily based on MINISAT [21], with a
special focus on removing useless clauses as soon as possible, and an original restart
scheme.

The familiy of MAPLELCMDISTCHRONOBT-DL (Version 3, 2.2 and 2.1) [25]: solvers
are based on the SAT Competition 2018 winner MAPLELCMDISTCHRONOBT [28]
augmented with duplicate learnts heuristic.

MAPLELCMDISTCBTCOREFIRST [17]: is ahack version of MAPLELCMDISTCHRONOBT.
This solver adds only Core First Unit Propagation. The remainder keeps unchanged.

MERGESAT [26]: is a CDCL solver based on the competition winner of 2018, MAPLEL-
CMDISTCHRONOBT, and adds several known techniques as well as some novel ideas.

PADC_MAPLE_LCM_DIST [31]: is based on the SAT Competition 2017 winner
MAPLE_LCM_DIST and integrates the periodic aggressive learned clause database
cleaning (PADC) strategy [31].

PSIDS_MAPLELCMDISTCHRONOBT [31]: is based on MAPLELCMDISTCHRONOBT
and integrates the polarity state independent decaying sum (PSIDS) heuristic.

PICOSAT [7] (Version 965): is an attempt to optimise low-level performance of Boole-
Force,” which shares many of its key features with MiniSAT (version 1.14).

SNote that we use a reduction to SAT here as well, despite the fact that the grounded labelling can be
computed in polynomial time. We do that because we wish to have a general system that makes use of SAT
solvers as often as possible without relying on proprietary algorithms.

"http://fmv. jku.at/booleforce.

J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation 257

RELAXED_LCMDISTCHRONOBT [11]: is a CDCL-based solver. The method used for
this solver aims to improve CDCL solvers by relaxing the backtracking and integrating
local search techniques. As a local search solver CCANR [10] is used.

OPTSAT [17]: is a CDCL solver using the core first unit propagation technique.

For the evaluation we used the ICCMA’17 benchmark.® This benchmark is made
up of three groups: A, B and C. Each group, in turn, consists of 350 instances classified
into 5 hardness categories: (1) very easy, (2) easy, (3) medium, (4) hard and (5) too hard.
Since the grounded labelling is uniquely defined, only the SE and DC problems were
employed. According to the ICCMA’17 rules [23], each task was assigned to a group as
follows:

e A: DS-PR, EE-PR, EE-CO
e B: DS-ST, DC-ST, SE-ST, EE-ST, DC-PR, SE-PR, DC-CO
e C: DS-CO, SE-CO, DC-GR, SE-GR

For all 14 tasks, MINIAF was run 12 times—every time parameterised with a dif-
ferent SAT solver—on the instances of the corresponding group. A cutoff value of 600
seconds (10 minutes) per instance was imposed. All SAT solvers were executed with
their default (and non-parallel) configuration. For each SAT solver and task we recorded:
(1) the number of solved instances, (2) the number of unsolved instances and (3) the
execution time per solved instance.

We ran the experiments on a virtual machine running Ubuntu 18.04 with a 2.9 GHz
CPU core and 8GB of RAM.

4.2. Results

The performance achieved by MINIAF is measured in terms of instance coverage
(Cov.)—percentage of successfully analysed instances—and Penalised Average Runtime
(PAR10). The PARI10 score is a hybrid measure, defined as the average of runtimes
which counts (1) the runtimes of unsolved instances as ten times the cutoff value and
(2) the runtimes of solved instances as the actual runtimes. Thus, it allows runtime to
be considered and still setting a strong focus on instance coverage. The results of this
analysis, with regards to the different semantics, are shown in Table 1 (CO track), Table
2 (ST track), Table 3 (PR track) and Table 4 (GR track). The first column (SAT) contains
the names of the used SAT solvers. Hereinafter, we will refer to MINIAF just with the
name of the used SAT solver to express MINIAF was parameterised with this solver.
Considering the performance achieved on all instances of a track (ALL), most
SAT solvers are generally comparable. The CADICAL solver performs best (PAR10
score and coverage) for the CO, ST and GR track. As for the PR track, the MAPLEL-
CMDISTCBTCOREFIRST system accomplished the best results. However, the fact that
a concrete SAT solver excels all other systems on the whole set of instances, does not
necessarily mean this solver exhibits the best performance for all computational tasks of
the considered semantics. Rather, we note that for three (CO, ST, PR) of the four seman-
tics, there is at least one task where the overall best solver for this track is outperformed

8 A more detailed description of the ICCMA’17 benchmark and the selection process can be found here
http://argumentationcompetition.org/2017/benchmark_selection_iccma2017.pdf.

258 J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation

Cco
SAT ALL EE SE DS DC
PAR10 Cov. PAR10 Cov. PARI0O Cov. PARIO Cov. PARIO Cov.
CaDiCal 1027.65 83.04 3009.22 50.29 35.83 99.43 41.75 99.33 88295 8543

96.67
96.33

optsat 1156.70 81.70 3183.14 47.43 25805 97.14 306.84 96.67 75736 87.71

Table 1. Performance comparison for all instances (ALL) and the different tasks of the CO track: Used
SAT solver, instance coverage and PAR10 score. Best result highlighted in boldface.

ST
SAT ALL EE SE DS DC
PARI10 Cov. PARI10 Cov. PARI0 Cov. PARI10 Cov. PARIO Cov.
CaDiCal 95940 8443 171727 72.00 589.89 90.57 83488 86.57 69556 88.57

optsat 1130.05 82.00 2060.24 66.86 736.38 88.57 1016.62 84.00 706.97 88.57

Table 2. Performance comparison for all instances (ALL) and the different tasks of the ST track: Used SAT solver, instance coverage and
PARI10 score. Best result highlighted in boldface.

PR
SAT ALL EE SE DS DC
PARI10 Cov. PARI10 Cov. PAR10 Cov. PAR10 Cov. PARIO Cov.
CaDiCal 1383.89 7733 2537.02 .. 1039.66 83.14 1024.59 83.33 88295 8543

1319.90 7859 2629.04 56.86 907.54 85.71 929.98 85.00 75736

Table 3. Performance comparison for all instances (ALL) and the different tasks of the PR track: Used SAT solver, instance coverage and PAR10
score. Best result highlighted in boldface.

by another system. The only exception is the GR semantics. For the GR track CADICAL
performs best on all instances and each task (SE-GR, DC-GR).
Furthermore, we observe noticeably differences for individual tasks and semantics’:

9We also carried out a significant analysis of the execution times that show significant differences. As a
statistical test, we used the Kruskal-Wallis test and the Dunn-Bonferroni test for post-hoc analysis.

J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation 259

GR
ALL E D
SAT S ¢
PARIO Cov. PARIO Cov. PARIO Cov.
CaDiCal 38.64 9938 3595 9943 4178 99.33
Glucose 235,79 96.92 219.52 97.14 25478 96.67

" MergeSAT 21399 9692 19840 9714 23216 9667
" PADCMaple LCMDist 23939 9646 24594 9629 23176 96.67
* PSIDS MapleLCMDistChronoBT 23123 96.62 23071 9657 231.83 96.67
" PicoSAT 3878 9938 3606 9943 4196 9933
" Relaxed LCMDistChronoBT 22220 9677 198.69 97.14 249.62 9633
Coptsat 30800 9646 29575 9657 32230 9633

Table 4. Performance comparison for all instances (ALL) and the different tasks of the GR track:
Used SAT solver, instance coverage and PAR10 score. Best result highlighted in boldface

Two of the examined SAT systems, namely CADICAL and PICOSAT, perform distinctly
better on the instances of the GR track. A similar scenario shows the result for the CO se-
mantics in Table 1. Here too, CADICAL and PI1COSAT stand out from the other solvers
for the CO-SE and CO-DS tasks.!? It is interesting, however, that the PICOSAT solver
achieves the worst results in terms of coverage and PAR10 score for the all other tasks on
this track. In addition, we find that some solvers tend to do better for a certain reasoning
problem, regardless of the semantics under consideration. For example, the SAT solver
PADC_MAPLE_LCM _DIST achieves the best results for the DC problem of semantics
CO, ST and PR. The SE problem for semantics CO, ST and GR is best solved by CADI-
CAL. Surprisingly, none of the MAPLELCMDISTCHRONOBT-DL (Version 3, 2.2, 2.1)
solvers achieves the best performance for any task, even though they ranked second place
for the SAT track (Version 3, 2.2 and 2.1) and first place for the UNSAT (Version 3) and
SAT+UNSAT (Version 3, 2.2, 2.1) track in the last years SAT competition.'!

Apart from the inherent complexity of a particular reasoning problem, the perfor-
mance of an argumentation system is also affected by the hardness of the instance to be
solved. In order to identify deviations in the performance concerning the level of diffi-
culty of an instance, we compared the SAT solvers based on the hardness categories of
the benchmark set.

CADICAL is able to solve all instances of the hardness categories Very Easy,!? Easy
and Medium best. For the Hard and Too Hard instances, PADC_MAPLE_LCM_DIST at-
tains the best results. Moreover we observe—covering the previously presented results—
that most solvers are comparable, although there are some differences between the cat-
egories. For example, CADICAL and PICOSAT perform clearly better for the Easy in-
stances.

Another interesting scenario is shown in Table 7. Albeit, the PICOSAT system is
nearly indistinguishable from the best solver for all instances of the Very Easy, Easy and
the DC instances of the Medium set, it performs significantly worse for all other Medium

10This observation is actually not so surprising, as CO-SE can be answered just as GR-SE and CO-DS and
DC-GR are identical.

http://sat-race-2019.ciirc.cvut.cz/index. php.

12 Since the results for the Very Easy instances are practically identical for most solvers, we refrain from
presenting them in a table.

260 J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation

Easy
SAT ALL EE SE DS DC
PARI0O Cov. PAR10 Cov. PAR1I0 Cov. Cov. PARIO Cov.
CaDiCal 207.82 9671 789.64 87.33 67.9 99.0 . 98.67 1.89 100.0

optsat 466.13 9271 140624 7733 247.87 965 302. 9533 101.89 98.5

Table 5. Performance comparison for all instances (ALL) and the different tasks of the Easy in-
stances: Used SAT solver, instance coverage and PAR10 score. Best result highlighted in boldface.

Medium
SAT ALL EE SE DS DC
PARI0O Cov. PAR10 Cov. Cov. PARI0O Cov. PARIO Cov.
CabDiCal 41446 9343 1507.2 75.67 97.0 157.16 97.67 2.29
“Glucose 7 7 7 757771 9157 1857.93 7033 280.67 97.0 349.88 9533 8545 9925

MapchCMdlleBTcorcFlrst

MergeSAT

PADC_Maple_LCM _Dist

PSIDS _MapleLCMDistChronoBT

optsat E K 1801.61 96.33 152.0

Table 6. Performance comparison for all instances (ALL) and the different tasks of the Medium instances: Used SAT solver, instance coverage
and PAR10 score. Best result highlighted in boldface.

Hard
SAT ALL EE SE DS DC
PAR10 Cov. PAR10 Cov. PARI0 Cov. PARIO Cov. PARIO Cov.
CaDiCal 952.46 84.5 339094 4433 41322 934 553.84 9114 23599 9622

MapleLCMdmCBTmreFlm

MergeSAT

ple_LCM _Dist

optsat

Table 7. Performance comparison for all instances (ALL) and the different tasks of the Hard instances: Used SAT solver, instance coverage
and PAR10 score. Best result highlighted in boldface.

instances. The performance of PICOSAT is also in the lower range for the Hard and
Too Hard set. The opposite is the case for the RELAXED_LCMDISTCHRONOBT solver.
It tends to achieve similar—for two problems even higher—coverage for the Hard and
Too Hard instances, but lower coverage for the Very Easy, Easy and Medium set. We
can derive that a good result on a particular hardness category (or problem), does not

J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation 261

Too Hard
SAT ALL EE SE DS DC
PAR10 Cov. PAR10 Cov. PARIO Cov. PARIO Cov. PAR10 Cov.
CaDiCal 3313.65 45.0 6000.0 0.0 2949.47 51.0 2387.0 X 2555.19 57.67

optsat 3231.18 46.57 6000.0 0.0 2950.19 51.0 2447.11 . 233247 61.67

Table 8. Performance comparison for all instances (ALL) and the different tasks of the Too Hard instances: Used SAT solver, instance coverage
and PAR10 score. Best result highlighted in boldface.

necessarily transfer to other categories.

5. Summary and Conclusion

In this paper, we compared the performance of MINIAF parameterised with 12 differ-
ent state-of-the-art SAT solvers on the ICCMA17 benchmark. The results of our anal-
ysis shows that: (1) the performance of most SAT solvers is generally comparable for
all considered problems, but (2) some systems tend to be more suitable for individual
reasoning tasks than others. These insights indicate that the use of SAT-based portfolio
systems—i. e., systems that select different SAT solvers depending on instance and task
information—may be beneficial for addressing a wide variety of abstract argumentation
problems. Moreover, since all SAT solvers have been evaluated with their standard con-
figurations, future work could investigate the influence of various parameter configura-
tions on performance.

Acknowledgements The research reported here was partially supported by the Deutsche
Forschungsgemeinschaft (project number 375588274).

References

[1] M. Alviano. The pyglaf argumentation reasoner. In The Third International Competition on Computa-
tional Models of Argumentation (ICCMA’19), 2019.

[2] K. Atkinson, P. Baroni, M. Giacomin, A. Hunter, H. Prakken, C. Reed, G. R. Simari, M. Thimm, and
S. Villata. Toward artificial argumentation. Al Magazine, 38(3):25-36, October 2017.

[3] G. Audemard and L. Simon. Lazy clause exchange policy for parallel SAT solvers. In Theory and
Applications of Satisfiability Testing - SAT 2014 - 17th International Conference, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings, pages 197-205,
2014.

[4] G. Audemard and L. Simon. Glucose and Syrup in the SAT’17. Proceedings of SAT Competition, pages
16-17,2017.

[5] P Baroni, M. Caminada, and M. Giacomin. An introduction to argumentation semantics. The knowledge
engineering review, 26(4):365-410, 2011.

[6] P. Baroni, M. Caminada, and M. Giacomin. Abstract argumentation frameworks and their semantics. In
P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, editors, Handbook of Formal Argumentation,
pages 159-236. College Publications, 2018.

262

(7]

(8]
[9]

[10]
(1]
[12]

[13]

[14]
[15]

[16]

[17]
[18]

[19]

[20]

[21]
[22]
[23]
[24]
[25]

[26]
[27]

(28]
[29]

[30]

[31]

[32]

J. Klein and M. Thimm / Revisiting SAT Techniques for Abstract Argumentation

A. Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and Computation, 4(2-4):75—
97, 2008.

A. Biere. Cadical at the sat race 2019. SAT RACE 2019, page 8, 2019.

A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability, volume 185. I0S
Press, 2009.

S. Cai, C. Luo, and K. Su. Ccanr: A configuration checking based local search solver for non-random
satisfiability. In International Conference on Theory and Applications of Satisfiability Testing, pages
1-8, 2015.

S. Cai and X. Zhang. Four relaxed CDCL Solvers. SAT RACE 2019, page 35, 2019.

Martin W.A. Caminada and Dov M. Gabbay. A logical account of formal argumentation. Studia Logica,
93(2-3):109-145, 2009.

F. Cerutti, P. E. Dunne, M. Giacomin, and M. Vallati. Computing preferred extensions in abstract ar-
gumentation: A sat-based approach. In International Workshop on Theorie and Applications of Formal
Argumentation, pages 176—193. Springer, 2013.

F. Cerutti, M. Giacomin, and M. Vallati. Argsemsat: Solving argumentation problems using sat.
COMMA, 14:455-456, 2014.

F. Cerutti, M. Giacomin, and M. Vallati. How we designed winning algorithms for abstract argumenta-
tion and which insight we attained. Artificial Intelligence, 276:1-40, 2019.

F. Cerutti, M. Vallati, and M. Giacomin. jargsemsat: an efficient off-the-shelf solver for abstract argu-
mentation frameworks. In Fifteenth International Conference on the Principles of Knowledge Repre-
sentation and Reasoning, pages 541-544, 2016.

J. Chen. Smallsat, Optsat and MapleLCMdistCBTcoreFirst: Containing Core First Unit Propagation.
SAT RACE 2019, page 31, 2019.

P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning,
Logic Programming and n-Person Games. Artificial Intelligence, 77(2):321-358, 1995.

W. Dvorik and P. E. Dunne. Computational problems in formal argumentation and their complexity. In
P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre, editors, Handbook of Formal Argumentation,
chapter 14. 2018.

N. Eén and N. Sorensson. An extensible sat-solver. In Theory and Applications of Satisfiability Testing,
6th International Conference, SAT 2003. Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Revised
Papers, pages 502-518, 2003.

N. Eén and N. Sorensson. An extensible sat-solver. In International conference on theory and applica-
tions of satisfiability testing, pages 502-518, 2003.

U. Egly, S. A. Gaggl, and S. Woltran. Answer-set programming encodings for argumentation frame-
works. Argument and Computation, 1(2):147-177, 2010.

S. A. Gaggl, T. Linsbichler, M. Maratea, and S. Woltran. Design and results of the second international
competition on computational models of argumentation. Artificial Intelligence, 279:103193, 2020.

M. Jdrvisalo, M. J. H. Heule, and A. Biere. Inprocessing rules. In International Joint Conference on
Automated Reasoning, pages 355-370. Springer, 2012.

S. Kochemazov, O. Zaikin, V. Kondratiev, and A. Semenov. MapleLCMDistChronoBT-DL, duplicate
learnts heuristic-aided solvers at the SAT Race 2019. SAT RACE 2019, page 24, 2019.

N. Manthey. Mergesat. Proceedings of SAT Competition, 2019:29, 2019.

J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning sat solvers. In Handbook of
satisfiability, pages 131-153. 10S Press, 2009.

A. Nadel and V. Ryvchin. Chronological backtracking. In International Conference on Theory and
Applications of Satisfiability Testing, pages 111-121, 2018.

A. Niskanen and M. Jdrvisalo. pu-toksia Participating in ICCMA 2019. In The Third International
Competition on Computational Models of Argumentation (ICCMA’19), 2019.

F. Pu, H. Ya, and G. Luo. argmat-sat: Applying sat solvers for argumentation problems based on boolean
matrix algebra. In The Second International Competition on Computational Models of Argumentation
(ICCMA’17),2017.

R. K. Tchinda and C. T. Djamegni. PADC MapleLCMDistChronoBT, PADC Maple LCM Dist and
PSIDS MapleLCMDistChronoBT in the SR19. SAT RACE 2019, page 33, 2019.

M. Thimm and S. Villata. The first international competition on computational models of argumentation:
Results and analysis. Artificial Intelligence, 252:267-294, August 2017.

