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Abstract. Epistemic graphs are a proposal for modelling how agents may
have beliefs in arguments and how beliefs in some arguments may in-
fluence the beliefs in others. The beliefs in arguments are represented
by probability distributions and influences between arguments are rep-
resented by logical constraints on these probability distributions. This
allows for various kinds of influence to be represented including sup-
porting, attacking, and mixed, and it allows for aggregation of influence
to be captured, in a context-sensitive way. In this paper, we investigate
methods for learning constraints, and thereby the nature of influences,
from data. We evaluate our approach by showing that we can obtain
constraints with reasonable quality from two publicly available studies.

Keywords. Probabilistic argumentation; Learning for argumentation;
Non-normative argumentation.

1. Introduction

Argumentation often involves uncertainty. This can be uncertainty within an ar-
gument (e.g. uncertainty about the premises, or about the claim following the
premises) or uncertainty between arguments (e.g. uncertainty about the nature
of the support or attack by an argument on another). Further uncertainty arises
when one agent is considering what arguments another agent believes (which can
be important when the agent wants to persuade the other agent).

Following the results of an empirical study with participants [18], epistemic
graphs have been introduced as a generalization of the epistemic approach to
probabilistic argumentation [10,11]. In this approach, the graph is augmented with
a set of epistemic constraints that can restrict the belief we have in an argument,
and state how beliefs in arguments influence each other, with a varying degree of
specificity. This is illustrated in Example 1.

Example 1. Consider the graph in Figure 1, and let us assume that if D is strongly
believed, and B or C is strongly disbelieved, then A is strongly believed, whereas
if D is believed, and B or C is disbelieved, then A is believed. Furthermore, if B
are C are believed, then A is disbelieved. These constraints could be reflected by
the following formulae: ϕ1 ∶ p(D) > 0.8 ∧ (p(B) < 0.2 ∨ p(C) < 0.2) → p(A) > 0.8;
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A = The train will arrive at 2pm because it is timetabled for a 2pm arrival.

B = Normally this train
service arrives a bit late.

C = The train appears to be
travelling slower than normal.

D = The live travel
info app lists it as
arriving on time.

− − +

Figure 1. Example of an epistemic graph. The + (resp. -) label denote support (resp. attack)
relations. These are specified via the constraints given in Example 1.

ϕ2 ∶ p(D) > 0.5∧(p(B) ≤ 0.5∨p(C) ≤ 0.5) → p(A) > 0.5; and ϕ3 ∶ (p(B) > 0.5∧p(C) >
0.5) → p(A) < 0.5.

Epistemic graphs can model both attack and support as well as relations
that are neither positive nor negative. The flexibility of this approach allows
us to both model the rationale behind existing dialectical semantics (such by
Dung [4]) and to completely deviate from them when required. The fact that we
can specify the conditions under which arguments should be evaluated, and that
we can include constraints between unrelated arguments, permits the framework
to be more context–sensitive. It also allows for better modelling of imperfect
agents, which can be important in multi–agent applications. Epistemic graphs are
therefore a flexible and potentially valuable tool for argumentation, and [10] has
already provided methods for harnessing epistemic graphs in user modelling for
persuasion dialogues where knowing about what the other agent beliefs can help
in strategically choosing arguments to present (see [8] for more on computational
persuasion).

To date, it has been assumed that the constraints for an epistemic graph are
available somehow, though no methods for acquiring have so far been proposed.
Yet a key potential advantage of taking a probabilistic approach is that we can
learn epistemic graphs from data. As a first step to realizing this potential, in this
paper, we investigate methods for learning constraints, and thereby the nature
of influences, from data. Our approach is a form of association rule learning [1]
where the rules that we learn are in the form of probabilistic constraints (i.e.
constraints for epistemic graphs). To evaluate our approach, we focus on publicly
available data obtained in two published surveys: on the use of Wikipedia in higher
education in Spain [16]; and on political attitudes in Italy [17]. These studies
collected views about specific statements which can be regarded as arguments.
Using our methods, we show that we can obtain constraints with reasonable
quality (in terms of support and confidence).

In the rest of the paper, we present the following: (Section 2) Review of the
definitions for epistemic graphs; (Section 3) Framework for learning epistemic
constraints; (Section 4) Evaluation of framework with two datasets; (Section 5)
Comparison with the literature; and (Section 6) Conclusion and discussion.

2. Restricted Epistemic Graphs

This section presents a simpler version of epistemic graphs than presented in
[11]. Essentially, epistemic graphs are labelled directed graphs equipped with a
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set of epistemic constraints for capturing the influences between arguments (as
illustrated in Figure 1). Each node in the directed graph denotes an argument, and
each arc denotes the influence of one argument on another. The label denotes the
type of influence with options including positive (supporting), negative (attacking,
and mixed. Both the labelled graph and the constraints provide information about
the argumentation.

In this paper, we focus on the constraints rather than on the full power of
the graphs. Let G denote a graph. Given the arguments in the graph, denoted
Nodes(G), we consider a probability distribution P ∶ ℘(Nodes(G)) → [0,1] as
being a probability assignment to each subset of the set of arguments such that
this sums to 1 (i.e. ∑X⊆Nodes(G) P (X) = 1). The constraints restrict the set of
probability distributions that satisfy the arguments (as we explain in the rest of
this subsection).

Rather than consider any probability distribution in this paper, we will use
finite probability distributions. For certain applications a restricted set of prob-
ability distributions can be used where the probability values come from a finite
set of values [11]. This may be appropriate if we want to represent probability
values as in a Likert scale [15]. It also has the benefit of always producing a finite
set of distributions. However, for the approach to be coherent, this set should
be closed under addition and subtraction (assuming the resulting value is in the
[0,1] interval) and should contain 1.

Definition 1. A finite set of rational numbers from the unit interval Π is a re-
stricted value set iff 1 ∈ Π and for any x, y ∈ Π it holds that if x + y ≤ 1, then
x + y ∈ Π, and if x − y ≥ 0, then x − y ∈ Π.

Since we will only consider restricted value sets, we will refer to them as value
sets. Examples include {0,1}, {0,0.5,1}, and {0,0.25,0.5,0.75,1}.

A probability distribution P for a value set Π is a probability distribution such
that for each Γ ⊆ Nodes(G), P (Γ) ∈ Π. We will assume that all our probability
distributions are with respect to a given value set. We denote the set of all belief
distributions on Nodes(G) by Dist(G), and the set of restricted distributions for
value set Π by Dist(G,Π)

Based on a given graph and restricted value set, we can now define the epis-
temic language. In this paper, we will only consider a sublanguage of that defined
in [11].

Definition 2. The restricted epistemic language based on graph G and a restricted
value set Π is defined as follows: an epistemic atom is of the form P (α)#x where
# ∈ {<,≤,=,≥,>}, x ∈ Π and α ∈ Nodes(G); an epistemic formula is a Boolean
combination of epistemic atoms.

Example 2. Let Π = {0,0.5,1}. In the restricted epistemic language w.r.t. Π,
we can only have atoms of the form p(α)#0, p(α)#0.5, and p(α)#1, where
α ∈ Nodes(G) and # ∈ {<,≤,=,≥,>}. From these atoms we compose epistemic
formulae, using the Boolean connectives, such as p(α) ≤ 0.5→ ¬(p(β) ≥ 0.5).

The semantics for constraints come from probability distributions P ∈
Dist(G,Π), which assign probabilities to sets of arguments. Each Γ ⊆ Nodes(G)
corresponds to a possible world where the arguments in Γ are true.
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Definition 3. The probability of an argument is defined as the sum of the proba-
bilities of the worlds containing it: P (α) = ∑Γ⊆Nodes(G) s.t. α∈Γ P (Γ).

We say that an agent believes an argument α to be acceptable to some degree
if P (α) > 0.5, disbelieves α to be acceptable to some degree if P (α) < 0.5, and
neither believes nor disbelieves α to be acceptable when P (α) = 0.5. Using this,
we can finally produce (restricted) satisfying distributions of an epistemic atom,
and therefore of an epistemic formula:

Definition 4. Let Π be a value set and let p(α)#v be an epistemic atom where
# ∈ {<,≤,=,≥,>}. The satisfying distributions, or equivalently models, of p(α)#v
are defined as Sat(p(α)#v) = {P ′ ∈ Dist(G) ∣ P ′(α)#v}. The restricted satisfying
distribution of ψ = p(α)#v w.r.t. Π are defined as Sat(ψ,Π) = Sat(ψ)∩Dist(G,Π).

The set of satisfying distributions for a given epistemic formula is as follows
where φ and ψ are epistemic formulae: Sat(φ∧ψ) = Sat(φ)∩Sat(ψ); Sat(φ∨ψ) =
Sat(φ)∪Sat(ψ); and Sat(¬φ) = Sat(⊺)∖Sat(φ). For a set of epistemic formulae Φ =
{φ1, . . . , φn}, the set of satisfying distributions is Sat(Φ) = Sat(φ1)∩. . .∩Sat(φn).
The same holds when restricting probabilities to a value set Π.

Example 3. Consider the formula p(A) > 0.5 → ¬(p(B) > 0.5) with Π = {0,0.5,1}.
Examples of probability distributions that satisfy the formula include P1 s.t.
P1(∅) = 1, P2 s.t. P2(∅) = P2({A}) = 0.5, P3 s.t. P3({A}) = 1, or P4 s.t.
P4({A}) = P3({A,B}) = 0.5 (omitted sets are assigned 0). The probability distribu-
tion P5 s.t. P5({A,B}) = 1 does not satisfy the formula.

The restricted epistemic language does not incorporate features of the full
epistemic language (as presented in [11]) such as terms that are Boolean combina-
tions of arguments (e.g. P (B ∨ C) > 0.6 which says that the probability argument
B or argument C is greater than 0.6) or summation of probability values (such
as P (A) + P (B) ≤ 1 which says that the sum of probability A and probability B

is less than or equal to 1). Nonetheless, the restricted epistemic language is a
useful sublanguage as a starting point for learning constraints. We focus on this
sublanguage in this paper as it simplifies the presentation and evaluation.

3. Learning Framework

We now present a general framework for generating a class of epistemic constraints
from data as follows: we define the format for the data, the format for constraints
that we will learn, and an algorithm for learning these constraints. To illustrate,
we will use examples taken from two studies (that we will discuss further in
Section 4) concerning use of Wikipedia in higher education in Spain [16], and
political attitudes in Italy [17].

3.1. Input for Learning

We assume that each item of data is a function that gives a value on an 11 point
scale to each attribute. We use a data item to represent the responses that a
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Pu3 Qu1 Qu3 Enj1

903 0.3 0.5 0.3 0.7

904 0.9 0.9 0.9 0.9

905 0.7 0.7 0.5 0.9

908 0.3 0.5 0.7 0.3

909 0.5 0.5 0.7 0.7

Table 1. Some rows and columns of data from the Spanish study (after mapping Likert values
to our 11 point scale) where Pu3 denotes the argument that “Wikipedia is useful for teaching”,
Qu1 denotes the argument that “Articles in Wikipedia are reliable”, Qu3 denotes the argument
that “Articles in Wikipedia are comprehensive”, and Enj1 denotes the argument that “Articles
in Wikipedia stimulate curiosity”.

participant gives to each question where the attribute denotes the statement (i.e.
the argument), and the assignment is their answer (as illustrated in Table 1).

Definition 5. A data item is a function d from a set of attributes to a set of values.
A dataset, D = {d1, . . . , dn}, is a set of data items over attributes (i.e. arguments)
A = {a1, . . . , am}. So for d ∈D, and for α ∈ A, d(α) ∈ {0,0.1,0.2, , . . . ,0.9,1}.

The Spanish and Italian studies used Likert scales (7, 8 and 10 point scales)
for recording participants responses to arguments. For a common format, we map
each value in the Likert scale to our 11 point scale (e.g. for the 7 point scale, we
use the mapping 1 ↦ 0, 2 ↦ 0.2, 3 ↦ 0.3, 4 ↦ 0.5, 5 ↦ 0.7, 6 ↦ 0.8, and 7 ↦ 1).
So we use each answer in the Likert scale as a proxy for the participant’s belief
in the argument. The 11-point scale allows us to represent total disbelief (i.e. 0),
total belief (i.e. 1), and the values in between obtainable with 0.1 graduations.

Example 4. Consider Table 1. From row 903, we get d903(Pu3) = 0.3, d903(Qu1) =
0.5, d903(Qu3) = 0.3, and d903(Enj1) = 0.7.

Given the set of arguments in the data, we then identify relationships between
them. For a pair of arguments α and β, we say that α influences β if a change in
the belief in α will potentially result in the change in the belief in β. For instance,
an argument influences another argument if it appears to attack it (i.e. it could be
regarded as a counterargument), or if it appears to support it. But relationships
may be more subtle or mixed (see [11] for more details).

Definition 6. An influence tuple is a tuple ({α1, . . . , αn}, β), where {α1, . . . , αn} ⊆
Nodes(G) ∖ {β} and β ∈ Nodes(G) and each αi influences β. We refer to each αi

as an influencer and β as an influence target.

In this paper, we identified influence tuples by hand (i.e. by reading the state-
ments in order to judge which arguments might be influenced by each argument).
Potential alternatives to doing this by hand include automated reasoning with
background knowledge about the arguments (such as causal relationships), and
natural language processing to find logical relationships such as attack.

Example 5. Consider the arguments Dw1 to Dw3 in Figure 2. By inspection we may
regard Dw2 and Dw3 as attackers of Dw1, and so treat Dw2 and Dw3 as influencers
of dw1. Hence, the influence tuple is ({Dw2,Dw3},Dw1).
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Dw2 = “Any day
now chaos and
anarchy could

erupt around us.
All the signs are
pointing to it.”

Dw1 = “Although it may appear
that things are constantly getting
more dangerous and chaotic, it
really isn’t so. Every era has its
problems, and a person’s chances
of living a safe, untroubled life are
better today than ever before.”

Dw3 = “There are
many dangerous

people in our society
who will attack
someone out of

pure meanness, for
no reason at all.”

Figure 2. Arguments from the Italian study considered in Example 5. The dashed arcs denote
influences.

So the input to the induction process is a data tuple and a set of influence
tuples which provides extra information to guide the learning process. The learn-
ing process will ascertain (for the population of the study) whether there is in-
deed a relationship between some/all of the influencers and the influence target
and if so, what the nature of that influence is. For instance, it could be that one
argument does indeed contradict another argument, but for the population of a
study, most people believe the attacker and the attackee. In this way, we want
constraints that represent the beliefs of the population of the study rather than
represent some normative interpretation of the arguments.

3.2. Output from Learning

The aim of learning is to take the input (a data set and a set of influence tuples)
and return a set of constraints where each constraint is a rule. This set of rules
will be a subset of the candidate rules defined next. Obviously each candidate
rule is an epistemic formula (according to Definition 2).

Definition 7. Let I = ({β1, . . . , βn}, α) be an influence tuple, and Π be a value set.
The set of candidate rules for I and Π is

Rules(I,Π) = {p(γ1)#1v1 ∧ . . . ∧ p(γk)#kvk → p(α)#k+1vk+1 ∣
{γ1, . . . , γk} ⊆ {β1, . . . , βn} and #i ∈ {≤,>} and vi ∈ Π ∖ {0,1}}

Example 6. Let I = ({Qu1},Enj1) be an influence tuple and let Π = {0,0.5,1}.
From this, the set of candidate rules Rules(I,Π) is

p(Qu1) > 0.5→ p(Enj1) > 0.5 p(Qu1) > 0.5→ p(Enj1) ≤ 0.5
P (Qu1) ≤ 0.5→ p(Enj1) > 0.5 p(Qu1) ≤ 0.5→ p(Enj1) ≤ 0.5

So for each influence tuple, the output of the induction process will be a set
of rules, and these will be selected from the candidates in Rules(I,Π).

3.3. Generate Rules from Data

In the following, we introduce the 2-way generalization step that generates a rule
from a data item. It has a precondition (above the line) and a postcondition
(below the line). In the postcondition, the epistemic atoms in the rule are either of
the form greater than 0.5 or less than or equal to 0.5 (i.e. two possible intervals).
This gives us the most general kind of rule that we can obtain, and provides a
baseline for comparison with frameworks for generating a wider variety of rules.
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Definition 8. Let d be a data item and ({α1, . . . , αn}, β) be an influence tuple.
The 2-way generalization step is the following where for each i, if vi > 0.5, then
#i is “>”, else if vi ≤ 0.5, then #i is “≤”.

d(α1) = v1, . . . , d(αn) = vn, d(β) = vn+1
p(α1)#10.5 ∧ . . . ∧ p(αn)#n0.5→ p(β)#n+10.5

For a data item d that satisfies the precondition, then TwoWayGen(d, I,Π) returns
the rule given in the postcondition, otherwise it returns nothing.

Example 7. The following is the result of applying the 2-way generalization rule
to the data in row 908 in Table 1.

p(Qu1) ≤ 0.5 ∧ p(Qu3) > 0.5 ∧ p(Enj1) ≤ 0.5→ p(Pu3) ≤ 0.5

Definition 9. Let D be a dataset, I be an influence tuple, and Π be a set of
values. The generalize function, denoted Generalize(D, I,Π), returns the set
{TwoWayGen(d, I,Π) ∣ d ∈D}.

Whilst we have focused on a 2-way generalization step, which results in a
specific kind of rule, there are various ways we could expand the variety of rules
that we could generate from the data. For instance, from the data item d where
d(A) = 0.2, d(B) = 0.6, and d(C) = 0.9, we might want to obtain the generalization
p(A) ≤ 0.2 ∧ p(B) ≥ 0.6 → p(C) ≥ 0.9 which involves representation of tighter
intervals on belief (less than or equal to 0.2 instead of less than or equal to 0.5,
and greater than or equal to 0.6 or 0.9 instead of greater than 0.5).

3.4. Identify the Best and Simplest rules

So from a dataset, an influence tuple, and a value set, we obtain a set of rules.
At this stage, these are just candidates, and there is no guarantee that they are
good with respect to the data.

Definition 10. Let Π be a value set. For an atom of the form p(β)#v, let
Values(p(β)#v,Π) = {x ∈ Π ∣ x#v},

Example 8. For the rule in Example 7, Values(p(Pu3) ≤ 0.5,Π) = {0,0.5}, where
Π = {0,0.5,1}.

In order to harness measures from association rule learning, which we present
in Table 2, we require the following subsidiary definitions below. Informally, a
rule is fired by a data item when the conditions of the rule are satisfied by the
data item. Furthermore, a rule agrees with a data item when the consequent is
satisfied by the data item. Finally, a rule is correct with respect to a data item
when the rule being fired implies the consequent is satisfied by the data item.

Definition 11. Let d ∈ D be a data item, and let R = φ1 ∧ . . . ∧ φn → φn+1 be a
rule, and for i ∈ {1, . . . , n+1}, let φi be of the form P (αi)#ivi. We say R is fired
by d iff for each φi s.t. i ≤ n, d(αi) ∈ Values(P (αi)#ivi,Π); R agrees with d iff
d(αi+1) ∈ Values(φn+1,Π); and R is correct w.r.t. d iff if R is fired by d, then R
agrees with d.
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Measure Definition

Support(R,D) 1
∣D∣
× ∣{d ∈D ∣ R is fired by d}∣

Confidence(R,D) 1
∣D∣
× ∣{d ∈D ∣ R is correct w.r.t. d}∣

Lift(R,D)
∣{d ∈D ∣ R is correct w.r.t. d}∣

∣{d ∈D ∣ R is fired by d}∣ × ∣{d ∈D ∣ R agrees with d}∣

Table 2. Measures for support, accuracy and lift where R is a rule, and D is a dataset.

Generate(D, I, τsupport, τaccuracy)
AllRules = Generalize(D, I,Π)
BestRules = Best(AllRules,D, τsupport, τaccuracy)
return Simplest(BestRules)

Figure 3. The generate algorithm where D is a dataset, I is a set of influence tuples, Π is a value
set, τsupport ∈ [0,1] (resp. τconfidence ∈ [0,1]) is a threshold for support (resp. confidence).

Example 9. Consider the rule P (Pu3) ≤ 0.5 ⇒ P (Enj1) > 0.5 with data from
Table 1. The rule is fired with 903, 908, and 909, and is correct with 903 and 909.

Given a set of rules and a dataset, the best rules are those that exceed the
thresholds for support and confidence and have lift greater than 1.

Definition 12. For a set of rules Rules, and a dataset D, with a threshold for sup-
port τsupport ∈ [0,1], and a threshold for confidence τconfidence ∈ [0,1], the set of best
rules, denoted Best(Rules,D, τsupport, τconfidence), is {R ∈ Rules ∣ Support(R,D) >
τsupport and Confidence(R,D) > τconfidence and Lift(R,D) > 1}.

For a set of rules with a particular head, the simplest are those with a minimal
set (w.r.t. set inclusion) of conditions. The following Simplest function collects the
simplest rules for each head in a set of rules.

Definition 13. For a rule R = φ1 ∧ . . . ∧ φn → ψ, let Conditions(R) = {φ1, . . . , φn}
and Head(R) = ψ. For a set of rules Rules, the simplest rules, denoted
Simplest(Rules), is the set of rules {R ∈ Rules ∣ for all R′ ∈ Rules, if Head(R) =
Head(R′), then Conditions(R) ⊆ Conditions(R′)}.

The algorithm for generating the rules is given in Figure 3, and we evaluate
a Python implementation1 of the algorithm in the next section.

4. Evaluation

In this paper, we consider data from two published studies. The data from each
study contains the answers from asking individuals a number of questions includ-
ing their level of agreement with certain statements (as illustrated in Table 1).

1Code available at http://www0.cs.ucl.ac.uk/staff/A.Hunter/papers/epilearn.zip
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So each row in the data concerns an individual. Each statement can be regarded
as an argument. The studies are: (1) the appropriateness of Wikipedia in a Span-
ish higher education institute [16] which was obtained from 901 individuals and
involved 26 statements; and (2) views on political issues in Italy [17] which was
obtained from 774 individuals and involved 75 statements.

Example 10. Some of the statement from the Spanish dataset, are Pu3 =
“Wikipedia is useful for teaching”, Qu1 = “Articles in Wikipedia are reliable”,
Qu3 = “Articles in Wikipedia are comprehensive”, Enj1 = “Articles in Wikipedia
stimulate curiosity”, Use2 = “I use Wikipedia as a platform to develop educational
activities with students”, Use3 = “I recommend my students to use Wikipedia”,
Bi1 = “In the future, I will recommend the use of Wikipedia to my colleagues
and students”, and Bi2 = “In the future, I will use Wikipedia in my teaching
activities”.

Example 11. Some of the statements from the Italian dataset, are Sys2 = “In
general, the political system works as it should”, Sys3 = “The Italian society
must be radically changed”, Sys7 = “Our society gets worse year by year”, Sys8
= “Our society is organized so that people generally get what they deserve”, Dw6
= “Every day as society become more lawless and bestial, a person’s chances of
being robbed, assaulted, and even murdered go up and up”, and Dw8 = “It seems
that every year there are fewer and fewer truly respectable people, and more and
more persons with no morals at all who threaten everyone else”.

For each dataset, we constructed a set of influence tuples by hand based on
the text descriptions given for each argument (i.e. the statement) considered in
the study. Then, for each influence tuple, we used our algorithm to generate the
constraints using the training data (which was a randomly selected subset of 80%
of the dataset), and to avoid over-fitting, a maximum of 4 conditions per rule. We
evaluated the rules for support, confidence, and lift (as defined in Table 2) using
the remaining 20% of the data. Some rules learned from the Spanish (respectively
Italian) dataset are given in Example 12 (respectively Example 13).

Example 12. The following are some of the rules generated from the Spanish
dataset, with influence tuple ({Qu1,Qu3,ENJ1,JR1,JR2,SA1},Pu3)

1. p(Qu3) > 0.5 ∧ p(Qu1) > 0.5→ p(Pu3) > 0.5
2. p(Enj1) ≤ 0.5 ∧ p(Qu1) ≤ 0.5→ p(Pu3) ≤ 0.5
3. p(Jr2) ≤ 0.5 ∧ p(Enj1) ≤ 0.5→ p(Pu3) ≤ 0.5

Example 13. The following are some of the rules generated from the Italian
dataset, with the influence tuples ({Sys1,Sys3,Sys4,Sys5,Sys6,Sys7,Sys8},Sys2)
and ({Sys1,Sys2,Sys4,Sys5,Sys6,Sys7,Sys8},Sys3).

1. p(Sys7) > 0.5→ p(Sys2) ≤ 0.5
2. p(Sys8) > 0.5→ p(Sys2) ≤ 0.5
3. p(Sys7) > 0.5→ p(Sys3) > 0.5

For each constraint generated by our algorithm, we tested it using the testing
data (i.e. the subset of the dataset after subtracting the training data). We ran
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Study Influence No. of No. of Condi- Support Confi- Lift Time

target influencers of rules tions dence (sec)

Spain Use2 19 11.3 1.0 0.68 0.95 1.04 192.34

Spain Use3 19 14.0 1.69 0.60 0.84 1.16 178.36

Spain Bi1 17 15.8 1.84 0.54 0.82 1.15 148.02

Spain Bi2 17 12.7 2.1 0.51 0.80 1.20 140.98

Spain Qu1 13 3.3 2.07 0.51 0.84 1.37 56.55

Spain Qu3 13 4.2 1.68 0.58 0.88 1.17 48.66

Italy Dw1 9 3.1 2.45 0.43 0.80 1.22 14.33

Italy Dw3 9 4.0 1.0 0.75 0.84 1.15 15.39

Italy Dw6 9 5.0 1.02 0.69 0.88 1.11 17.95

Italy Dw8 9 4.2 1.7 0.67 0.83 1.22 16.65

Italy Sys2 7 7.0 1.0 0.76 0.96 1.03 7.89

Italy Sys3 7 1.6 1.48 0.52 0.82 1.22 8.21

Table 3. Results for the Spanish and Italian datasets with 10 repetitions. Column 3 is the number
of influencers in the influence tuple. Column 5 is the average number of conditions per rule. For
columns 4 to 9, the value is the average of the repetitions with τconfidence = 0.8 and τsupport = 0.4.

the Python implentation in an evaluation on a Windows 10 HP Pavilion Laptop
(with AMD A10 2GHz processor and 8GB RAM). In Table 3, we give results for
some influence tuples with the Spanish and Italian datasets.

These results show that we are able to obtain reasonable quality constraints
(in terms of support, confidence, and lift) from data by our simple version of as-
sociation learning. Furthermore, the number of rules selected, and the complexity
of those rules, tend to be appropriate for the application (i.e. enough rules to give
insights into the data but still reasonably concise). Also, the number of rules and
the average measure of support per rule are quite high (for example, for Use2 in
Table 3, it is 11.3 and 0.68 respectively) which means that the data shows that
there is indeed a number of ways that the target is influenced by other arguments,
and each of those ways occurs frequently. Note, we have set a quite high threshold
for support, and by lowering this, we can raise lift above 2.

The time performance is also reasonable. For the Spanish dataset, we consider
sets of influencers of cardinality of up to 19 arguments. This means that a large
number of rules can be constructed for each subset of influencers (e.g. over 70K for
19 influencers with a maximum of 4 conditions per rule). Yet the number of rules
returned by the algorithm is often in the range of 10 to 20 rules, and the algorithm
is running in less than 200 seconds. Furthermore, it is reasonable to expect that
for many domains we should be able to restrict the number of influencers for each
argument to less than 20 (and compare this with most argument graphs where
far fewer attackers per argument are represented).

5. Comparison with the Literature

Two important approaches to probabilistic (abstract) argumentation are the con-
stellations and the epistemic approaches [7]. In the constellations approach, there
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is uncertainty about which arguments and attacks should appear in the argument
graph [5,14]. In contrast, in the epistemic approach, the topology of the argument
graph is fixed, but there is uncertainty about whether an argument is believed
[20,7,2,6,12]. The approach of epistemic graphs is a generalization of the epistemic
approach.

For some time, there has been interest in using argumentation for improv-
ing machine learning and using machine learning for generating arguments (for
a review, see [3]). In the literature, there are three recent proposals for learning
for argumentation that are based on probabilistic techniques, though they are
different to our proposal. The first proposal uses the usual labels for arguments
in, out and undecided, augmented with off for denoting that the argument does
not occur in the graph [19]. A probability distribution over labellings gives a form
of probabilistic argumentation. For learning, the probability distribution is used
to generate labellings that are used as data, and then the argument graph that
best describes this data is identified. The second proposal takes as input a profile
⟨X1, . . . ,Xn⟩ where each Xi is a set of acceptable arguments, and by using Bayes
theorem, the output is a posterior probability for a set of arguments being an
extension. This is calculated using a Bayesian network that incorporates assump-
tions about the relationships between choice of semantics and choice of attacks,
and how these influence extensions [13]. The third proposal generates the prob-
ability distribution over subgraphs as used in the constellations approach [9]. It
takes as input a profile [(φ1, v1), . . . , (φn, vn)] where each φi is a Boolean com-
bination of arguments that specifies an opinion on the topology of the argument
graph, and vi is the belief in that opinion, and returns the probability distribu-
tion that best represents the opinions. These three proposals concern uncertainty
about the structure of the graph. Clearly none involve the epistemic approach to
probabilistic argumentation, and in particular, none consider how constraints for
epistemic graphs could be obtained from data.

6. Discussion

In this paper, we have proposed a framework for learning a class of constraints for
epistemic graphs and evaluated it with two datasets. Generating epistemic graphs
for argumentation offers a valuable way of constructing a representation of how
arguments interact. A significant barrier to the deployment of argumentation for-
malisms has been the challenge of how to construct the required representations.
Taking a probabilistic approach allows us to overcome this hurdle and thereby
scale up the kind of problem we can tackle with an argumentation solution.

From the point of view of association rule learning [1], we have only presented
a very simple framework to show that it is viable to generate constraints for
epistemic graphs in this way. In future work, we will introduce alternatives to
the 2-way generalization step so that we can learn a wider variety of rules from
the restricted epistemic language presented using tight constraints and a wider
variety of values as discussed at the end of Section 3.3, and more complex rules
such as with heads that provide both upper and lower bounds on belief (e.g.
p(Sys7) > 0.5 → p(Sys3) > 0.5 ∧ p(Sys3) ≤ 0.7). We will also consider a less
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restricted version of the language of epistemic graphs (i.e. use the full language
as defined in [11]), and we will consider how we can learn labels for the epistemic
graphs.
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