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Abstract. In this paper we show that non-monotonic formalisms that are
represented by approximation fixpoint theory can also be represented
by formal argumentation frameworks. By this, we are able not only to
recapture and generalize many forms of non-monotonic reasoning in the
context of argumentation theory, but also introduce new argumentative
representations that have not been considered so far.
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1. Introduction

In a series of papers (e.g., [7,8]) Denecker, Marek, and Truszczyński introduced
a general technique, using approximating fixpoint computations, for construc-
tively characterizing a variety of non-monotonic formalism. In [17] this method
was further applied to a variety of logic programs (including normal logic pro-
grams, first order logic programs, and logic programming with aggregates), and
in [1] it has been applied to HEX programs. In this paper, we show how fixpoints
of approximating operators can be represented by (extensions of) the ‘reflect-
ing’ assumption-based argumentation framework, thus allowing for argumenta-
tive counterparts of corresponding characterizations that were provided in terms
of approximation fixpoint theory. These alternative argumentative characteri-
zations generalize known characterizations of semantics of non-monotonic for-
malisms such as default logic, logic programming and autoepistemic logic that
are introduced in, e.g., [3,5], and allow for new argumentative representations of
other formalisms for non-monotonic reasoning.

The paper is organized as follows: in the next section we recall some basic
notions from assumption-based argumentation, approximation fixpoint theory,
and semantics for logic programing. In Section 3 we show how argumentation
theory can be used for characterizing semantics of propositional logic programs
and how this can be generalized to reflections of approximated fixpoint concepts.
In Section 4 we give some applications of our results, and in Section 5 we conclude.
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2. Preliminaries

2.1. Assumption-Based Argumentation (ABA)

Definition 1. A reasoning frame for a propositional language L is a pair L= 〈L,�〉,
where � is a monotonic binary relation between sets of formulas and formulas in
L (so if Γ � ψ and Γ ⊆ Γ′, then Γ′ � ψ).

The next definition, which is a variation of that in [13], generalizes the defi-
nition in [3] of assumption-based frameworks.

Definition 2. An assumption-based framework (ABF, for short) is a triple ABF =
〈L,Λ,−〉, where:

• L= 〈L,�〉 is a reasoning frame,
• Λ (the defeasible assumptions) is a non-empty, countable set of L-formulas,
• − : Λ → ℘(L) is a contrariness operator, assigning a finite set of L-formulas
to every defeasible assumption in Λ.3

Remark 1. In [3,13] ABFs are in fact quadruples, where the assumptions are
divided to strict and defeasible ones. In what follows strict assumptions will not
be needed, so they are removed from the definition. Yet, our results can be easily
adjusted to ABFs with a set Γ of strict premises, defined e.g. by Γ = {ψ | ∅ � ψ}.
Remark 2. In this paper we shall concentrate on flat ABFs. In such ABFs the sets
of assumptions are always closed, i.e., they contain any assumption they imply.
Non-flat characterizations of approximate fixpoint theory will be investigated in
future work.

Attacks in ABFs of assertions by counter-assertions are defined as follows:

Definition 3. Let ABF = 〈L,Λ,−〉 be an assumption-based framework, Δ,Θ ⊆ Λ,
and ψ ∈ Λ. We say that Δ attacks ψ iff Δ � φ for some φ ∈ −ψ. Accordingly, Δ
attacks Θ if Δ attacks some ψ ∈ Θ.

The last definition gives rise to the following adaptation to ABFs of the usual
semantics for abstract argumentation frameworks [9].

Definition 4. [3] Given ABF = 〈L,Λ,−〉, we denote AF(ABF) = (℘(Λ),�) where
(Δ,Θ) ∈� for some Δ,Θ ⊆ Λ iff Δ attacks Θ. We denote Δ+ = {φ ∈ Λ | Δ� φ}.

For Δ ⊆ Λ, we say that
Δ is conflict-free iff there is no Δ′ ⊆ Δ that attacks some ψ ∈ Δ. Δ defends a

set Δ′ ⊆ Λ iff for every set Θ that attacks Δ′ there is a set Δ′′ ⊆ Δ that attacks
Θ. Δ is admissible iff it is conflict-free and defends every Δ′ ⊆ Δ. Δ is complete
iff it is admissible and contains every Δ′ ⊆ Λ that it defends. Δ is grounded iff it
is minimally complete.4 Δ is preferred iff it is maximally complete.5 Δ is stable
iff it is conflict-free and Δ+ = Λ\Δ.

3Here and in what follows ℘(L) denotes the powerset of L.
4For flat ABFs the grounded extension always exists and it is unique.
5Often, preferred extensions are defined as maximally admissible. However, for flat ABFs,

these definitions are equivalent.
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Example 1. Let ABFP = 〈LMP,{¬p,¬q,¬r},−〉 be an assumption-based argumen-
tation framework in which −¬x = {x} for any x ∈ {p,q,r}, and where LMP is
a reasoning setting whose entailment relation is based on Modus Ponens as its
single rule, i.e.: Δ � ψ if there is a derivation of ψ based on the formulas in Δ and
the inference rule

[MPP ] φ1 φ2 · · · φn ψ ← φ1, . . . ,φn ∈ P
ψ

where in this case we take: P = {q ← ¬p; p ← ¬q; r ← ¬q; r ← ¬r}. Figure 1
below is a schematic representation of a fragment of the attack relation in ABF.

{¬p} {¬q} {¬r}{¬p,¬q}

Figure 1. The ABF of Example 1

The sets ∅,{¬p},{¬q} are admissible (and complete) in ABF. The latter two
are also preferred, and {¬q} is also stable. The grounded extension here is ∅.

2.2. Approximation Fixpoint Theory (AFT)

Next, we review the basics notions of approximation fixpoint theory (AFT, [7]).
Its main purpose is to find constructive techniques for approximating the fixpoints
of an operator O over a lattice L. For this, the following structure (known as a
bilattice, see [11,12]) is useful:

Definition 5. Given a lattice L = 〈L,≤〉, we let L2 = 〈L2,≤i,≤t〉 be a structure
in which L2 = L×L, and for every x1,y1,x2,y2 ∈ L,

• (x1,y1) ≤i (x2,y2) iff x1 ≤ x2 and y1 ≥ y2,

• (x1,y1) ≤t (x2,y2) iff x1 ≤ x2 and y1 ≤ y2.

An approximation operator O :L2 → L2 of OL :L → L is defined by specifying
two operators Ol and Ou which calculate a lower and an upper bound for the
value of OL. It is observed in [7] that many formalisms can be characterized by a
symmetric operator where the upper bound can be calculated by “inversing” the
lower bound (and vice versa). This is formalized next.

Definition 6. Let OL : L → L and O : L2 → L2.

• O is an approximation of OL, if ∀x,y,∈ L, O(x,y) = (Ol(x,y),Ou(x,y)),
where Ol : L2 → L and Ou : L2 → L are a lower and upper bound, respec-
tively, of OL(x) and OL(y), namely: Ol(x,y)≤ OL(x) and Ou(x,y)≥ OL(y).
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• O is symmetric if O(x,y) = (Ol(x,y),Ol(y,x)) for some Ol : L2 → L; O is
≤i-monotone, if whenever (x1,y1) ≤i (x2,y2), also O(x1,y1) ≤i O(x2,y2);
and O is approximating, if it is both symmetric and ≤i-monotone.

In [7] it is shown that the stable operator , as defined next, can be used for
expressing the semantics of many non-monotonic formalisms.

Definition 7. Let O : L2 → L2 be an approximation operator.

• Ol(·,y) = λx.Ol(x,y), i.e., for x ∈ L, Ol(·,y)(x) = Ol(x,y).
• C(O) :L → L, the complete stable operator for O, is defined, for every y ∈ L,
by: C(O)(y) = lfp(Ol(.,y)) = min≤{x ∈ L | x = Ol(x,y)}.

• S(O) :L2 → L2, the stable operator for O, is S(O)(x,y)= (C(O)(y),C(O)(x)).

Stable operators capture the idea of minimizing truth in the sense that for
any ≤i-monotone operator O on L2, fixpoints of the stable operator S(O) are
≤t-minimal fixpoints of O (see [7, Theorem 4]).

Accordingly, the following notions are defined in [7]:

Kripke-Kleene fixpoint of O: {(x,y) ∈ L2 | (x,y) = lfp≤i
(O(x,y))}

well-founded semantics of O: {(x,y) ∈ L2 | (x,y) = lfp≤i
(S(O)(x,y))}

three-valued stable models of O: {(x,y) ∈ L2 | S(O)(x,y) = (x,y)}
two-valued stable models of O: {(x,x) ∈ L2 | S(O)(x,x) = (x,x)}

These semantical notions have been shown to provide a uniform framework
for the mechanisms underlying many major knowledge representation formalisms,
such as logic programming [17], autoepistemic logic [8], default logic [8], abstract
argumentation [27] and abstract dialectical frameworks [27]. In more detail, for
autoepistemic and default logics, the lattice of possible-world structures is inves-
tigated, and operators for autoepistemic logic and default logic give rise to char-
acterizations of various formalisms, including autoepistemic expansions [16], well-
founded semantics for default logic [2], weak default extensions [15], and Reiter’s
default extensions [20]. Full details can be found in [8].

2.3. Propositional Logic Programming (LP)

We now review some notions from logic programming theory that are needed in
what follows. For simplicity and due to lack of space, we restrict our attentions to
the propositional case. Following [17,25], a generalized logic program P is a finite
set of the rules of the form p ← ψ, where p is an atom and ψ is a formula. A rule is
normal if ψ is a conjunction of literals (that is, a conjunction of atomic formulas
or negated atoms). A program is normal if it consists only of normal rules.

Given a four-valued lattice F ≤t U,B ≤t T and a ≤t-involution − on it (i.e,
−F = T, −T = F, −U = U and −B = B), a four-valued interpretation of a general-
ized program P is a pair (x,y), where x is the set of the atoms that are assigned
a value in {T,B} and y is the set of atoms assigned a value in {T,U}. An inter-
pretation (x,y) is consistent if x ⊆ y (i.e., it doesn’t have B-assignments). Truth
assignments to complex formulas are then recursively defined as follows:
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• (x,y)(φ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

T if φ ∈ x and φ ∈ y

U if φ ∈ x and φ ∈ y

F if φ ∈ x and φ ∈ y

B if φ ∈ x and φ ∈ y

• (x,y)(¬φ) = −(x,y)(φ)
• (x,y)(ψ ∧φ) = min≤t{(x,y)(φ),(x,y)(ψ)}
• (x,y)(ψ ∨φ) = max≤t{(x,y)(φ),(x,y)(ψ)}

The immediate consequence operator ΦP of P is now defined as follows:

ΦP(x,y) = (Φl
P(x,y),Φu

P(x,y))

• Φl
P(x,y) = {φ ∈ Atoms | there is some φ ← ψ ∈ P,(x,y)(ψ) ∈ {T,B}},

• Φu
P(x,y) = {φ ∈ Atoms | there is some φ ← ψ ∈ P,(x,y)(ψ) ∈ {T,U}}.

Remark 3. It can be easily seen that equivalently, one can define the immediate
consequence operator ΦP by: ΦP(x,y) = (x′,y′), where for any atom φ,

(x′,y′)(φ) = max≤t{(x,y)(ψ) | φ ← ψ ∈ P}.

We furthermore note that, alternatively, Φu
P(x,y) can be taken as Φl

P(y,x).

Note that ΦP is an operator on the lattice of the four-valued interpretations
of P. We therefore can define the following semantics for P in terms of the fixpoint
notions considered in the previous section:

Definition 8. Given a generalized program P, we say that a consistent interpre-
tation (x,y) is:

• a partial stable model of P, iff (x,y) is a three-valued stable model of ΦP .
• a total stable model of P, iff (x,y) is a two-valued stable model of ΦP .
• the well-founded model of P, iff (x,y) is the well-founded model of ΦP .

In [17] it is shown that for normal logic programs the partial stable mod-
els coincide with the three-valued semantics as defined by [19], the well-founded
model coincides with the homonymous semantics as defined by [19,28], and the
total stable models coincide with the two-valued (or total) stable models of P.

Example 2. Consider the program P = {q ← ¬p; p ← ¬q; r ← ¬q; r ← ¬r} (see
Example 1). The bilattice of interest is formed by all pairs of subsets of {p,q,r}.

The partial stable models of P are (∅,{p,q,r}), ({q},{q,r}), and ({p,r},{p,r}).
In this case, (∅,{p,q,r}) is well-founded and ({p,r},{p,r}) is total stable.
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3. Argumentative Reflections

We now show how non-monotonic formalisms in general, and LP in particular,
may be reflected by argumentation frameworks. First, we review some existing
results concerning the correspondence between semantical notations in LP and
ABA, and then we show how these results may be carried on to further types of
LP semantics and other forms of nonmonotonic formalisms, using argumentative
reflections of approximated fixpoint concepts.

3.1. Argumentative Characterizations of Logic Programs

The translation of logic programs into assumption-based argumentation has been
the subject of several publications (e.g., [5,10,14,23]). The basic idea underlying
all of these works is the same: the set of assumptions is made up of negated atoms
and the contrary of a negated atom is the positive atom. For such translations it
is shown that several argumentation semantics can characterize LP models. For
instance, in [5] it is shown that for normal logic programs, complete extensions
correspond to partial stable models, the grounded extension corresponds to the
well-founded model, preferred extensions correspond to ≤i-maximal partial stable
models (also called ‘regular’), and stable extensions correspond to two-valued
stable models.

The results above are extended in [14] to disjunctive logic programming under
stable model semantics. Furthermore, argumentative characterizations of the so-
called well-justified [25] and well-founded [29] semantics of general or first-order
logic programs with aggregates are provided in [10]. These generalizations are
again based on similar representation methods: the assumptions consist of negated
atoms and attacks are initiated when the attacking set allows to derive the positive
version of the attacked (negated) atom. What changes, however, is the reasoning
frame used to determine initiation of attacks. For example, in [14] the reasoning
frame is supplemented with rules ensuring the adequate treatment of disjunction.
Likewise, in [10], any valid first-order deduction rule is applicable.

Example 3. Consider again the assumption-based framework in Example 1. This
is in fact a translation, according to the description of [5] above, of the logic
program in Example 2. Indeed, the following semantic elements, indicated in Ex-
amples 1 and 2, correspond to the equivalences listed below (For instance, the
stable extension of ABF is obtained by the (negation of the) complement of the
total stable model of P):

ABF P
complete ∅, {¬p}, {¬q} partial stable (∅,{p,q,r}), ({q},{q,r}), ({p,r},{p,r})
grounded ∅ well-founded (∅,{p,q,r})
stable {¬q} total stable ({p,r},{p,r})
peferred {¬p}, {¬q} ≤i-max. stb ({q},{q,r}), ({p,r},{p,r})

Despite these recent efforts, several questions still remain open. For example,
several semantics for disjunctive logic programming have not yet been charac-
terized in assumption-based argumentation. Likewise, three-valued stable models
have not been characterized for first-order logic programs with aggregates.
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3.2. Argumentative Reflections of Approximated Fixpoint Concepts

We now generalize the ideas discussed previously and show that for any opera-
tor over an underlying lattice one may compute its argumentative reflection. By
this, it will be possible to show a correspondence between the semantical notions
from approximation fixpoint theory and those of argumentation-based semantics,
provided that the attack relation adequately reflects the operator in question.

The lattice under consideration in what follows is of the form LA = (℘(A),⊆),
where A is some nonempty set.6 We then denote by A = {A | A ∈ A} the set
of argumentative reflections of the elements in A. Intuitively and in accordance
with the argumentative characterizations described above, A can be interpreted
as some kind of absence of A.7 Depending on the exact context, this absence can
be assumption of falsity, failure to prove, etc. Accordingly, we denote:

• if Δ ⊆ A, then: Δ = {A | A ∈ Δ} and ∼Δ= A\Δ.

• if Δ ⊆ A, then: Δ = {A ∈ A | A ∈ Δ} and ∼Δ= A\Δ.

We shall say that the lattice LA = (℘(A),⊆) is the reflection of LA = (℘(A),⊆).
In what follows we shall assume that A∩A = ∅ and that A = B for every distinct
A,B ∈ A.

Remark 4. The assumption that A∩ A = ∅ is meant to assure that the resulting
reflecting assumption-based frameworks (Definition 10) will be flat. This assump-
tion holds for the translations of LP discussed above, as well as for the translation
of default logic in ABA (see [3]). For normal logic programs, such an assumption
is automatically satisfied, since heads of rules contain only positive atoms. When
moving to general logic programs, [10] introduces for every atom a new element
A (originally denoted notA) such that notA � ¬A. Here we follow a similar idea
for a more general case. For the translation of autoepistemic logic from [3], the
assumption that A∩A = ∅ is not warranted. The generalization of the results in
this paper for such formalisms is left for future work.

We now turn to the primary concept of representations by argumentation
frameworks. The underlying idea is to assume the ‘absence’ (A) of any A ∈ A,
unless, on the basis of C(O), some set of assumptions indicates that A holds. Thus,
the complete stable operator C(O) should be reflected in the attack relations.

Definition 9. The argumentative reflection of an operator O : (LA)2 → (LA)2 is
given by the framework AFA,O = 〈℘(A),�〉, where Δ�A iff A ∈ C(O)(∼Δ).

Note that since Δ and Δ are complementary operators on Δ (that is, Δ=Δ),
moving back and forth between a lattice LA = (℘(A),⊆) and an argumentative
reflection AFA,O of an approximation operator O on (LA)2, is straightforward.
In particular, we have:

6For instance, A may be the set of the atomic formulas appearing in a logic program.
7For instance, as indicated in the previous section, in LP reflections are the negated atoms

of the atoms of the logic program, that is:, A = {¬A | A ∈ A}, where ¬ may be a ‘negation as
failure’ connective.
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Lemma 1. Suppose that AFA,O = 〈℘(A),�〉 reflects O : (LA)2 → (LA)2. Then:

a) for every Δ ⊆ ℘(A) it holds that ∼(∼Δ) = Δ and for every Δ ⊆ ℘(A) it
holds that ∼(∼Δ) =Δ,

b) if (x,y) is a three-valued stable model of O, then x = (∼y)+.

Proof. We show the first part of (a) (the other one is similar): Since ∼Δ= {A ∈
A | A ∈ Δ}, we have that ∼(∼Δ)= {A | A ∈ {A ∈ A | A ∈ Δ}} = {A | A ∈ Δ} =Δ.

For (b), note that since (x,y) is stable, x = lfp(Ol(.,∼y) = C(O)(∼y). Since
AFA,O reflects O, this means that (∼y)+ = {A | A ∈ x}. Thus, (∼y)+ = x.

Note that Item (b) of the lemma indicates that when we are given an argu-
mentation framework that reflects O, only the y-component determines the stable
models of O.

Now we can state the next result, which is the meta-theoretical basis of all
the other propositions that follow.

Proposition 1. Suppose that AFA,O reflects an operator O : (LA)2 → (LA)2. Then
Δ is a complete extension of AFA,O iff (Δ+ , ∼Δ) is a consistent three-valued
stable model of O.

Proof. We show that the condition is necessary for being Δ a complete extension
of AFA,O, omitting the other direction due to space restrictions. Suppose that
(Δ+ , ∼Δ) is a three-valued stable model, we show that Δ is complete. First, we
note that, by Item (b) of Lemma 1, Δ+ = (∼Δ)+, and so: (�) Δ = ∼Δ.
(1) Conflict-freeness: Since (Δ+ , ∼Δ) is consistent, Δ+ ⊆ ∼Δ, and so Δ+ ⊆∼Δ.
Thus Δ attacks only elements in its complementary set.
(2) Admissibility: Suppose that there is a set Θ ⊆ A such that Θ� A for some
A ∈ Δ. By (�), A ∈ ∼Δ, so in particular, A ∈ Δ. This means with the stability of
(Δ+ , ∼Δ) that A ∈ lfp(Ol(.,Δ+), i.e., A ∈ C(O)(Δ+). Since AFA,O reflects O,
this means that ∼(Δ+) � A. By definition, ∼(Δ+) = {A | A ∈ Δ+} = A \Δ+.
Thus, ∼(Δ+) �A means that A\Δ+ �A, which implies that if for some Γ⊆ A,
Γ� A, then Γ∩Δ+ = ∅. Thus, Δ+ ∩Θ = ∅, which means that Θ is attacked by
Δ, and so Δ defends A.
(3) Completeness: Similar to the proof of admissibility.

Proposition 2. It AFA,O reflects an operator O : (LA)2 → (LA)2, then:

1. (x,y) is the well-founded model of O iff ∼y is the grounded extension of
AFA,O.

2. (x,y) is a stable model of O iff ∼y is a two-valued stable model of AFA,O.
3. (x,y) is a ≤i-maximal three-valued stable model of O iff ∼y is a preferred

extension of AFA,O.

Proof. We show one direction of the first item. The proofs of the other claims are
similar. For the proof we need the following two lemmas:

Lemma 2. Suppose that AFA,O reflects an operator O : (LA)2 → (LA)2. Let
(x1,y1) and (x2,y2) be three-valued stable models of O. Then (x1,y1) ≤i (x2,y2)
iff ∼y1 ∪ (∼y1)+ ⊆ ∼y2 ∪ (∼y2)+.
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Lemma 3. Let O be an approximating operator over the lattice (LA)2 and let
AFA,O = 〈℘(A),�〉 be the argumentative reflection of O. Then � is monotonic:
If Δ�A and Δ ⊆ Θ, then Θ�A.

Suppose now that (x,y) is the well-founded model of O. By Proposition 1
and since the well-founded model is three-valued stable model, ∼y is complete.
Suppose now that there is some Δ ⊂ ∼y such that Δ is complete. By Proposi-
tion 1, (Δ+ , ∼Δ) is a three-valued stable model of O. By Lemma 3, Δ ⊂ ∼ y
implies Δ+ ⊆ (∼ y)+. By Lemma 2, this implies that (Δ+ , ∼Δ) ≤i (x,y). But
since (Δ+ , ∼Δ) is stable, (x,y) cannot be well-founded.

4. Applications

In the first part of this section (Section 4.1) we demonstrate the usefulness of the
results in Section 3.2 by showing how to obtain an assumption-based framework
whose argumentation framework constitutes an argumentative reflection of a given
operator. Then, in Section 4.2 we illustrate this in detail using propositional logic
programs as defined in Section 2.3.

4.1. Assumption-based Argumentative Reflection

We show how to obtain an ABF whose argumentation framework is an argumenta-
tive reflection (Definition 9) of a given operator O. First, we define an appropriate
reasoning frame:

Lemma 4. Let O be an approximating operator over the lattice (LA)2. Consider
the pair LO = 〈L,�〉, where L includes both A and A, and � is defined for Δ ⊆ A
by Δ � A iff A ∈ C(O)(∼Δ). Then LO is a reasoning frame, i.e., � is monotonic.

Definition 10. The assumption-based argumentative reflection of an operator
O : (LA)2 → (LA)2 is given by the assumption-based argumentation framework
ABFA,O = 〈LO,Λ,−〉, where LO is the reasoning frame defined in Lemma 4,
Λ = A, and the contrariness operator is defined for every A ∈ A by −A = A.

Proposition 3. If O : (LA)2 → (LA)2 is approximating (in the sense of Defini-
tion 6), then AF(ABFA,O) (Definition 4 and 10) reflects O.

Proof. We have to show that for any Δ∪{A} ⊆ A, Δ attacks A iff A ∈ C(O)(∼ Δ).
By definition, Δ attacks A iff Δ � −A. Since −A = A, Δ attacks A iff Δ � A. By
the definition of ABFA,O, Δ � A iff A ∈ C(O)(∼ Δ).

4.2. Example: Propositional Logic Programming

We now illustrate how the results shown in the previous section can be applied to
obtain argumentative characterizations of logic programs as defined in Section 2.3.
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Theorem 1. Let P be a logic program and let Atoms(P) = {A | A ∈ Atoms(P)}.
Consider the assumption-based framework ABFP = 〈LP ,Atoms(P),−〉, where
−A = A and LP = 〈LP ,�P〉 is a reasoning frame in which LP includes Atoms(P)
and the closure under ¬,∧,∨ of Atoms(P), and Δ �P φ iff φ ∈ C(Ψl

P)(∼Δ). For
a set Δ ⊆ Atoms(P) we denote Δ∗ = (Δ+ , ∼Δ). Then:

1. Δ is a complete extension of ABFP iff Δ∗ is a partial stable model of P.
2. Δ is the grounded extension of ABFP iff Δ∗ is the well-founded model of P.
3. Δ is a stable extension of ABFP iff Δ∗ is a total stable model of P.
4. Δ is a preferred extension of ABFP iff Δ∗ is a ≤i-maximal partial stable

model of P.

Proof. Since ABFP = ABFAtoms(P),Ψl
P
, by Proposition 3, AF(ABFP) reflects Ψl

P .
Thus, Item 1 is obtained by Proposition 1 and Definition 8. Items 2, 3, and 4 are
obtained in a similar way, using respectively Items 1, 2 and 3 of Proposition 2.

Remark 5. The results of Theorem 1 were already shown for grounded and stable
extensions (i.e., Items 2 and 3) in [10].8 On the other hand, the correspondence
between complete and partial stable extensions (and the analogous correspon-
dence for preferred extensions) was left in [10] as a conjecture. We are now able
to confirm this conjecture with Theorem 1.

Remark 6. For normal logic programs C(Ψl
P(∼Δ)) is nothing but the conse-

quence operator � based on Modus Ponens from Example 1. Furthermore, for the
general case of propositional logic programs, it can be shown that for consistent
sets of assumptions, C(Ψl

P(∼Δ)) is the consequence operator that satisfies Modus
Ponens with respect to the rules in the logic program and every valid inference
for classical logic (this is the consequence operator used in [10] as described in
Section 3.2).

Example 4. Theorem 1 can be illustrated by revisiting Example 1. Indeed, there
ABFP is the assumption-based argumentative reflection of Ψl

P (as in Theorem 1),
when restricted to normal logic programs. We see, then, that the semantic equiv-
alences observed in Example 3 are not a coincidence, since they follow from The-
orem 1.

Argumentative characterizations similar to those in Theorem 1 can be ob-
tained as corollaries of our results for many other variants of logic programs
(such as first-order logic programs, logic programing with aggregates and HEX-
programs). Furthermore, the generalization of an argumentative characterizations
of semantical alternatives to Reiter’s extensions for default logic can also be ob-
tained as a corollary of our main results and the characterization of default logic
in approximation fixpoint theory from [8], thus significantly extending the argu-
mentative characterization of Reiter’s default extensions in [3].

8In fact, in [10] this correspondence is shown for first-order logic programs where the head of
a rule can be any propositional formula. Due to space limitations we have restricted ourselves
to the propositional case where heads of rules are literals.
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5. Conclusion, In View of Related Work

Our results allow for translations of any non-monotonic formalism which has
received characterizations in approximation fixpoint theory (and gives rise to flat
assumption-based reflections). This includes default logic under the semantics
discussed in Section 2.2, as well as many families of logic programming languages
under various semantics like those in Section 2.3.

To the best of our knowledge, a general methodology for argumentative char-
acterizations of non-monotonic formalisms has not been suggested before. The
connections between approximation fixpoint theory and abstract argumentation
where investigated already in [26], where it was shown that abstract dialectical
frameworks [4] and Dung’s abstract argumentation [9] can be characterized using
approximation fixpoint theory. Even though the results of this paper are in a sense
complementary to those in [26] (that is, that argumentation theory can capture
approximation fixpoint theory), the goal of our paper is somewhat orthogonal:
the argumentative characterization of approximation fixpoint theory is to be seen
as a mean to obtain a multitude of results on argumentative characterizations of
non-monotonic formalisms.

The translation of non-monotonic formalisms into assumption-based argu-
mentation is not only interesting from a theoretical point of view, but also al-
lows for importing methods from one formalism to the other. For example, ar-
gumentative characterizations of logic programming have been proven useful for
explanation [22,24] and visualization [21] of inferences in logic programming. Our
results now open the door for the applications of such techniques to any of the
formalisms discussed in this paper. Furthermore, extensions of assumption-based
argumentation, such as the integration of priorities [6], can now be combined with
the translated formalisms.

In future work, we plan to extend our results to approximation operators that
give rise to non-flat ABFs (such as those for autoepistemic logic) and consider
non-deterministic operators [18].
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