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Wolfgang DVOŘÁK a, Atefeh KESHAVARZI ZAFARGHANDI b and
Stefan WOLTRAN a

a Institute of Logic and Computation, TU Wien, Austria
b Department of Artificial Intelligence, Bernoulli Institute, University of Groningen,

The Netherlands

Abstract. Generalizing the attack structure in argumentation frameworks (AFs)
has been studied in different ways. Most prominently, the binary attack relation
of Dung frameworks has been extended to the notion of collective attacks. The
resulting formalism is often termed SETAFs. Another approach is provided via
abstract dialectical frameworks (ADFs), where acceptance conditions specify the
relation between arguments; restricting these conditions naturally allows for so-
called support-free ADFs. The aim of the paper is to shed light on the relation
between these two different approaches. To this end, we investigate and compare
the expressiveness of SETAFs and support-free ADFs under the lens of 3-valued
semantics. Our results show that it is only the presence of unsatisfiable acceptance
conditions in support-free ADFs that discriminate the two approaches.
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1. Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung [1] are a core formal-
ism in formal argumentation. A popular line of research investigates extensions of Dung
AFs that allow for a richer syntax (see, e.g. [2]). In this work we investigate two general-
isations of Dung AFs that allow for a more flexible attack structure (but do not consider
support between arguments).

The first formalism we consider are SETAFs as introduced by Nielsen and Par-
sons [3]. SETAFs extend Dung AFs by allowing for collective attacks such that a set
of arguments B attacks another argument a but no proper subset of B attacks a. Argu-
mentation frameworks with collective attacks have received increasing interest in the last
years. For instance, semi-stable, stage, ideal, and eager semantics have been adapted to
SETAFs in [4,5]; translations between SETAFs and other abstract argumentation for-
malisms are studied in [6]; [7] observed that for particular instantiations, SETAFs pro-
vide a more convenient target formalism than Dung AFs. The expressiveness of SETAFs
with two-valued semantics has been investigated in [4] in terms of signatures. Signatures
have been introduced in [8] for AFs. In general terms, a signature for a formalism and
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a semantics captures all possible outcomes that can be obtained by the instances of the
formalism under the considered semantics. Besides that, signatures are recognized as
crucial for operators in dynamics of argumentation (cf. [9]).

The second formalism we consider are support-free abstract dialectical frameworks
(SFADFs), a subclass of abstract dialectical frameworks (ADFs) [10] which are known
as an advanced abstract formalism for argumentation, that is able to cover several gener-
alizations of AFs [2,6]. This is accomplished by acceptance conditions which specify, for
each argument, its relation to its neighbour arguments via propositional formulas. These
conditions determine the links between the arguments which can be, in particular, attack-
ing or supporting. SFADFs are ADFs where each link between arguments is attacking;
they have been introduced in a recent study on different sub-classes of ADFs [11].

For comparison of the two formalisms, we need to focus on 3-valued (labelling)
semantics [12,13], which are integral for ADF semantics [10]. In terms of SETAFs, we
can rely on the recently introduced labelling semantics in [5]. We first define a new class
of ADFs (SETADFs) where the acceptance conditions strictly follow the nature of col-
lective attacks in SETAFs and show that SETAFs and SETADFs coincide for the main
semantics, i.e. the σ -labellings of a SETAF are equal to the σ -interpretations of the cor-
responding SETADF. We then provide exact characterisations of the 3-valued signatures
for SETAFs (and thus for SETADFs) for most of the semantics under consideration.
While SETADFs are a syntactically defined subclass of ADFs, the second formalism we
study can be understood as semantical subclass of ADFs. In fact, for SFADFs it is not the
syntactic structure of acceptance conditions that is restricted but their semantic behavior,
in the sense that all links need to be attacking. The second main contribution of the paper
is to determine the exact difference in expressiveness between SETADFs and SFADFs.

We briefly discuss related work. The expressiveness of SETAFs has first been in-
vestigated in [14] where different sub-classes of ADFs, i.e. AFs, SETAFs and Bipolar
ADFs, are related w.r.t. their signatures of 3-valued semantics. Moreover, they provide
an algorithm to decide realizability in one of the formalisms under different semantics.
However, no explicit characterisations of the signatures are given. Recently, Pührer [15]
presented explicit characterisations of the signatures of general ADFs (but not for the
sub-classes discussed above). In contrast, [4] provides explicit characterisations of the
two-valued signatures of SETAFs and shows that SETAFs are more expressive than AFs.
In both works all arguments are relevant for the signature, while in [5] it is shown that
when allowing to add extra arguments to an AF which are not relevant for the signa-
ture, i.e. the extensions/labellings are projected on common arguments, then SETAFs and
AFs are of equivalent expressiveness. Other recent work [16] already implicitly showed
that SFADFs with satisfiable acceptance conditions can be equivalently represented as
SETAFs. This provides a sufficient condition for rewriting an ADF as SETAF and raises
the question whether it is also a necessary condition. In fact, we will show that a SFADF
has an equivalent SETAF if and only if all acceptance conditions are satisfiable. Differ-
ent sub-classes of ADFs (including SFADFs) have been compared in [11], but no exact
characterisations of signatures as we provide here are given in that work.
To summarize, the main contributions of our paper are as follows:

• We embed SETAFs under 3-valued labeling based semantics [5] in the more gen-
eral framework of ADFs. That is, we show 3-valued labeling based SETAF se-
mantics to be equivalent to the corresponding ADF semantics. As a side result,
this also shows the equivalence of the 3-valued SETAF semantics in [14] and [5].
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• We investigate the expressiveness of SETAFs under 3-valued semantics by pro-
viding exact characterizations of the signatures for preferred, stable, grounded and
conflict-free semantics, thus complementing the investigations on expressiveness
of SETAFs [4] in terms of extension-based semantics.

• We study the relations between SETAFs and support-free ADFs (SFADFs). In
particular we give the exact difference in expressiveness between SETAFs and
SFADFs under conflict-free, admissible, preferred, grounded, complete, stable
and two-valued model semantics.

Some technical details had to be omitted but are available in an online appendix:
https://www.dbai.tuwien.ac.at/research/argumentation/comma2020-1.pdf

2. Background

In this section we briefly recall the necessary definitions for SETAFs and ADFs.

Definition 1. A set argumentation framework (SETAF) is an ordered pair F = (A,R),
where A is a finite set of arguments and R ⊆ (2A \{ /0})×A is the attack relation.

The semantics of SETAFs are usually defined similarly to AFs, i.e., based on exten-
sions. However, in this work we focus on 3-valued labelling based semantics, cf. [5].

Definition 2. A (3-valued) labelling of a SETAF F = (A,R) is a total function λ : A �→
{in,out,undec}. For x ∈ {in,out,undec} we write λx to denote the sets of arguments
a ∈ A with λ (a) = x. We sometimes denote labellings λ as triples (λin,λout,λundec).

Definition 3. Let F = (A,R) be a SETAF. A labelling is called conflict-free in F if (i) for
all (S,a) ∈ R either λ (a) �= in or there is a b ∈ S with λ (b) �= in, and (ii) for all a ∈ A,
if λ (a) = out then there is an attack (S,a) ∈ R such that λ (b) = in for all b ∈ S. A
labelling λ which is conflict-free in F is

• admissible in F iff for all a ∈ A if λ (a) = in then for all (S,a) ∈ R there is a b ∈ S
such that λ (b) = out;

• complete in F iff for all a ∈ A (i) λ (a) = in iff for all (S,a) ∈ R there is a b ∈ S
such that λ (b) = out, and (ii) λ (a) = out iff there is an attack (S,a) ∈ R such
that λ (b) = in for all b ∈ S;

• grounded in F iff it is complete and there is no λ ′ with λ ′
in ⊂ λin complete in F ;

• preferred in F iff it is complete and there is no λ ′ with λ ′
in⊃λin complete in F ;

• stable in F iff λundec = /0.

The set of all σ labellings for a SETAF F is denoted by σL (F), where σ ∈ {cf,adm,
com,grd,prf,stb} abbreviates the different semantics in the obvious manner.

Example 1. The SETAF F = ({a,b,c},{({a,b},c),({a,c},b)}) is depicted in Fig-
ure 1. For instance, ({a,b},c) ∈ R says that there is a joint attack from a and b to c.
This represents that neither a nor b is strong enough to attack c by themselves. Fur-
ther, {a �→ in,b �→ undec,c �→ in} is an instance of a conflict-free labelling, that is
not an admissible labelling (since c is mapped to in but neither a nor b is mapped to
out). The labelling that maps all argument to undec is not a complete labelling, how-
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Figure 1. The SETAF of Example 1.

ever, it is an admissible labelling. Further, {a �→ in,b �→ undec,c �→ undec} is an ad-
missible, the unique grounded and a complete labelling, which is not a preferred la-
belling because λin = {a} is not ⊆-maximal among all complete labellings. Moreover,
prfL (F) = stbL (F) = {{a �→ in,b �→ out,c �→ in},{a �→ in,b �→ in,c �→ out}}.

We next turn to abstract dialectical frameworks [17].

Definition 4. An abstract dialectical framework (ADF) is a tuple D = (S,L,C) where:

• S is a finite set of arguments (statements, positions);
• L ⊆ S×S is a set of links among arguments;
• C = {ϕs}s∈S is a collection of propositional formulas over arguments, called ac-

ceptance conditions.

An ADF can be represented by a graph in which nodes indicate arguments and
links show the relation among arguments. Each argument s in an ADF is attached by a
propositional formula, called acceptance condition, ϕs over par(s) such that, par(s) =
{b | (b,s) ∈ L}. Since in ADFs an argument appears in the acceptance condition of an
argument s if and only if it belongs to the set par(s), the set of links L of an ADF is given
implicitly via the acceptance conditions. The acceptance condition of each argument
clarifies under which condition the argument can be accepted and determines the type of
links (see Definition 6 below). An interpretation v (for F) is a function v : S �→ {t, f,u},
that maps arguments to one of the three truth values true (t), false (f), or undecided (u).
Truth values can be ordered via information ordering relation <i given by u <i t and
u <i f and no other pair of truth values are related by <i. Relation ≤i is the reflexive
and transitive closure of <i. An interpretation v is two-valued if it maps each argument
to either t or f. Let V be the set of all interpretations for an ADF D. Then, we call a
subset of all interpretations of the ADF, V⊆ V , an interpretation-set. Interpretations can
be ordered via ≤i with respect to their information content, i.e. w ≤i v if w(s) ≤i v(s)
for each s ∈ S. Further, we denote the update of an interpretation v with a truth value
x ∈ {t, f,u} for an argument b by v|bx , i.e. v|bx(b) = x and v|bx(a) = v(a) for a �= b. Finally,
the partial valuation of acceptance condition ϕs by v, is given by ϕv

s = v(ϕs) = ϕs[p/� :
v(p) = t][p/⊥ : v(p) = f], for p ∈ par(s).

Semantics for ADFs can be defined via a characteristic operator ΓD for an ADF D.
Given an interpretation v (for D), the characteristic operator ΓD for D is defined as

ΓD(v) = v′ such that v′(s) =

⎧
⎪⎨

⎪⎩

t if ϕv
s is irrefutable (i.e., a tautology),

f if ϕv
s is unsatisfiable,

u otherwise.

Definition 5. Given an ADF D = (S,L,C), an interpretation v is
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Figure 2. The ADF of Example 2.

• conflict-free in D iff v(s) = t implies ϕv
s is satisfiable and v(s) = f implies ϕv

s is
unsatisfiable;

• admissible in D iff v ≤i ΓD(v);
• complete in D iff v = ΓD(v);
• grounded in D iff v is the least fixed-point of ΓD;
• preferred in D iff v is ≤i-maximal admissible in D;
• a (two-valued) model of D iff v is two-valued and for all s ∈ S, it holds that v(s) =

v(ϕs);
• a stable model of D if v is a model of D and vt = wt, where w is the grounded

interpretation of the stb-reduct Dv =(Sv,Lv,Cv), where Sv = vt, Lv = L∩(Sv×Sv),
and ϕs[p/⊥ : v(p) = f] for each s ∈ Sv.

The set of all σ interpretations for an ADF D is denoted by σ(D), where σ ∈ {cf,adm,
com,grd,prf,mod,stb} abbreviates the different semantics in the obvious manner.

Example 2. An example of an ADF D = (S,L,C) is shown in Figure 2. To each argu-
ment a propositional formula is associated, the acceptance condition of the argument.
For instance, the acceptance condition of c, namely ϕc : ¬a∨¬b, states that c can be
accepted in an interpretation where either a or b (or both) are rejected.

In D the interpretation v = {a �→ u,b �→ u,c �→ t} is conflict-free. However, v is
not an admissible interpretation, because ΓD(v) = {a �→ u,b �→ u,c �→ u}, that is, v �≤i
ΓD(v). The interpretation v1 = {a �→ f,b �→ t,c �→ u} on the other hand is an admissible
interpretation. Since ΓD(v1) = {a �→ f,b �→ t,c �→ t} and v1 ≤i ΓD(v1). Further, prf(D) =
mod(D) = {{a �→ t,b �→ f,c �→ t},{a �→ f,b �→ t,c �→ t}}, but only the first interpretation
in this set is a stable model. This is because for v = {a �→ t,b �→ f,c �→ t} the unique
grounded interpretation w of Dv is {a �→ t,c �→ t} and vt = wt. The interpretation v′ =
{a �→ f,b �→ t,c �→ t} is not a stable model, since the unique grounded interpretation w′

of Dv′ is {b �→ u,c �→ t} and v′t �= w′t. Actually, v′ is not a stable model because the truth
value of b in v′ is since of self-support. Moreover, the unique grounded interpretation of
D is v = {a �→ u,b �→ u,c �→ u}. In addition, we have com(D) = prf(D)∪grd(D).

In ADFs links between arguments can be classified into four types, reflecting the
relationship of attack and/or support that exists among the arguments. In Definition 6 we
consider two-valued interpretations that are only defined over the parents of a, that is,
only give values to par(a).

Definition 6. Let D = (S,L,C) be an ADF. A link (b,a) ∈ L is called

• supporting (in D) if for every two-valued interpretation v of par(a), v(ϕa) = t

implies v|bt (ϕa) = t;
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• attacking (in D) if for every two-valued interpretation v of par(a), v(ϕa) = f im-
plies v|bt (ϕa) = f;

• redundant (in D) if it is both attacking and supporting;
• dependent (in D) if it is neither attacking nor supporting.

The classification of the types of the links of ADFs is also relevant for classifying
ADFs themselves. One particularly important subclass of ADFs is that of bipolar ADFs
or BADFs for short. In such an ADF each link is either attacking or supporting (or both;
thus, the links can also be redundant). Another subclass of ADFs, having only attacking
links, is defined in [18], called support free ADFs (SFADFs) in the current work, defined
formally as follows.

Definition 7. An ADF is called support-free if it has only attacking links.

For SFADFs, it turns out that the intention of stable semantics, i.e. to avoid cyclic
support among arguments, becomes immaterial, thus mod(D) = stb(D) for any ADF D;
the property is called weakly coherent in [18].

Proposition 1. For every SFADF D it holds that mod(D) = stb(D).

Proof. The result follows from the following observation: Let D = (S,L,C) be an ADF,
let v be a model of D and let s ∈ S be an argument such that all parents of s are attackers.
Thus, ϕv

s is irrefutable if and only if ϕs[p/⊥ : v(p) = f] is irrefutable.

3. Embedding SETAFs in ADFs

As observed by Polberg [19] and Linsbichler et.al [14], the notion of collective attacks
can also be represented in ADFs by using the right acceptance conditions. We next in-
troduce the class SETADFs of ADFs for this purpose.

Definition 8. An ADF D = (S,L,C) is called SETAF-like (SETADF) if each of the
acceptance conditions in C is given by a formula (with C a set of non-empty clauses)

∧

cl∈C

∨

a∈cl

¬a.

That is, in a SETADF each acceptance condition is either � (if C is empty) or a
proper CNF formula over negative literals. SETADFs and SETAFs can be embedded in
each other as follows.

Definition 9. Let F = (A,R) be a SETAF. The ADF associated to F is a tuple DF =
(S,L,C) in which S =A, L= {(a,b) | (B,b)∈ R,a∈ B} and C = {ϕa}a∈S is the collection
of acceptance conditions defined, for each a ∈ S, as

ϕa =
∧

(B,a)∈R

∨

a′∈B

¬a′.

Let D = (S,L,C) be a SETADF. We construct the SETAF FD = (A,R) in which,
A = S, and R is constructed as follows. For each argument s ∈ S with acceptance formula∧

cl∈C
∨

a∈cl ¬a we add the attacks {(cl,s) | cl ∈ C } to R.
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Clearly the ADF DF associated to a SETAF F is a SETADF and D is the ADF asso-
ciated to the constructed SETAF FD. We next deal with the fact that SETAF semantics are
defined as three-valued labellings while semantics for ADFs are defined as three valued
interpretations. In order to compare these semantics we associate the in label with t, the
out label with f , and the undec label with u.

Theorem 2. For σ ∈ {cf,adm,com,prf,grd,stb}, a SETAF F and its associated SET-
ADF D, we have that σL (F) and σ(D) are in one-to-one correspondence with each
labelling L ∈ σL (F) corresponding to an interpretation v ∈ σ(D) such that v(s) = t iff
λ (s) = in, v(s) = f iff λ (s) = out, and v(s) = u iff λ (s) = undec.

Notice that by the above theorem we have that the 3-valued SETAF semantics intro-
duced in [14] coincide with the 3-valued labelling based SETAF semantics of [5] and the
model semantics of [14] corresponds to the stable semantics of [5].

4. 3-valued Signatures of SETAFs

We adapt the concept of signatures [8] towards our needs first.

Definition 10. The signature of SETAFs under a labelling-based semantics σL is de-
fined as ΣσL

SETAF = {σL (F) | F ∈ SETAF}. The signature of an ADF-subclass C under
a semantics σ is defined as Σσ

C = {σ(D) | D ∈ C }.

By Theorem 2 we can use labellings of SETAFs and interpretations of the SETADF
class of ADFs interchangeably, yielding that ΣσL

SETAF ≡ Σσ
SETADF , i.e. the 3-valued signa-

tures of SETAFs and SETADFs only differ in the naming of the labels. For convenience,
we will use the SETAF terminology in this section.

Proposition 3. The signature ΣstbL
SETAF is given by all sets L of labellings such that

1. all λ ∈L have the same domain ARGSL; λ (s) �= undec for all λ ∈L, s∈ ARGSL.
2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.
3. For arbitrary λ1,λ2 ∈L with λ1 �= λ2 there is an argument a such that λ1(a) = in

and λ2(a) = out.

Proof. We first show that for each SETAF F the set stbL (F) satisfies the conditions of
the proposition. First clearly all λ ∈ stbL (F) have the same domain and by the definition
of stable semantics do not assign undec to any argument. That is the first condition is
satisfied. For Condition (2), towards a contradiction assume that the domain is non-empty
and λ ∈ stbL (F) assigns all arguments to out. Consider an arbitrary argument a. By
definition of stable semantics a is only labeled out if there is an attack (B,a) such that
all arguments in B are labeled in in, a contradiction. Thus we obtain that there is at least
one argument a with λ (a) = in. For Condition (3), towards a contradiction assume that
for all arguments a with λ1(a) = in also λ2(a) = in holds. As λ1 �= λ2 there is an a
with λ2(a) = in and λ1(a) = out. That is, there is an attack (B,a) such that λ1(b) = in

for all b ∈ B. But then also λ2(b) = in for all b ∈ B and by λ2(a) = in we obtain that
λ2 �∈ cfL (F), a contradiction.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL) with
AL = ARGSL and RL = {(λin,a) | λ ∈ L,λ (a) = out}. We show that stbL (FL) = L.
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To this end we first show stbL (FL) ⊇ L. Consider an arbitrary λ ∈ L: By Con-
dition (1) there is no a ∈ ARGSL with λ (a) = undec and it only remains to show
λ ∈ cfL (FL). First, if λ (a) = out for some argument a then by construction of RL and
Condition (2) we have an attack (λin,a) and thus a is legally labeled out. Now towards
a contradiction assume there is a conflict (B,a) such that B∪{a} ⊆ λin. Then, by con-
struction of RL there is a λ ′ ∈L with λ ′

in =B and λin �=B (as a∈ λin). That is, λ ′
in ⊂ λin,

a contradiction to Condition (3). Thus, λ ∈ cfL (FL) and therefore λ ∈ stbL (FL).
To show stbL (FL) ⊆ L, consider λ ∈ stbL (FL). If λ maps all arguments to in

then there is no attack in RL which means that L contains only the labelling λ . Thus,
we assume that there is a with λ (a) = out and there is (B,a) ∈ RL with B ⊆ λin. By
construction there is λ ′ ∈ L such that λ ′

in = B. Then by construction we have (B,c) ∈ RL

for all c �∈ B and thus λ ′
in = B = λin and moreover λ ′

out = λout and thus λ = λ ′.

We now turn to the signature for preferred semantics. Compared to the conditions
for stable semantics, labelling may now assign undec to arguments. Note that stable is
the only semantics allowing for an empty labelling set.

Proposition 4. The signature ΣprfL
SETAF is given by all non-empty sets L of labellings s.t.

1. all labellings λ ∈ L have the same domain ARGSL.
2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.
3. For arbitrary λ1,λ2 ∈ L with λ1 �= λ2 there is an argument a such λ1(a) = in

and λ2(a) = out.

Proof sketch. We first show that for each SETAF F the set prfL (F) satisfies the condi-
tions of the proposition. The first condition is satisfied as all λ ∈ prfL (F) have the same
domain. The second condition is satisfied by the definition of conflict-free labellings.
Condition (3) is by the ⊆-maximality of λin which implies that there is a conflict between
each two preferred extensions.

Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL) with
AL = ARGSL and RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(λin∪{a},a) | λ ∈ L,λ (a) =
undec}. It remains to show that prfL (FL) = L. To show prfL (FL) ⊇ L, consider an
arbitrary λ ∈ L. λ ∈ cfL (FL) can be seen by construction, and λ ∈ admL (FL) since ar-
gument labelled out is attacked by λ ; finally λ ∈ prfL (FL) is guaranteed since the argu-
ments a with λ (a) = undec are involved in self-attacks. To show prfL (FL)⊆L consider
λ ∈ prfL (FL). It can be checked that λ satisfies all the conditions of the proposition.

Proposition 5. The signature ΣcfL
SETAF is given by all non-empty sets L of labellings s.t.

1. all λ ∈ L have the same domain ARGSL.
2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.
3. For λ ∈ L and C ⊆ λin also (C, /0,ARGSL \C) ∈ L.
4. For λ ∈ L and C ⊆ λout also (λin,λout \C,λundec∪C) ∈ L.
5. For λ ,λ ′ ∈ L with λin ⊆ λ ′

in also (λ ′
in,λout∪λ ′

out,λundec∩λ ′
undec) ∈ L.

6. For λ ,λ ′ ∈ L and C ⊆ λout (s.t. C �= /0) we have λin∪C �⊆ λ ′
in.

Proof sketch. Let F be an arbitrary SETAF we show that cfL (F) satisfies the con-
ditions of the proposition. The first two conditions are clearly satisfied by the def-
inition of conflict-free labelling. For Condition (3), towards a contradiction assume
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that (C, /0,ARGSL \C) is not conflict-free. Then there is an attack (B,a) such that
B∪{a} ⊆C ⊆ λin, and thus λ �∈ cfL (F), a contradiction. Condition (4) is satisfied as in
the definition of conflict-free labellings there are no conditions for labeling an argument
undec. Further, the conditions that allow to label an argument out solely depend on the
in labeled arguments. For Condition (5), consider λ ,λ ′ ∈ cfL (F) with λin ⊆ λ ′

in and
λ ∗ = (λ ′

in,λout ∪ λ ′
out,λundec ∩ λ ′

undec). Since λ ,λ ′ ∈ L, it is easy to check that λ ∗ is
a well-founded labelling and λ ∗ ∈ cfL (F). For Condition (6), consider λ ,λ ′ ∈ cfL (F)
and a set C ⊆ λout containing an argument a such that λ (a) = out. That is, there is an
attack (B,a) with B ⊆ λin and thus λin∪C �⊆ λ ′

in. That is, Condition (6) is satisfied.
Now assume that L satisfies all the conditions. We give a SETAF FL = (AL,RL) with

AL = ARGSL and RL = {(λin,a) | λ ∈ L,λ (a) = out}∪{(B,b) | b ∈ B,�λ ∈ L : λin =
B}. To complete the proof it remains to show that cfL (FL) = L.

Finally, we give an exact characterisation of the signature of grounded semantics.

Proposition 6. The signature ΣgrdL
SETAF is given by sets L of labellings such that |L| = 1,

and if λ ∈ L assigns one argument to out then λin �= /0.

Notice that Proposition 6 basically exploits that grounded semantics is a unique
status semantics based on admissibility. The result thus immediately extends to other
semantics satisfying these two properties, e.g. to ideal or eager semantics [5].

So far, we have provided characterisations for the signatures ΣstbL
SETAF, ΣprfL

SETAF,
ΣcfL

SETAF, ΣgrdL
SETAF. By Theorem 2 we get analogous characterizations of Σσ

SETADF for the
corresponding ADF semantics.

We have not yet touched admissible and complete semantics. Here, the exact char-
acterisations seem to be more cumbersome and are left for future work. However, for
admissible semantics the following proposition provides necessary conditions for an
labelling-set to be adm-realizable, but it remains open whether they are also sufficient.

Proposition 7. For each L ∈ ΣadmL
SETAF we have:

1. all λ ∈ L have the same domain ARGSL.
2. If λ ∈ L assigns one argument to out then it also assigns an argument to in.
3. For λ ,λ ′ ∈ L and C ⊆ λout (s.t. C �= /0) we have λin∪C �⊆ λ ′

in.
4. For arbitrary λ ,λ ′ ∈ L either (a) (λin∪λ ′

in,λout∪λ ′
out,λundec∩λ ′

undec) ∈ L or
(b) there is an argument a such λ (a) = in and λ ′(a) = out.

5. For λ ,λ ′ ∈L with λout ⊆ λ ′
out, and C ⊆ λin \⋃λ ∗∈L: λ ∗

in=λ ′
in

λ ∗
out we have (λ ′

in∪
C,λ ′

out,λ ′
undec \C) ∈ L.

6. For λ ,λ ′ ∈L with λin ⊆ λ ′
in, and C ⊆ λout we have (λ ′

in,λ ′
out∪C,λ ′

undec\C)∈L.
7. For λ ,λ ′ ∈ L with λin ⊆ λ ′

in and λout ⊇ λ ′
out we have (λin,λ ′

out,ARGSL \ (λin∪
λ ′
out)) ∈ L.

8. ( /0, /0,ARGSL) ∈ L.

Proof. We show that for each SETAF F the set admL (F) satisfies the conditions of
the proposition. Conditions (1)–(3) are by the fact that admL (F)⊆ cfL (F). For Condi-
tion (4), let λ ,λ ′ ∈ admL (F) with λin ∩λ ′

out = {} (since each admissible labelling de-
fends itself, λ ′

in∩λout = {}). Thus, λ ∗ = (λin∪λ ′
in,λout∪λ ′

out,λundec∩λ ′
undec) is a well-

defined labelling. Further, since λ ,λ ′ ∈ admL (F) it is easy to check that λ ∗ ∈ admL (F).
For Condition (5), let λ ∗ = (λ ′

in∪C,λ ′
out,λ ′

undec\C). First, λ ∗ is a well-defined labelling.
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Notice that the set C contains arguments defended by λ and not attacked by λ ′
in. Now,

it is easy to check that λ ∗ meets the condition for being an admissible labelling. For
Condition (6), let λ ∗ = (λ ′

in,λ ′
out ∪C,λ ′

undec \C). Notice that the set C contains only
arguments attacked by λin and thus are also attacked by λ ′

in. Thus, starting from the ad-
missible labelling λ ′ we can relabel arguments in C to out and obtain that λ ∗ is also an
admissible labelling. For Condition (7), let λ ∗ = (λin,λ ′

out,ARGSL \ (λin∪λ ′
out)). First,

λ ∗ is a well-defined labelling. We have that setting λ ′
out to out is sufficient to make all

the in labels for arguments in λ ′
in valid and thus are also sufficient to make the in labels

for arguments λin ⊆ λ ′
in valid. Moreover, as λout ⊇ λ ′

out also labelling arguments λin

with in is sufficient to make the out labels for λ ′
out valid. Hence, λ ∗ is admissible. For

Condition (8), the conditions of admissible labelling for arguments labelled in or out in
( /0, /0,ARGSL) are clearly met, since there are no such arguments.

5. On the Relation between SETAFs and Support-Free ADFs

In order to compare SETAFs with SFADFs, we can rely on SETADFs (recall Theorem 2).
In particular, we will compare the signatures Σσ

SETADF and Σσ
SFADF , cf. Definition 10. We

start with the observation that each SETADF can be rewritten as an equivalent SETADF
that is also a SFADF.1

Lemma 8. For each SETADF D = (S,L,C) there is an equivalent SETADF D′ =
(S,L′,C′) that is also a SFADF, i.e. for each s ∈ S, ϕs ∈C, ϕ ′

s ∈C′ we have ϕs ≡ ϕ ′
s.

Proof. Given a SETADF D, by Definition 8, each acceptance condition is a CNF over
negative literals and thus does not have any support link which is not redundant. We can
thus obtain L′ by removing the redundant links from L and C′ by, in each acceptance
condition, deleting the clauses that are super-sets of other clauses.

By the above we have that Σσ
SETADF ⊆ Σσ

SFADF. Now consider the interpretation v =
{a �→ f}. We have that for all considered semantics σ , v is a σ -interpretation of the
SFADF D = ({a},{ϕa = ⊥}) but there is no SETADF with v being a σ -interpretation.
We thus obtain Σσ

SETADF � Σσ
SFADF .

Theorem 9. Σσ
SETADF � Σσ

SFADF , for σ ∈ {cf,adm,stb,mod,com,prf,grd}.

In the remainder of this section we aim to characterise the difference between
Σσ

SETADF and Σσ
SFADF . To this end we first recall a characterisation of the acceptance con-

ditions of SFADF that can be rewritten as collective attacks.

Lemma 10. [16] Let D = (S,L,C) be a SFADF. If s ∈ S has at least one incoming link
then the acceptance condition ϕs can be written in CNF containing only negative literals.

It remains to consider those arguments in an SFADF with no incoming links. Such
arguments allow for only two acceptance conditions � and ⊥. While condition � is un-
problematic (it refers to an initial argument in a SETAF), an argument with unsatisfiable
acceptance condition cannot be modeled in a SETADF. In fact, the different expressive-

1 As discussed in [6], in general, SETAFs translate to bipolar ADFs that contain attacking and redundant
links. However, when we first remove redundant attacks from the SETAF we obtain a SFADF.
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ness of SETADFs and SFADFs is solely rooted in the capability of SFADFs to set an
argument to f via a ⊥ acceptance condition.

We next give a generic characterisations of the difference between Σσ
SETADF and

Σσ
SFADF .

Theorem 11. For σ ∈ {cf,adm,stb,mod,com,prf,grd}, we have Δσ = Σσ
SFADF \Σσ

SETADF
with

Δσ = {V ∈ Σσ
SFADF | ∃v ∈ V s.t. ∀a : v(a) ∈ {f,u}∧∃a : v(a) = f}.

Proof sketch. First for V ∈ Δσ the interpretation v cannot be realized in a SETADF as
we cannot have v(a) ∈ f without v(b) ∈ t for some other argument b. On the other hand
one can show that when V ∈ Σσ

SFADF is such that each v ∈ V assigns some argument to t

one can construct a SETADF D with σ(D) = V. This is by the fact that we can rewrite
acceptance conditions via Lemma 10 and replace ⊥ acceptance conditions by collective
attacks, i.e. for each interpretation we add collective attacks from the arguments set to t

to all argument with ⊥ acceptance condition.

Next, we provide stronger characterisations of Δσ for preferred and stable semantics.

Proposition 12. For V∈Δσ and σ ∈{stb,mod,prf} we have |V|= 1. For σ ∈{stb,mod}
the unique v ∈ V assigns all arguments to f.

Proof sketch. If a SFADF has a σ -interpretation v that assigns some arguments to f with-
out assigning an argument to t then we have that the arguments assigned to f are exactly
the arguments with acceptance condition ⊥. For stb and mod semantics this means all
arguments have acceptance condition ⊥ and the result follows. Each preferred interpreta-
tion assigns arguments with acceptance condition ⊥ to f and thus the existence of another
preferred interpretation would violate the ≤i-maximality of v.

In other words each interpretation-set which is σ -realizable in SFADFs and contains
at least two interpretations can be realized in SETADFs, for σ ∈ {stb,prf,mod}. We close
this section with an example illustrating that the above characterisation thus not hold for
cf, adm, and com.

Example 3. Let D= ({a,b,c},{ϕa =⊥,ϕb =¬c,ϕc =¬b}). We have com(D) = {{a �→
f,b �→ u,c �→ u},{a �→ f,b �→ t,c �→ f},{a �→ f,b �→ f,c �→ t}}. By Theorem 11, com(D)
cannot be realized as SETADF. Moreover, as com(D)⊆ adm(D)⊆ cf(D) for every ADF
D, we have that, despite all three contain more than one interpretation, none of them can
be realized via a SETADF.

6. Discussion

In this paper, we have characterised the expressiveness of SETAFs under 3-valued signa-
tures. The more fine-grained notion of 3-valued signatures reveals subtle differences of
the expressiveness of stable and preferred semantics which are not present in the 2-valued
setting [4] and enabled us to compare the expressive power of SETAFs and SFADFs,
a subclass of ADFs that allows only for attacking links. In particular, we have exactly
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characterized the difference for conflict-free, admissible, complete, stable, preferred, and
grounded semantics; this difference is rooted in the capability of SFADFs to set an initial
argument to false. Together with our exact characterisations on signatures of SETAFs for
stable, preferred, grounded, and conflict-free semantics, this also yields the correspond-
ing results for SFADFs. Exact characterisations for admissible and complete semantics
are subject of future work. Another aspect to be investigated is to which extent our in-
sights on labelling-based semantics for SETAFs and SFADFs can help to improve the
performance of reasoning systems.
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