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Abstract. There are two intuitive principles governing belief formation and argu-
ment evaluation that can potentially clash. After arguing that adopting them un-
restrictedly leads to an infinite regress, we propose a formal framework in which
qualified versions of both principles can be subscribed without falling into such a
regress. The proposal integrates tools from two different traditions: structured ar-
gumentation and awareness epistemic logic. We show that our formalism satisfies
certain rationality postulates and argue that the rest of them can be seen as too ideal
when modelling resource-bounded agents.
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1. Introduction

There exists certain tension between the formation of some epistemic attitudes of an
agent and the way she assesses her available arguments. For the sake of simplicity, we
will restrict our attention to the case of beliefs in what follows. The mentioned tension
arises when one tries to embrace two principles that, when taken separately, seem to be
intuitively acceptable:

P1 The beliefs of an agent should be partially determined by the evaluation she per-
forms of her available arguments. To be more precise, if an agent is consider-
ing her doxastic attitude towards a sentence ϕ , she should first assess her avail-
able arguments about ϕ and then form her belief consequently (for instance, by
believing ϕ if she owns an accepted argument in favour of ϕ).2 In short: belief
formation is conditioned by argument evaluation.

P2 When an agent assesses her available arguments, she should take into account
her beliefs with respect to the premises. In this sense, arguments with believed
premises should be taken to be stronger by the agent than arguments whose
premises are not believed. In short: argument evaluation is conditioned by belief
formation.

1Corresponding Author: Office 522, Department of Philosophy, Faculty of Humanities, University of
Málaga, 29010, Spain; E-mail: antonioyusteginel@gmail.com.

2The term accepted is extremely vague at this point, but it will be discussed and clarified later on.
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Adopting P1 and P2 unrestrictedly leads to an infinite regress. To see this, let us
examine the following fictional dialogue with an agent embracing P1 and P2. We start
the conversation by asking: “why do you believe ϕ?”. By applying P1, she would reply
something like: “because I own an accepted argument α that concludes ϕ”. We could
ask her, in turn: “why do you accept argument α?”. The agent might reply, applying P2:
“because I believe that its premises Prem(α) = ϕ1, ...,ϕn are true”. Then we would ask:
“why do you believe so?” and she would invoke P1 again to say that she owns accepted
arguments α1, ...,αn concluding ϕ1, ...,ϕn. It is easy to see that this conversation could
go on indefinitely.

It is worth saying that an analogous form of regression is found in the epistemo-
logical literature about the foundation of epistemic justification. Concretely, it is used as
a classical argument for foundationalist theories of epistemic justification [1], in which
we found inspiration for the present work. Besides, it is interesting to note that different
works from the fields of formal argumentation and epistemic logic have separately sub-
scribed different versions of P1 or P2. Let us just mention and briefly comment some of
them.

Regarding P1 within formal argumentation, the idea of founding the beliefs (or
knowledge) of agents on the evaluation they perform of their available arguments is al-
ready present in the seminal work of Dung [2]. This idea is recovered and further de-
veloped by frameworks of structured argumentation (e.g. [3,4]), where the sentences be-
lieved by the agent can be explicitly stated. Concurrently, epistemic logic has recently
focused on the problem of including the –heretofore ignored– justification component
into its formal models of knowledge and belief. This has been done in multiple manners,
among which we can distinguish between syntactic and semantic approaches –where the
adjectives syntactic and semantic refer to the choices for modelling justification. As for
the first group of approaches, it is customary to employ justification logic (e.g. [5,6,7]).
As for the second one, they have focused on how to ground the beliefs and knowledge
of an agent in (possibly conflicting) pieces of evidence [8,9]. Additionally, some works
(among others [10,11]) have mixed tools from formal argumentation and epistemic logic
in order to develop their particular view of P1.

Regarding P2, we could say that its explicit acceptance is less spread throughout the
literature. Nevertheless, in formal argumentation the idea of ordering sets of premises
according to their reliability (see Section 1.2 of [12] and the references given there) can
be understood as a version of P2. Besides, some works in justification logic [6,7] define
the acceptance of a complex piece of evidence as the agent having a (modal) belief of its
premises being true.

The main aim of this paper is to present a simple formalism (Section 2) that allows
embracing explicitly qualified versions of P1 and P2 without falling into the mentioned
regress (Section 3). We do so by integrating tools from awareness epistemic logic and
formal argumentation. Moreover, and locating our work in the field of epistemic logic,
we are interested in resource-bounded agents. This implies overcoming at least two prob-
lems: i) the classical problem of logical omniscience and ii) certain idealizations that
underlie structured argumentation formalisms and that have recently been examined crit-
ically [13]. In particular, we drop the extended assumption that agents generate all well-
shaped arguments from a given knowledge base and analyse the (negative) effects of this
choice on the satisfiability of [3]’s rationality postulates (Section 4).
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2. An Awareness Logic for Belief and Argumentation

The main ingredients of our logic for belief and argumentation are: (i) epistemic logic
[14,15,16], a well-known tool for modelling qualitatively beliefs and knowledge of sev-
eral agents; (ii) its extension with awareness operators [17] to model explicit beliefs,
which allows overcoming the problem of logical omniscience (see e.g. Section 9 of [15])
and (iii) ideas taken from ASPIC+ [4] to model structured arguments. 3 Among the most
relevant features of ASPIC+, we highlight the following ones: a) it deals with both de-
ductive and non-deductive (defeasible) arguments; capturing also different kinds of at-
tacks among arguments (attacking the premises, the conclusion or the inference link)
and b) it has been shown to be comprehensive, in the sense that many other proposals in
structured argumentation and non-monotonic logic can be seen as special cases of it (see
[4]).

Definition 1 (Language). Let P be a fixed and denumerable set of atoms; the language
LBA is defined as the the pair (F ,A ) of formulas and arguments which are respectively
generated by the following grammars:

ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) |�ϕ | aware(α) | conc(α) = ϕ |
| strict(α) | undercuts(α,α) | wellshap(α) p ∈ P,α ∈ A

α ::= 〈ϕ〉 | 〈α1, ...,αn�ϕ〉 | 〈α1, ...,αn ⇒ ϕ〉 ϕ ∈ LBA

Elements of P represent factual atomic sentences, i.e. sentences about states of af-
fairs whose truth value is agent-independent. The rest of boolean connectives are defined
and read as usual. Let us adopt the following intuitive reading for the remaining formu-
las and arguments: 〈ϕ〉 is an atomic argument, whose only premise and conclusion is ϕ .
〈α1, ...,αn�ϕ〉 represents an argument whose last inference link strictly (deductively)
concludes ϕ . 〈α1, ...,αn ⇒ ϕ〉 represents an argument whose last inference link defea-
sibly concludes ϕ . �ϕ means that the agent has a basic-implicit belief that ϕ . Basic-
implicit beliefs accept different intuitive readings, both positive (reasonable assumptions,
sound observations, etc) and negative (prejudices, biases, etc). The adjective basic un-
derlines the idea that their source is not inferential, while implicit points out that they are
closed under logical consequence. aware(α) means that the agent is aware of argument
α . As usual in awareness logic [17], the operator aware admits several informal readings.
For the special case of atomic arguments (aware(〈ϕ〉)), we propose to read them as fol-
lows: “the agent recognizes her doxastic attitude toward ϕ through non-inferential meth-
ods ”. wellshap(α) means that argument α is well-shaped, i.e. it has been constructed
properly for the sentence it says it argues for. In more detail, every subargument of α
using a strict inference link has been produced by the application of a valid deductive
rule and every subargument of α using a defeasible inference link has been produced
using an accepted defeasible rule. conc(α) = ϕ means that ϕ is the conclusion of α .
undercuts(α,β ) means that α undercuts β (i.e. α attacks β ’s inference link). Finally,
strict(α) means that α does not make use of any defeasible rule, i.e. α only contains
atomic arguments and arguments formed with �.

3We remark that the formalism below does not intend to be an alternative to ASPIC+, but rather an applica-
tion of it to solve the conceptual problem presented in the introduction.
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Definition 2 (Argument structure [4]). Let us define the following meta-syntactic func-
tions for analysing an argument’s structure:

Prem(α) returns the premises of α and it is defined as follows: Prem(〈ϕ〉) = {ϕ},
Prem(〈α1, ...,αn ↪→ ϕ〉) = Prem(α1)∪ ...∪Prem(αn) where ↪→∈ {�,⇒}. Example:
Prem(〈〈〈〈p〉,〈q〉 ⇒ r〉 ⇒ s〉�s∨ t〉) = {p,q}.

Conc(α) returns the conclusion of α and it is defined as follows Conc(〈ϕ〉) = {ϕ}
and Conc(〈α1, ...,αn ↪→ϕ〉)= {ϕ} where ↪→∈{�,⇒}. Note that arguments of ASPIC+

have unique conclusions (differently to what happens, for instance, in justification logic
[6] where the + operator allows for arguments with multiple conclusions). Example:
Conc(〈〈〈〈p〉,〈q〉 ⇒ r〉 ⇒ s〉�s∨ t〉) = s∨ t.

subA(α) returns the subarguments of α and it is defined as follows: subA(〈ϕ〉) =
{〈ϕ〉} and subA(〈α1, ...,αn ↪→ ϕ〉) = {〈α1, ...,αn ↪→ ϕ〉} ∪ subA(α1)∪ ...∪ subA(αn)
where ↪→∈ {�,⇒}. Example: subA(〈〈〈〈p〉,〈q〉 ⇒ r〉 ⇒ s〉�s∨ t〉) = {〈〈〈〈p〉,〈q〉 ⇒
r〉 ⇒ s〉�s∨ t〉,〈〈〈p〉,〈q〉 ⇒ r〉 ⇒ s〉,〈〈p〉,〈q〉 ⇒ r〉,〈p〉,〈q〉}.

TopRule(α) returns the top rule of α , i.e. the last one applied in the formation of
α . It is defined as follows: TopRule(〈ϕ〉) is left undefined, TopRule(〈α1, ...,αn�ϕ〉) =
TopRule(〈α1, ...,αn ⇒ ϕ〉) = ((Conc(α1), ...,Conc(αn)),ϕ). Example:
TopRule(〈〈〈〈p〉,〈q〉 ⇒ r〉 ⇒ s〉�s∨ t〉) = (s,s∨ t).

DefRule(α) returns the set of defeasible rules of α and it is defined as
DefRule(〈ϕ〉) = /0, DefRule(〈α1, ...,αn�ϕ〉) = DefRule(α1) ∪ ... ∪ DefRule(αn) and
DefRule(〈α1, ...,αn ⇒ ϕ〉) = {((Conc(α1), ...,Conc(αn)),ϕ)} ∪ DefRule(α1) ∪ ... ∪
DefRule(αn). Example: DefRule(〈〈〈〈p〉,〈q〉 ⇒ r〉 ⇒ s〉�s∨ t〉) = {((p,q),r),((r),s)}.

Let us also define single negations, for any ϕ ∈ LBA: ∼ ϕ := ψ if ϕ is of the form
¬ψ; else ∼ϕ := ¬ϕ .

Definition 3 (Model). A model for LBA is a tuple M = (W,B,O,D ,n, || · ||) where:

• W �= /0 is a set of possible worlds
• B ⊆W and B �= /0 is the set of doxastically indistinguishable worlds
• O ⊆ A is the (finite) set of available arguments or the awareness set of the agent
• D ⊆ L n

BA ×LBA (with n ∈ N) is a finite set of accepted defeasible rules s.t.
if ((ϕ1, ...,ϕn),ϕ) ∈ D , then {ϕ1, ...,ϕn,ϕ} �0⊥; where �0 is the consequence
relation of classical propositional logic

• n : D → P is a (possibly partial) naming function for defeasible rules, where n(R)
informally means “the defeasible rule R is applicable”

• || · || : P→℘(W ) is an atomic valuation

Definition 4 (Truth). Formulas of LBA are interpreted in pointed models (M,w) where
w ∈W. M,w � ϕ means that ϕ is true in (M,w). � is defined for every kind of formulas
as follows (we omit the clauses for propositional variables and boolean connectives):

• M,w � �ϕ iff for all w′ ∈W : w′ ∈ B implies M,w′ � ϕ
• M,w � aware(α) iff α ∈ O
• M,w � conc(α) = ϕ iff Conc(α) = ϕ
• M,w � strict(α) iff DefRule(α) = /0
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• M,w � undercuts(α,β ) iff Conc(α) =∼n(TopRule(β ))4

• M,w � wellshap(〈ϕ〉)
• M,w � wellshap(〈α1, ...,αn�ϕ〉) iff M,w � wellshap(αi) for every 1 ≤ i ≤ n and

{Conc(α1), ...,Conc(αn)} �0 ϕ
• M,w �wellshap(〈α1, ...,αn ⇒ ϕ〉) iff M,w �wellshap(αi) for every 1≤ i≤ n and

((Conc(α1), ...,Conc(αn)),ϕ) ∈ D

Validity (� ϕ) and local logical consequence (Γ � ϕ) are defined as usual [18].
Note that our way of representing basic-implicit beliefs is equivalent (in the single-
agent case) to have a Kripke model where the accessibility relation is serial, transitive
and euclidean; therefore � satisfies KD45 axioms (see [10,16]). Regarding the truth
clauses for conc(α) = ϕ and strict(α); it is easy to show that these kinds of formu-
las are model independent (since they are based on argument structure, see Definition
2). This implies that, for these kinds of formulas they are true in a pointed model iff
they are valid. Furthermore, note that the clause for �ϕ , undercuts(α,β ), aware(α) and
wellshap(α) makes the satisfiability of these kinds of formulas world-independent, i.e.
they are true in a pointed model if they are globally true in the model. Consequently, we
have that �→�� and ¬�→�¬� are valid schemata, where � ∈ {aware(α),conc(α) =
ϕ,undercuts(α,β ),wellshap(α),strict(α)}. Informally, this amounts to assume that: i)
awareness of arguments is fully introspective w.r.t. basic-implicit beliefs and ii) the agent
is logically competent w.r.t. the arguments she is aware of. However, and unlike what is
usual in structured argumentation [4]; our agent will not work with the whole set of all
well-shaped arguments (which is by definition infinite), but rather with the (finite) set of
arguments that she is aware of.

3. Basic Beliefs and AB-Beliefs in LBA

In order to solve the tension between P1 and P2, we distinguish between basic-explicit
beliefs (Definition 5) and argument-based beliefs (AB-Beliefs, for short; Definition 9).
While the notion of basic belief (both its implicit and explicit versions) only needs some
informal clarification (Section 3.1); AB-beliefs force us to import some concepts from
formal argumentation (sections 3.2, 3.3 and 3.4), especially from ASPIC+. Most of the
central concepts used in ASPIC+(or our adaptations) are definable in LBA.

3.1. Basic Beliefs

Recall that basic-implicit beliefs are represented through the primitive, normal modal
operator �, hence they suffer from logical omniscience: (M,w � �ψ for all ψ ∈ Γ and
Γ � ϕ) implies M,w ��ϕ . This property has been extensively discussed in the epistemic
logic literature, and it has been argued to be problematic when dealing with resource-
bounded agents (see e.g. [17,15, Chapter 9]). The pitfall can be overcome by distinguish-
ing between basic-implicit beliefs (�ϕ) and basic-explicit beliefs (�eϕ) following the
awareness approach [17]:

Definition 5 (Basic-explicit beliefs). �eϕ :=�ϕ ∧aware(〈ϕ〉)
4 Note that we do not need to consider undercuts as a primitive operator, since it could be defined through

a (simpler) operator that captures the meaning of n. We make this choice for the sake of succinctness.
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Informally, basic-explicit beliefs can be generally understood as actual beliefs of the
agent whose justification is not inferential (it comes from other epistemic phenomena,
such as observations or reliable communications). In fact, we can think of many beliefs
that a (reasonable) epistemic agent may have that need no arguments to be justified.
Imagine, for instance, that you walk into your classroom and you see three students in
there. Consequently, you form the belief that “there are three student in the classroom”.
Do you need any complex argument to justify such a belief? Our claim is that, in princi-
ple, you do not. Indeed, you can form arguments supporting the proposition if someone
would question your belief. But, for the agent herself (you, in this case), mere observation
is a good enough reason to believe that there are three students in the classroom.

3.2. Doxastic Preference

Premises are usually understood as a source of argument strength [12], regarding the
support dimension (see [12] for the distinction between the three dimensions or tiers of
argument strength). In structured argumentation [4,12], this is often modelled by strati-
fying a given set of formulas into different preference classes. Such a hierarchy is usu-
ally assumed to be primitive and its nature is abstracted away from the modelling pro-
cess. Let us now show how basic beliefs induce a meaningful hierarchy of this kind. Let
(M,w) be a pointed model and let α ∈ A , we can distinguish between three types of
premises of α: Prem(α) = Prem+(α)∪Prem?(α)∪Prem−(α) where each component
is defined as follows Prem+(α) := {ϕ ∈ Prem(α) | M,w � �ϕ} (the set of trusted or
believed premises); Prem?(α) := {ϕ ∈ Prem(α) | ¬�ϕ ∧¬�¬ϕ} (the set of premises
considered contingent by the agent) and Prem−(α) := {ϕ ∈ Prem(α) | M,w � �¬ϕ}
(the set of disbelieved premises). The three kind of premises are pairwise disjoint
(due to the consistency of basic beliefs) and possibly empty. Furthermore, this dis-
tinction induces another one within the set of all arguments A = A + ∪ A ? ∪ A −
where each component is defined as follows: A + := {α ∈A | Prem(α) = Prem+(α)};
A ? := {α ∈ A | Prem(α) = Prem+(α) ∪ Prem?(α),Prem? �= /0} and A − = {α ∈
A | Prem−(α) �= /0}.5 It seems natural to assume the following preference order-
ing between the three classes of arguments A + �p A ? �p A −, that can be low-
ered to arguments straightforwardly: α >p β iff α ∈ A

′
, β ∈ A

′′
and A

′ �p A
′′

with ′,′′ ∈ {+,?,−}. The relation >p is precisely our qualified version of P2: argu-
ment evaluation is conditioned by basic belief formation. Interestingly enough, this
relation can be captured in LBA, as shown in [19], using the following shorthands:
accept(α) :=

∧
ϕ∈Prem(α)�ϕ6 (basic acceptance); reject(α) :=

∨
ϕ∈Prem(α)�¬ϕ (ba-

sic rejection); prem>(α,β ) := (accept(α)∧¬accept(β ))∨ (¬reject(α)∧ reject(β ));
prem≈(α,β ) := ¬prem>(α,β )∧¬prem>(β ,α):

Proposition 1. Let (M,w) be a pointed model, we have that M,w � prem>(α,β ) iff
α >p β .

5The lifting principle applied in order to go from preferences between premises to preference between ar-
guments is the so-called min-min principle [12]. Note that basic beliefs permit more fine-grained distinctions
regarding the relative strength of arguments. For instance, we could distinguish within A ? between arguments
whose premises are jointly considered a doxastic possibility A ?+ := {α ∈ A | ♦∧

ϕ∈α ϕ} and arguments that
do not enjoy this property A ?− := A ?/A ?+. Nonetheless, we adopt the current division for simplicity.

6This definition is inspired by [6].
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Premises are not the only source of argument strength regarding the support dimen-
sion. The other main source are inference links. In order to keep things simple, we adopt
a minimal (yet intuitively acceptable) principle to assess inference links: ceteris paribus,
strict arguments should be preferred to defeasible arguments. This principle can be cap-
tured as follows: let A st := {α ∈ A | DefRule(α) = /0} and let A d f := A /A st , we
can define new preference classes by intersecting separately both sets with the previous
hierarchy. Furthermore, we assume the following natural preference ordering:

A +∩A st �il A +∩A d f �il A ? ∩A st �il A ? ∩A d f �il A − ∩A st �il A − ∩A d f

The new preference ordering can be lowered to arguments as follows: α >il β iff α ∈
A ′, β ∈ A ′′ and A ′ �il A ′′ with A ′,A ′′ ∈ {A + ∩A st ,A + ∩A d f ,A ? ∩A st ,A ? ∩
A d f ,A −∩A st ,A −∩A d f }. Note that the relation satisfies >p⊂>il . Besides, it can be
captured in LBA through the following schemes: strict>(α,β ) := strict(α)∧¬strict(β );
α > β := prem>(α,β )∨(

prem≈(α,β )∧strict>(α,β )); α ≥ β :=¬(β >α); α ≈ β :=
α ≥ β ∧β ≥ α .

Proposition 2. Let (M,w) be a pointed model, we have that M,w � α ≥ β iff α ≥il β .

Let us stress two points regarding the preference ordering ≥il which are important
for the study of [3]’s rationality postulates. First, it is reasonable in the sense of [4].
Second, ≥il is a total preorder on A . This fact, expressed in the object language has the
form of the following valid schemas, for every α,β ,δ ∈A : � (α ≥ β ∧β ≥ δ )→ α ≥ δ
(transitivity) and � α ≥ β ∨β ≥ α (connectedness).

3.3. Attack and Defeat

Agents do not assess arguments in isolation, or merely pairwise, checking if certain fea-
tures of the involved premises and inference links are good enough to support the con-
clusion. Another important dimension of argument strength is called the dialectical tier
which, following [12], is “mainly represented by relations of argumentative attack and
defeat between arguments”. LBA is rich enough to capture the three customary kinds of
attacks discussed in structured argumentation:

Definition 6 (Argument attack). Given a pointed model (M,w) and α,β ∈ A : we
say that α undermines β iff M,w � undermines(α,β ), where undermines(α,β ) :=∨

ϕ∈Prem(β ) conc(α) = ∼ϕ; α rebuts β iff M,w � rebuts(α,β ), where rebuts(α,β ) :=∨
〈β1,...,βn↪→ϕ〉∈subA(β ) conc(α) = ∼ϕ where ↪→∈ {�,⇒}; and α undercuts β iff

M,w � undercuts∗(α,β ), where undercuts∗(α,β ) :=
∨

β ′∈subA(β ) undercuts(α,β ′).

Our definition of attack integrates a notion of unrestricted rebuttal, in the sense that
rebuttals are permitted on any kind of complex argument. This is indeed polemic. While
the creators of ASPIC+, amongst others, only allow rebuttals on the application of de-
feasible rules; others have argued that the unrestricted notion seems natural in dialectical
contexts [20,21]. Moreover, [21] requires the rebutted argument to be defeasible (non-
strict) while [20] does not require it but, in turn, this feature is implied by their setting.
We permit completely unrestricted rebuttals for a simple reason: since awareness sets
do not exhibit any closure property, in absence of completely unrestricted rebuttal direct
consistency fails (see Section 4 for more details).
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From an agent perspective, some attacks must be disregarded. Imagine, for instance,
that an agent is aware of 〈〈p〉�p∨q〉 and that she accepts it in a doxastic sense (�p). She
then receives an undermining argument 〈〈r〉 ⇒ ¬p〉 but she does not accept it (she does
not believe that r). It seems that such an attack must not be considered a threat for the
agent. Consequently, the notion of defeat should take into account the preference relation
defined above. We import the definition of defeat from ASPIC+to our object language,
introducing two essential differences. First, preferences do play a role when determining
the success of undercutting attacks (the reason for doing so is offered below). Second,
the agent only considers defeats among the well-shaped arguments that she is aware of,
capturing that although her resources are bounded (w.r.t. argument generation) they are
locally well applied. We proceed in two steps: defining a successful counterpart for each
type of attack and adding the awareness/well-shapedness requirement.

Definition 7 (Successful attack, defeat). Given a pointed model (M,w) and
two arguments α,β ∈ A we say that: α successfully undermines β iff
M,w � SuUndermines(α,β ), where SuUndermines(α,β ) :=

∨
ϕ∈Prem(β )(conc(α) =

∼ϕ ∧ α ≥ 〈ϕ〉); α successfully rebuts β iff M,w � SuRebuts(α,β ) where
SuRebuts(α,β ) :=

∨
〈β1,...,βn↪→ϕ〉∈subA(β )(conc(α) = ∼ϕ ∧ α ≥ 〈β1, ...,βn ↪→ ϕ〉); α

successfully undercuts β iff M,w � SuUndercuts(α,β ), where SuUndercuts(α,β ) :=∨
β ′∈subA(β )(undercuts(α,β ′) ∧ α ≥ β ′) and, finally, we say that α defeats β iff

M,w � defeat(α,β ), where defeat(α,β ) := (SuUndermines(α,β )∨SuRebuts(α,β )∨
SuUndercuts(α,β ))∧aware(α)∧aware(β )∧wellshap(α)∧wellshap(β ).

As mentioned above, it has been argued that undercutting attacks always succeed
(independently from what the preferences are) [4]. This may lead to counter-intuitive
cases in the current setting. Taking the same example that [4], due to Pollock, suppose
that an agent considers that an object is red because she sees that it is red (she is aware of
an argument 〈〈SeeRed〉 ⇒ IsRed〉). Suppose that someone suggests her to consider the
undercutting “there might be a red shining, therefore the inference rule you are apply-
ing does not hold”. This can be modelled by putting into her awareness set an argument
〈〈RedLight〉 ⇒ ¬D〉 where D is an atomic proposition saying that the defeasible infer-
ence rule ((SeeRed), IsRed) is applicable. Suppose however that she believes that there
is no such light in the room, M,w � �¬RedLight. It looks that, under this assumption,
〈〈RedLight〉 ⇒ ¬D〉 is not a good reason to prevent the agent from drawing her initial
conclusion that IsRed holds.

3.4. AB-Beliefs

Given a set of well-shaped and owned arguments B, the agent is already able to deter-
mine the defeat relation among them. Nevertheless, the question of how to decide which
subset(s) of B should be considered justified remains still open. This question has been
called the evaluation tier of argument strength in [12] and it is notoriously solved by ap-
plying different semantics to an argumentation framework (first introduced by Dung in
[2]). Note that each pointed model (M,w) naturally induces a Dung-style argumentation
framework [2] (AF, for short), which will be the main construct to define AB-beliefs.

Definition 8 (Associated argumentation framework). Let (M,w) be a pointed model
where M = (W,B,O,D ,n, || · ||). The argumentation framework associated to (M,w),
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denoted by AFM is the pair (Ows,�) where Ows := {α ∈ O | M,w � wellshap(α)} and
�⊆ Ows ×Ows is defined as α � β iff M,w � defeat(α,β ).7

The semantics of an AF is usually given in terms of extensions, i.e. subsets of Ows

satisfying certain intuitive constraints to be an acceptable set [2]. Given a set of argu-
ments B ⊆Ows, typical minimal requirements are conflict-freeness (there are no α,β ∈ B
s.t. α � β ) and self-defence (every defeater of members of B is in turn defeated by some
member of B). A set of arguments B is a complete extension iff it contains precisely the
arguments it defends. Finally, the grounded extension of AFM , denoted by GE(AFM) is
the minimal (w.r.t. set inclusion) complete extension. For a more precise definition of
these notions and an extensive discussion about the existing semantics, the reader is re-
ferred to [22]. Our choice of grounded semantics for defining AB-beliefs is rooted on the
arguments presented in [23] for such a decision regarding epistemic reasoning.

Definition 9 (AB-Beliefs). Let (M,w) be a pointed model for LBA, and let ϕ ∈ LBA,
we say that ϕ is AB-believed in (M,w), denoted by M,w � BABϕ , iff ∃α ∈ GE(AFM) :
Conc(α) = ϕ .

This definition captures our qualified version of P1: AB-belief formation is con-
ditioned by argument evaluation. Moreover, note that the following schema is valid
� �eϕ → BABϕ (i.e. basic-explicit beliefs are a special case of AB-beliefs). AB-beliefs
cannot be captured in LBA. The reason for this is that its definition quantifies over argu-
ments (and sets of arguments, since the grounded extension requires subset-minimality).
This inconvenience could be circumvented in several ways that are out of the scope of
this paper. Instead, let us just increase LBA with a new clause BABϕ , where ϕ ∈ LBA,
and adopt the truth clause of Definition 9 for the new kind of formulas. In the following
example, we illustrate the difference between both kinds of beliefs and how our qualified
versions of P1 and P2 work.

Example 1 (Assessing a survey). A researcher in charge of a survey (in what follows,
the agent) is assessing the last report of her team. In particular, the agent is wondering
whether a Claim follows from some Data gathered by her team, as suggested in the re-
port, i.e. she is determining the acceptability of 〈〈Data〉 ⇒ Claim〉. Model M, depicted
in the top part of Figure 1 shows her implicit doxastic attitudes towards the involved
propositions. The bottom-part of the same figure shows the associated AF, AFM, where
black arrows represent defeats and dashed arrows represent unsuccessful attacks. Some
elements of the model are omitted in the representation (O , D and n), but they can be
completed by observing the associated AF.
The head of the laboratory has told the agent to consider the undercutting at-
tack 〈〈¬Honest〉 ⇒ ¬Reliab〉, according to which if her team is not behaving hon-
estly, the defeasible rule ((Data),Claim) should be considered suspicious (we fix
n(((Data),Claim)) = Reliab). Nevertheless, the agent holds a basic-explicit belief that
her team is behaving honestly, M,w ��eHonest; so she disregards the mentioned under-
cutting, M,w � ¬SuUndercuts(〈〈¬Honest〉 ⇒ ¬Reliab〉,〈〈Data〉 ⇒ Claim〉). Moreover,
she also considers the strict argument 〈〈Defective→¬Data〉,〈Defective〉�¬Data〉 ac-

7Given the simplification of the modal semantics we have assumed, it can be shown that for every model M,
with domain W , it holds that AFM,w = AFM,w′

for every w,w′ ∈W . This remark permits us to refer to AFM,w

just as AFM .
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SuUndermines

undercuts

SuUndermines

Figure 1. Pointed model (M,w0) (top part) and its associated AF, AFM (bottom part).

cording to which if one of the measure devices used in the study is defective, then the
gathered data is not true. Note that this argument undermines 〈〈Data〉 ⇒ Claim〉. Due
to previous problems with the mentioned device, she considers as doxastically possible a
situation where it does not work properly (w0), hence the undermining succeeds. Conse-
quently, she keeps sceptic about the value of Claim: M,w � ¬BABClaim∧¬BAB¬Claim.

4. Rationality Postulates

In [3], Caminada and Amgoud provide a list of rationality postulates that a good argu-
mentation formalism must satisfy. In [4], Modgil and Prakken discuss these postulates in
relation to ASPIC+. In this section, we offer sufficient conditions for two of them to be
satisfied and argue that the other two are too idealistic in an epistemic logic for resource-
bounded agents. First of all, let us formulate the postulates in the current setting. Let
AFM be an associated AF, we say that AFM satisfies:

• RPSUB (sub-argument closure) iff for any α ∈ GE(AFM), subA(α)⊆ GE(AFM)
• RPDC (direct consistency) iff �ϕ ∈ LBA: ϕ,∼ϕ ∈ Conc(GE(AFM))8

• RPCL (closure under strict rules) iff for all ϕ ∈ LBA s.t. Conc(GE(AFM)) �0 ϕ
it holds that ϕ ∈ Conc(GE(AFM))

• RPIC (indirect consistency) iff Conc(GE(AFM)) �0⊥
The following propositions establish sufficient conditions for RPSUB (resp. RPDC)

to be satisfied by an associated AF:

Proposition 3. Let (M,w) be a pointed model, where M = (W,B,O,D ,n, || · ||). If O is
closed under subarguments (i.e. α ∈ O implies subA(α)⊆ O), then GE(AFM) is closed
under subarguments.

8We lift the domain of the function Conc from arguments to sets of arguments as follows: Conc(S ) :=
{Conc(α) | α ∈ S } for any S ⊆ A .
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Proposition 4. Let (M,w) be a pointed model, then AFM satisfies direct consistency.

Remark. In the current setting, it is crucial for Proposition 4 to hold that we allow
completely unrestricted rebuttals (see Definition 6 and the subsequent discussion).

RPCL and RPIC are violated by the current framework. Let us show why this hap-
pens and why it is not an unavoidable inconvenience for our purposes. First of all,
note that RPCL cannot be satisfied by any associated AF. Note that Conc(GE(AFM)) �0
{ϕ ∈ LBA |�0 ϕ} for any model M. Therefore, for RPCL to be true, it should hold that
{ϕ ∈ LBA |�0 ϕ} ⊆ Conc(GE(AFM)). But this is impossible since {ϕ ∈ LBA |�0 ϕ} is
infinite and Conc(GE(AFM)) is finite by assumption (because awareness sets are finite
by assumption). Nevertheless, RPCL is just a special case of logical omniscience (propo-
sitional logical omniscience); so its satisfiability should not be pursued when modelling
resource-bounded agents. As pointed out in [3], this problem can be avoided using query-
based implementations for computing the grounded extension. This strategy does not
seem appropriate in the current context, since it still would require to generate the whole
set of well-shaped arguments.

As for RPIC, its failure is more threatening. Moreover, our agent fails to have
the following forms of consistency (that fall between direct and indirect consistency):
(i) there is no ϕ ∈ Conc(GE(AFM)) such that {ϕ} �0⊥ and (ii) there are no ϕ,ψ ∈
Conc(GE(AFM)) such that {ϕ,ψ} �0⊥. These facts revel the minimal character of our
formalism. Note however, that the first case can be avoided by closing O under con-
clusions and single negations. The second case can in turn be overcome by defining
∼ϕ := {ψ | {ϕ,ψ} �0⊥}. Be as it may, failure of different forms of consistency are
understood as pitfalls in many different contexts. However, at the same time, it seems
plausible to claim that reasonable (yet not fully rational) agents can have indirectly in-
consistent AB-beliefs; as far as they keep their AB-beliefs being directly consistent (see
e.g. [24, §2] for a defence of this kind of inconsistencies). Note that although AB-beliefs
might be indirectly inconsistent, they are not trivial (agents never end up believing every-
thing). Moreover, if one wants to strengthen the reasoning skills of the modelled agent,
two interesting questions arise. First, is there any set of sufficient conditions that guar-
antees the satisfaction of RPIC in LBA while keeping awareness sets finite? A positive
answer might not be trivial, since the satisfaction of RPIC is usually proved as a corollary
of RPDC and RPCL [3,4]. Second, given an indirectly inconsistent associated AF, is there
an action (or sequence of actions) such that indirect consistency is recovered?

5. Future Work

Besides the open problems mentioned in the last section, there are several questions
that require further study. We highlight the following ones. First, examining LBA on the
view of additional postulates (see [25]). Second, it would also be interesting to study
whether it is possible to characterize axiomatically the behaviour of BAB, when treated
as a primitive operator.
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