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Abstract. Attack-Support Argumentation Framework (ASAF) is an extension of
the Bipolar Argumentation Framework that allows for attacks and supports not only
between arguments but also targeting attacks and supports at any level. In this pa-
per we propose an incremental approach for computing the skeptical preferred ac-
ceptance in dynamic ASAFs. Specifically, we investigate how the skeptical accep-
tance of a goal element (an argument, an attack, or a support) evolves when a given
ASAF is updated by adding or retracting an argument, an attack, or a support, and
propose an incremental algorithm for solving this problem. Our approach relies on
identifying a portion of the given ASAF which is sufficient to determine the sta-
tus of the goal w.r.t. the updated ASAF. We experimentally evaluate our approach
showing that it outperforms the computation from scratch on average.
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1. Introduction

Formal argumentation has emerged as one of the important fields in Artificial Intelli-
gence [17,37,11]. In particular, Dung’s framework is a simple, yet powerful formalism
for modelling disputes between two or more agents [29]. An abstract Argumentation
Framework (AF) consists of a set of arguments and a binary attack relation over the set
of arguments that specifies the interactions between arguments: intuitively, if argument
a attacks argument b, then b is acceptable only if a is not. Hence, arguments are ab-
stract entities whose role is entirely determined by the interactions specified by the attack
relation.

Dung’s framework has been extended in many different ways, including the intro-
duction of new kinds of interactions between arguments and/or attacks. In particular, the
Bipolar Argumentation Framework is an interesting extension of the Dung’s framework
which allows for modelling the support between arguments [9,27,39]. Further extensions
consider second-order interactions [20], e.g., attacks to attacks/supports, as well as more
general forms of interactions such as Argumentation Frameworks with Recursive Attacks
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Figure 1. ASAF of Example 1
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Figure 2. ASAF for winter scenario

[13] and Attack-Support Argumentation Frameworks (ASAFs) [31], where attacks and
supports can be recursively attacked or supported.

Example 1. Consider a scenario to decide whether to play tennis. Assume we have the
following arguments: wi (it is windy), r (it rains), we (the court is wet), p (play tennis),
s (need a sweatshirt), o (tennis racket shop is open), and the implications: (ω1) if it is
windy, then it does not rain, (ω2) if the court is wet, then we cannot play tennis, (ω3)
if we play tennis then the court is not wet, (ω4) if it rains then the tennis racket shop is
not open, (γ1) if it rains, then the court is wet, and (γ2) if it is windy, then we need a
sweatshirt. This situation can be modeled by using the ASAF of Figure 1, where ω1, ω2

and ω3 are attacks (denoted by →), and γ1 and γ2 are supports (denoted by ⇒). �

Several interpretations of the notion of support have been proposed [25,27]. The nec-
essary support [13,36] adopted in ASAF is intended to capture the following intuition:
if a supports b, then the acceptance of a is necessary to get the acceptance of b; equiva-
lently, accepting b implies accepting a. The meaning of an ASAF is given by extensions
which also include attacks and supports that contribute to determine the set of accepted
arguments. For instance, considering the well-known preferred semantics—one of the
most popular argumentation semantics [22]—the framework of Figure 1 has a unique
extension, that is the set {wi, s, p, o, ω1, ω3, γ1, γ2}.

However, in practice, argumentation frameworks can be dynamic systems [12,15,
16,18,26,34]. In fact, typically an ASAF represents a temporary situation, and new argu-
ments, attacks and supports (at any level) can be added/removed to take into account new
available knowledge. For instance, in our running example, assume now that there exists
also an argument wt (we are in the winter season) that attacks ω1 (in the winter season ω1

cannot be applied). The updated scenario can be modeled by an ASAF shown in Figure 2
where the new attack is labelled as ω5 (ω5 is an example of second-level attack).

Recently, there has been a growing interest in studying dynamics of different
argumentation systems, considering the Dung framework [2,5,15,19,28], Bipolar AF
and AF with second order attacks [3,4], ASAF [1], and structured argumentation for-
malisms [7,8]. This is motivated by the fact that most of the argumentation problems have
high computational complexity [30,33]. In particular, skeptical reasoning under the pre-
ferred semantics is in the second level of the polynomial hierarchy. However, in practice,
incremental computation techniques could improve performance, as they only require to
reconsider the acceptance status of those arguments and interactions that are affected by
the new information.

In this paper we propose an incremental approach for computing the skeptical pre-
ferred acceptance of a goal element of an ASAF after performing an update. Specifi-
cally, we propose a technique addressing the following problem: given an ASAF Δ, a
goal element G whose skeptical preferred acceptance w.r.t. Δ is known, and an update
u consisting of the addition/removal of an argument/attack/support, decide whether G is
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skeptically preferred accepted w.r.t. the updated ASAF u(Δ), that is, decide if G belongs
to every preferred extension of u(Δ).
Contributions. We make the following contributions:

• Given an update and a goal element (an argument, an attack, or a support), we
identify a set of elements, called alterable set, which contains the elements whose
acceptance status may change after the update and propagate up to the goal.

• Given the alterable set, we define the Proxy ASAF that allows us to compute the
skeptical preferred acceptance of a goal by focusing on a (potentially smaller)
ASAF containing the alterable set as well as additional elements and interactions
needed to determine the status of the elements in the alterable set.

• We introduce an incremental algorithm for computing the skeptical preferred ac-
ceptance of a goal within a dynamic ASAF. It enables the computation on the
Proxy ASAF, provided that an external solver for ASAFs is given.

• Since to the best of our knowledge there is no available solver for the direct com-
putation on ASAF, we propose a version of the algorithm that, using a translation
of our problem to the AF domain, allows us to use any (non-incremental) state-of-
the-art AF solver to compute the skeptical preferred acceptance for ASAFs

• We provide an experimental analysis showing the effectiveness of our approach.

To the best of our knowledge, this is the first paper addressing the problem of efficiently
and incrementally computing skeptical acceptance for dynamic ASAFs.

2. Preliminaries

We start by briefly reviewing the Dung’s framework [29] and the Attack-Support Argu-
mentation Framework (ASAF) (for a full presentation of ASAF see [31]).

An abstract Argumentation Framework (AF) is a pair 〈A,Σ〉, where A is a set of
arguments and Σ ⊆ A × A is a set of attacks. An AF can be seen as a directed graph,
whose nodes represent arguments and edges represent attacks.

Given an AF Λ =〈A,Σ〉 and a set S ⊆ A of arguments, an argument a ∈ A is said
to be i) attacked (or, equivalently, defeated) w.r.t. S iff ∃b ∈ S such that (b, a) ∈ Σ, and
ii) acceptable w.r.t. S iff for every argument b ∈ A with (b, a) ∈ Σ, there is c ∈ S such
that (c, b) ∈ Σ. The sets of defeated and acceptable arguments w.r.t. S can be defined as
follows (where Λ is understood):

• Def(S) = {a ∈ A | ∃ b ∈ S . (b, a) ∈ Σ};
• Acc(S) = {a ∈ A | ∀ b ∈ A . (b, a) ∈ Σ ⇒ b ∈ Def(S)}.

Given an AF 〈A,Σ〉, a set S ⊆ A of arguments is said to be: (i) conflict-free iff S ∩
Def(S) = ∅; (ii) admissible iff it is conflict-free and S ⊆ Acc(S). Moreover, S ⊆ A is
said to be a a preferred extension iff it is conflict-free, S = Acc(S), and maximal (w.r.t.
⊆). The set of preferred extensions of an AF Λ will be denoted by PR(Λ).

Example 2. Let Λ = 〈A,Σ〉 be an AF where A = {r, we, p} and Σ = {(we, p), (p, we)}.
The set of preferred extensions is PR(Λ) = {{r, we}, {r, p}}. �

Given an AF Λ = 〈A,Σ〉 and an argument G ∈ A, we say that G is skeptically
preferred accepted w.r.t. Λ iff for each preferred extension E of Λ it holds that G ∈ E.
For instance, for the AF in Example 2, we have that r is skeptically preferred accepted.
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Attack-Support Argumentation Framework

An Attack-Support Argumentation Framework (ASAF) [31] ASAF is a triple 〈A,Ω,Γ〉,
where A is a set of arguments, Ω ⊆ A × (A ∪ Ω ∪ Γ) is a set of attacks, and Γ ⊆
A× (A ∪ Ω ∪ Γ) is a set of supports. It is assumed that Γ is acyclic and Ω ∩ Γ = ∅.

In the following, given an ASAF 〈A,Ω,Γ〉, to simplify the notation, we use symbols
ωi (or simply ω) to denote attacks (e.g., ω = (a,X) ∈ Ω) and symbols γi (or simply γ)
to denote supports (e.g., γ = (b, Y ) ∈ Γ); we also use δ to denote an element in Ω ∪ Γ.
Moreover, given an ASAF 〈A,Ω,Γ〉, for any attack or support δ = (a, Y ) ∈ Ω ∪ Γ, we
use s(δ) and t(δ) to denote, respectively, the source argument a and the target element Y
of δ. Note that Y can be an argument, an attack, or a support. Attacks and supports whose
target is an argument are said to be first-level interactions, while attacks and supports
whose target is an interaction of level i are said to be interactions of level i+ 1.

An ASAF Δ can be represented by a graph-like structure GΔ where an argument
a ∈ A is a node in GΔ, an attack ω = (a,X) ∈ Ω is graphically denoted as an edge
a

ω−→ X in GΔ, and a support γ = (b, Y ) ∈ Γ is graphically denoted as an edge b
γ

=⇒ Y
in GΔ. For instance, the graph in Figure 1 represents the ASAF of Example 1, that is, an
ASAF Δ = 〈A,Ω,Γ〉, where A = {wi, r, s, o, we, p}, Ω = {ω1 = (wi, r), ω2 = (we, p),
ω3 = (p, we), ω4 = (r, o)}, and Γ = {γ1 = (r, we), ω2 = (wi, s)}.

Attacks and supports in an ASAF can also be attacked and supported, and extensions
may contain arguments, attacks and supports. The semantics proposed in [31] combines
the interpretation of attacks of Argumentation Frameworks with Recursive Attacks [13]
with that of Bipolar AFs with necessary support [25], as formalized in what follows.

Given an ASAF 〈A,Ω,Γ〉, a support path a0
+⇒ X from a0 to X is is a sequence

of n supports a0
γ1
=⇒ a1

γ2
=⇒ . . . an−1

γn
=⇒ X , where each ai (with 0 ≤ i < n) is an

argument and X is either an argument, an attack, or a support. We use Γ+ = {(a,X) |
a ∈ A, X ∈ (A ∪ Ω ∪ Γ), a

+⇒ X} to denote the set of pairs (a,X) such that there
exists a (not empty) support path from a to X .

Given an element X ∈ (A ∪ Ω ∪ Γ) and an attack ω ∈ Ω, we say that ω (directly
or indirectly) attacks X (denoted by ω def X) if either t(ω) = X or t(ω) = s(X).
Moreover, given a set S ⊆ A ∪ Ω ∪ Γ, we say that ω extendedly defeats X given S
(denoted as ω defS X) if either ω def X or there exists b ∈ A such that t(ω) = b and
either (b,X) ∈ (Γ∩S)+ or (b, s(X)) ∈ (Γ∩S)+. For any ASAF Δ and S⊆A∪Ω∪Γ,
the defeated and acceptable sets (given S) are:

• Def(S) = {X ∈ A ∪ Ω ∪ Γ | ∃ ω ∈ Ω ∩ S . ω defS X}
• Acc(S) = {X ∈ A ∪ Ω ∪ Γ | ∀ω ∈ Ω . ω defSX ⇒ ω ∈ Def(S)}.

The notions of conflict-free, admissible sets, and the preferred extensions for ASAF can
be defined as done earlier (before Example 2) for the AF but considering S ⊆ A∪Ω∪Γ
and by using the definitions of defeated and acceptable sets reported above.

Finally, given an ASAF Δ = 〈A,Ω,Γ〉 and an element G ∈ A ∪ Ω ∪ Γ, we say
that G is skeptically preferred accepted w.r.t. Δ iff for each preferred extension E of Δ
it holds that G ∈ E. In the following, we use SAΔ(G) to denote the skeptical preferred
acceptance (either true or false) of G w.r.t. ASAF Δ.

Example 3. Let Δ = 〈{wi, r, s, o, we, p, wt}, {ω1=(wi, r), ω2 = (we, p), ω3 = (p, we),
ω4 = (r, o), ω5 = (wt, (wi, r))}, {γ1 = (r, we), γ2 = (wi, s)}〉 be the ASAF of Figure 2.
The set of preferred extensions of Δ is PR(Δ) = {{wi, r, γ1, s, we, ω2, wt, ω4, ω5, γ2},
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{wi, r, γ1, s, p, ω3, wt, ω4, ω5, γ2}}. Thus, the set of elements X of Δ that are skeptically
accepted (i.e., those for which SAΔ(X) = true) is {wi, r, γ1, s, wt, ω4, ω5, γ2}. �

Updates for ASAF

An update consists of the addition (resp., removal) of an attack or a support not present
(resp., present) in a given ASAF, as next formalized.

Definition 1 (Update for ASAF). Let Δ = 〈A,Ω,Γ〉 an ASAF, and δ ∈ A×(A∪Ω∪Γ).
An update u over Δ is of one of the forms below, and when applied to Δ yields the
updated ASAF u(Δ) = 〈A,Ω′,Γ′〉, with Ω′ and Γ′ defined as follows:

• u = +δ where δ �∈ (Ω ∪ Γ). If δ is an attack, then Ω′ = Ω ∪ {δ} and Γ′ = Γ,
otherwise Ω′ = Ω, Γ′ = Γ ∪ {δ} and Γ′ is acyclic.

• u = −δ where δ ∈ Ω ∪ Γ and there is no δ′ ∈ Ω ∪ Γ such that t(δ′) = δ.
In this case, Ω′ = Ω \ {δ} and Γ′ = Γ \ {δ}.

In the following, for simplicity, we write ±δ for the addition or removal of an attack
or a support (s(δ), t(δ)). Then, for an update u = +δ, the interaction δ must not belong
to the attack and support relations of the ASAF it will be applied on, and the source
and target of δ must belong to the ASAF; moreover, the support relation of the updated
ASAF must remain acyclic. Moreover, for an update u = −δ, the interaction δ cannot
be targeted by any other interaction in the ASAF.

As for an update u consisting of the addition (resp. deletion) of a set of isolated
arguments (i.e., arguments not connected to any other element in the graph), it is easy
to see that if u(Δ) is obtained from Δ through the addition (resp. deletion) of a set S
of isolated argument, then every argument in S is trivially skeptically preferred accepted
(resp., not accepted) w.r.t. u(Δ). Indeed, if E is an extension for Δ, then E′ = E ∪ S
(resp. E′ = E \ S) is an extension for u(Δ) containing every (resp., none) argument in
S. Of course, if arguments in S are not isolated, for addition we can first add isolated ar-
guments and then add interactions (attacks or supports) involving these arguments, while
for deletion we can first delete all interactions involving arguments in S and then delete
isolated arguments. Thus we do not consider these kinds of updates in the following, and
w.l.o.g. focus on updates consisting of the addition or deletion of an attack or a support.

3. Incremental Computation of Skeptical Preferred Acceptance

In this section, given an ASAF and an update for it, we propose an incremental technique
for computing the skeptical preferred acceptance of a given goal element.

First we identify a set of alterable elements, that is, a set of arguments, attacks, and
supports whose acceptance status may change after performing an update, and such that
the change may impact on the acceptance status of the goal. We start by defining the set
of elements that are reachable from a given element X of an ASAF. This set includes
X and its neighbors, i.e. the target of X and, if X is an argument, also the interactions
originating from X and the targets of such interactions, as formalized in what follows.

Definition 2 (Set of neighbors). Let Δ = 〈A,Ω,Γ〉 be an ASAF. The set NΔ(X) of
neighbors of an element X ∈ A ∪ Ω ∪ Γ is:
i) {X, t(X)} if X ∈ Ω ∪ Γ, ii) {X} ∪ {Y, t(Y ) | X = s(Y ), Y ∈ Ω ∪ Γ} if X ∈ A.

G. Alfano et al. / Computing Skeptical Preferred Acceptance in Dynamic Argumentation Frameworks 71



For instance, for the ASAF Δ of Figure 2, we have that NΔ(wi) = {wi, ω1, r, γ2, s},
NΔ(ω5) = {ω5, ω1}, and NΔ(ω1) = {ω1, r}. The set of elements that are reachable
from X consists of NΔ(X) plus the elements which are reachable from NΔ(X).

Definition 3 (Reachable elements). Let Δ = 〈A,Ω,Γ〉 be an ASAF. Given X,Y ∈
A ∪ Ω ∪ Γ we say that Y is reachable from X in Δ iff either i) Y ∈ NΔ(X) or ii)
∃ Z ∈ A ∪ Ω ∪ Γ such that Z ∈ NΔ(X) and Y is reachable from Z in Δ.
We use ReachΔ(X) to denote the set of elements of Δ that are reachable from X in Δ.

For the ASAF Δ of Figure 2, ReachΔ(ω5) = {ω5, ω1, r, ω4, γ1, o, we, ω2, p, ω3}.
In the following, we use Δu to denote the larger ASAF between Δ and u(Δ), that

is, Δu is i) the updated ASAF u(Δ) if u is an addition update (it includes the interac-
tion added through u), ii) the original ASAF Δ if u is a deletion update (the removed
interaction is also considered in Δu).

We are now ready to define the alterable set for an ASAF w.r.t. a given update.

Definition 4 (Alterable Set). Let Δ = 〈A,Ω,Γ〉 be an ASAF, u = ±δ an update, and
G ∈ A ∪ Ω ∪ Γ a (goal) element. Let

- Alt0(Δ, u,G) =

{
∅ if G �∈ ReachΔu(δ);

NΔu(δ) otherwise.

- Alti+1(Δ, u,G) = Alti(Δ, u,G)∪ {Z | Z ∈ NΔu(Y ), Y ∈ Alti(Δ, u,G),
G ∈ ReachΔu(Z)}.

Let n be the natural number such that Altn(Δ, u,G) = Altn+1(Δ, u,G). Then alterable
set Alt(Δ, u,G) is Altn(Δ, u,G).

Thus, the alterable set is iteratively defined by n+1 steps (with n ≤ |A|+ |Ω|+ |Γ|),
each of them consisting of the addition of at least a neighbor of an element in the set
built at the previous step and allowing to reach the goal G. It is easy to see that, for any
element G, it is the case that Alt(Δ, u,G) ⊆ ReachΔu(δ), where u = ±δ.

Example 4. Consider the ASAF Δ of Figure 2, the update u = −ω5, and assume
that p is the goal element. Note that, differently from the introduction, the update con-
sidered here is a deletion. Then, Alt0(Δ, u, p) = {ω5, ω1} as p ∈ ReachΔu(ω5).
Alt1(Δ, u, p) = Alt0(Δ, u, p) ∪ {r}, Alt2(Δ, u, p) = Alt1(Δ, u, p) ∪ {γ1, we}
(herein, ω4 and o are not included as they do not allow to reach the goal in Δu),
Alt3(Δ, u, p) = Alt2(Δ, u, p)∪{ω2, p}. Finally, Alt4(Δ, u, p) = Alt3(Δ, u, p)∪{ω3},
and thus Alt(Δ, u, p) = {ω5, ω1, r, γ1, we, ω2, p, ω3} ⊆ ReachΔu(ω5).

The following theorem states that, after performing an update, the skeptical preferred
acceptance of an element does not change if the alterable set is empty.

Theorem 1. Let Δ = 〈A,Ω,Γ〉 be an ASAF, u an update, u(Δ) the updated ASAF, and G
a goal element in A∪Ω∪Γ. Therefore, if Alt(Δ, u,G) = ∅ then SAu(Δ)(G) = SAΔ(G).

If the alterable set is not empty, we identify a (potentially small) portion of the given
ASAF, called Proxy ASAF, that is sufficient to perform the computation of the skeptical
preferred acceptance of the goal without considering the entire ASAF.
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Figure 4. AF for the ASAF of Figure 2

Before defining the Proxy ASAF, we introduce some notation. Given an ASAF Δ =
〈A,Ω,Γ〉, for a set S ⊆ A ∪ Ω ∪ Γ of elements of Δ, we use Reach−1

Δ (S) = {Y ∈
A ∪ Ω ∪ Γ | X ∈ S,X ∈ ReachΔ(Y )} to denote the set of elements from which
the elements in S are reachable in Δ. Moreover, we use Δ↓S to denote the restriction
of an ASAF Δ = 〈A,Ω,Γ〉 to a set S of elements, that is Δ↓S= 〈AS ,ΩS ,ΓS〉, where
AS = A ∩ S, ΩS = {ω ∈ Ω | s(ω) ∈ AS ∧ t(ω) ∈ (AS ∪ ΩS ∪ ΓS)}, and ΓS = {γ ∈
Γ | s(γ) ∈ AS ∧ t(γ) ∈ (AS ∪ ΩS ∪ ΓS)}.

The Proxy ASAF is the restriction of the updated ASAF u(Δ) to the alterable set
plus the elements of u(Δ) that can reach an element in that set.

Definition 5 (Proxy ASAF). Let Δ = 〈A,Ω,Γ〉 be an ASAF, u = ±δ an update, and
G ∈ A∪Ω∪Γ a goal element. Let S = Alt(Δ, u,G). The Proxy ASAF of Δ w.r.t u and
G is PASAF (Δ, u,G) = u(Δ)↓S∪Reach−1

u(Δ)
(S).

Example 5. Continuing from Example 4, the Proxy ASAF PASAF (Δ, u, p) is given
by considering the restriction of the updated ASAF u(Δ) to the alterable set S =
Alt(Δ, u, p) union Reach−1

u(Δ)(S) = {wi}, as reported in Figure 3.

Observe that PASAF (Δ, u,G) is empty if Alt(Δ, u,G) is empty. In this case we
can use the result of Theorem 1 to compute the skeptical acceptance. In contrast, the
following theorem tells us how to use the Proxy ASAF to compute the skeptical preferred
acceptance when the alterable set is not empty.

Theorem 2. Let Δ = 〈A,Ω,Γ〉 be an ASAF, u an update, u(Δ) the updated ASAF,
and a goal element G ∈ A ∪ Ω ∪ Γ. If Alt(Δ, u,G) �= ∅ then G is skeptically pre-
ferred accepted w.r.t. u(Δ) iff it is skeptically preferred accepted w.r.t. the Proxy ASAF
PASAF (Δ, u,G).

Example 6. Continuing from Example 5, p is skeptically preferred accepted w.r.t.
the ASAF u(Δ) since p is skeptically preferred accepted w.r.t. the Proxy ASAF
PASAF (Δ, u, p) of Figure 3 whose unique preferred extension is {wi, p, ω1, γ1, ω3}.

3.1. Incremental Algorithm

The results of Theorems 1 and 2 allow us to define Algorithm 1 to decide the skeptical
preferred acceptance of an element G w.r.t. an ASAF Δ updated by u = ±δ. Given
the initial skeptical preferred acceptance SAΔ(G), the skeptical preferred acceptance
SAu(Δ)(G) w.r.t. the updated ASAF is incrementally computed, thus enabling consec-
utive invocations of the algorithm to perform sequences of updates. Algorithm 1 works
as follows. First the alterable set is computed at Line 1. Using result of Theorem 1, if
the alterable set is empty then the acceptance status of G does not change after the up-
date, and the algorithm returns the initial status at Line 3. Otherwise, the Proxy ASAF
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Algorithm 1 ASAF-SA(Δ, u,G, SAΔ(G), ASAF-Solver)
Input: ASAF Δ = 〈A,Ω,Γ〉, update u, goal G ∈ A ∪ Ω ∪ Γ, initial skeptical preferred ac-

ceptance SAΔ(G), function ASAF-Solver computing the skeptical preferred acceptance of a
goal element for an ASAF.

Output: updated skeptically preferred acceptance of G w.r.t u(Δ).
1: Let S = Alt(Δ, u,G)
2: if S = ∅ then

3: return SAΔ(G);
4: Let ΔP = PASAF (Δ, u,G)
5: return ASAF-Solver(G, ΔP )

is built at Line 5 and, using Theorem 2, the skeptical acceptance of G can be computed
by invoking an external ASAF-Solver that decides whether G is skeptically accepted by
performing the computation on the Proxy ASAF (Line 5).

Algorithm 1 assumes that an ASAF solver is given. That is, in principle, our ap-
proach enables any external solver for ASAF to be used for the incremental computa-
tion of the preferred skeptical acceptance. However, to the best of our knowledge, cur-
rently there is no solver that directly performs the computation of skeptical acceptance
on ASAFs (this is also due to the fact that the ASAF proposal is a quite recent, compared
to Dung’s framework for which several solvers have become available during the last few
years). Therefore, instead of performing the computation on the Proxy ASAF, we lever-
age on a transformation of the Proxy ASAF to a Dung’s framework to eventually com-
pute the skeptical acceptance of the given goal. This makes our approach working with
any available AF solver for the computation of the skeptical preferred acceptance. As
explained below, we use the meta-AF approach recently proposed in [1] for computing
ASAF extensions that can be adopted also for our scope.

Enabling the computation at the AF level

In this section, we first briefly review the transformation presented in [1] that allow us to
characterize an ASAF in terms of an AF whose extensions (under preferred, grounded,
complete, and stable semantics) are in a one-to-one correspondence with those of the
given ASAF. Then, we show how to use this result to compute the skeptical acceptance.

An AF for an ASAF is an AF that encodes every argument, attack, and support of
the given ASAF. The set of arguments of the AF consists of the arguments of Δ plus
a pair of arguments, ω and ω∗, for each attack ω in Δ and a pair of arguments, γ and
γ∗, for each support γ in Δ. Arguments ω and ω∗ determine whether ω is accepted or
not, and are used to propagate defeats on the source of ω to the attack itself. Argument
γ represents the support itself and is used to determine whether it is accepted or not,
whereas argument γ∗ is used to propagate defeats on the source of γ to its target. Then,
the attacks of the AF are as follows. For each attack ω in Δ, the AF contains a chain of
3 attacks starting in the source of ω and ending in its target, with intermediate arguments
ω∗ and ω; moreover, if the target of ω is a support γ, then an attack between ω and both
γ∗ and γ is added to the AF. For each support γ in Δ, the AF contains a chain of 2 attacks
starting in the source of γ and ending in its target, with intermediate argument γ∗; finally,
if the target of γ is a support γ1, an attack between γ∗ and γ∗1 is added.

Definition 6 (AF for ASAF [1]). Let Δ = 〈A,Ω,Γ〉 be an ASAF. The AF for Δ is
ΛΔ = 〈AΔ,ΣΛ〉, where:
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• AΔ = A ∪ {ω, ω∗ | ω ∈ Ω} ∪ {γ, γ∗ | γ ∈ Γ}.
• ΣΛ = {(s(ω), ω∗), (ω∗, ω), (ω, t(ω)) |ω∈Ω} ∪ {(ω, t(ω)∗) | ω ∈ Ω, t(ω) ∈ Γ}

∪ {(s(γ), γ∗), (γ∗, t(γ)) | γ ∈ Γ} ∪ {(γ∗, t(γ)∗) | γ ∈ Γ, t(γ) ∈ Γ}.

Example 7. The AF for the ASAF Δ of Figure 2 is ΛΔ shown in Figure 4. For instance,
the attack ω1 = (wi, r) corresponds to the chain of attacks from wi to r through ω1 and
ω∗1 , while ω5 = (wt, ω1) corresponds to the attacks (wt, ω∗5 ), (ω

∗
5 , ω5), (ω5, ω1).

In [1], it is shown that there exists a one-to-one correspondence between the pre-
ferred extensions of an ASAF Δ and the preferred extensions of the AF ΛΔ for Δ, mod-
ulo meta-arguments ω∗ and γ∗. This equivalence between extensions of an ASAF and
extensions of the corresponding AF allow us to state the following result.

Theorem 3. Let Δ = 〈A,Ω,Γ〉 be an ASAF, ΛΔ the AF for Δ, and G an element
in A ∪ Ω ∪ Γ. Therefore, G is skeptically preferred accepted w.r.t. Δ iff the argument
corresponding to G is skeptically preferred accepted w.r.t. ΛΔ.

Algorithm 2: a variant of Algorithm 1 using an AF solver. To perform the computation
of the skeptical preferred acceptance by using a state-of-the-art AF solver, we modify
Algorithm 1 as follows. Let ASAFtoAF be a function that takes as input an ASAF Δ
and returns the corresponding AF ΛΔ. Then, the invocation of the ASAF solver at Line 5
of Algorithm 1 is replaced by AF-Solver(G, ASAFtoAF(ΔP )), where AF-Solver is a
function computing the skeptical preferred acceptance of a given argument w.r.t. a given
AF, and G is the argument of ΛΔ corresponding to G. Let Algorithm 2 be the so-obtained
algorithm. As stated next it is sound and complete.

Theorem 4. If AF-Solver is sound and complete, for any goal element G of Δ, Algo-
rithm 2 returns SAu(Δ)(G) w.r.t. the updated ASAF u(Δ).

4. Empirical Evaluation

We implemented a C++ prototype and compared the performance of: 1) the incremental
approach, that is Algorithm 2 where AF-Solver is μ-toksia [35], the winner of the last
ICCMA edition for the task DS-pr (i.e., computing the skeptical preferred acceptance of
an argument of an AF); and 2) the computation from scratch, that is the computation of
the skeptical preferred acceptance of the goal element w.r.t the updated ASAF by running
AF-Solver (i.e., μ-toksia) directly on the AF for the updated ASAF.
Dataset. Although there are several benchmark generators and solvers for Dung’s
AFs [38], only a benchmark has been recently proposed for ASAFs [1]. Following [1],
we generated a set of benchmark ASAFs by starting from AFs used as benchmark at IC-
CMA’19. Specifically, we use an AF dataset consisting of 326 AFs and, given a bench-
mark AF Λ, we generate an ASAF as follows: 30% of attacks in Λ are transformed into
first-level supports; 12% (resp. 3%) of attacks in Λ are transformed into second-level
supports towards a support (resp. an attack); 3% (resp. 2%) of attacks in Λ are trans-
formed into third-level supports towards a support (resp. an attack); 12% (resp. 3%) of
attacks in Λ are transformed into second-level attacks towards an attack (resp. a support);
2% (resp. 3%) of attacks in Σ are transformed into third-level attacks towards an attack
(resp. a support); the remaining 30% of attacks in Λ are kept as first-level attacks of the
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Figure 5. Improvement of the incremental approach over the computation from scratch (log scales). The
dashed black line represents the median value.

resulting ASAF. This benchmark generation process aimed at preserving AFs’ topology
as much as possible. However, the process of generating ASAF benchmarks starting from
AF benchmarks is challenging because we require specific amounts of different kind of
attacks and supports, and we also need to check that the sub-graph induced by first-level
supports is acyclic. Hence, to make it feasible, for each dataset, we generated an ASAF
Δ if the number of arguments |AΔ| of the AF ΛΔ for Δ does not exceed the number
of arguments of the biggest AF in the original dataset. Therefore, starting from the AF
dataset, we obtained an ASAF dataset consisting of 284 ASAFs Δ = 〈A,Ω,Γ〉 with a
number of arguments |A| ∈ [5, 10K] and a number of interactions |Ω ∪ Γ| ∈ [8, 310K].
Methodology. For each ASAF Δ in the dataset, we consider a (randomly chosen) goal
element and an update u selected among one of the possible 12 types (addition/deletion
of an attack/support towards an argument/attack/support). Next, we compute the updated
skeptical preferred acceptance of the goal element in the updated ASAF u(Δ) by calling
Algorithm 2. Finally, we compute the improvement of Algorithm 2 over the computation
from scratch as ts/tA2 where i) ts is the time needed by the computation from scratch,
and ii) tA2

is the time needed by Algorithm 2. Thus, the improvement tells us how many
times Algorithm 2 is faster than the computation from scratch. The experiments have
been carried out on an Intel Core i7-3770K CPU 3.5GHz, 12GB RAM, running Ubuntu.
Results. Figure 5 reports the improvement versus the number of ASAF interactions (i.e.,
|Ω∪ Γ|). Each data point refers to a run concerning an update and a goal. We also report
the median of the improvement (dashed black line). Since μ-toksia ran into memory
capacity saturation when computing the skeptical acceptance for 4, 9% of the AFs for the
ASAFs in the dataset, we report the results for the remaining 244 ASAFs having number
of arguments |A| ∈ [5, 10K] and number of interactions |Ω ∪ Γ| ∈ [8, 23.7K].

The results in Figure 5 show that, for a given goal and update, the improvement can
be either very large or limited. This is due to the fact that either i) the alterable set is
empty, and thus the algorithm immediately recognizes that acceptance status of the goal
does not change after the update, or ii) the Proxy ASAF is built to compute the skeptical
acceptance of the goal by invoking the external solver. Case i) occurs for 56% of the
data points, and the average improvement in this case is 5836. The average improvement
in the other case is 1.53, that is, the incremental computation takes 65% of the amount
of time needed by the computation from scratch. In particular, although the size of the
Proxy ASAF is 70.1% of that of the input ASAF on average, there is an overhead due
to the construction of the Proxy ASAF that, to some extent, mitigates the benefit of the
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local computation on the smaller ASAF. Finally, the running time of Algorithm 2 is
slightly more than that of the computation from scratch for only 3.8% of the data points.
However, overall the incremental algorithm outperforms the computation from scratch,
as confirmed by the median value of the improvements which is equal to 131 (the average
is 3287, but is skewed by huge values of improvements in Figure 5).

5. Conclusions and Future Work

There has been an extensive body of work on managing changes in argumentation (a
survey can be found in [28]). Besides the works mentioned in the introduction, other
significant efforts coping with dynamics aspects of AFs include [10,14,21,23]. Similarly
to what is done in this paper, some approaches focused on local computation in dynamic
AFs [2,15,34,32] but with the aim of recomputing extensions. Recently, as discussed in
Section 3.1, an algorithm for the incremental computation of an extension of dynamic
ASAFs has been proposed in [1]. Moreover, an incremental approach to computing skep-
tical acceptance in Dung’s frameworks has been proposed in [5], where the ideal exten-
sion is used for the computation and it is incrementally maintained. To the best of our
knowledge, this is the first paper proposing an incremental technique for the computation
of skeptical preferred acceptance in dynamic ASAFs. Due to the generality of ASAF, our
technique can be also applied to restricted frameworks such as Argumentation Frame-
works with Recursive Attacks (AFRAs) [13] and AFNs [36].

As future work we plan to investigate similar approaches for Recursive Argumen-
tation Framework with Necessities (RAFN) [24], where a support may come also from
a set of arguments, as well as extending our technique to deal with other semantics and
considering the problem of enumerating extensions (as done for AFs [6]).
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