
Point-Of-Interest Semantic Tag Completion in a Global
Crowdsourced Search-and-Discovery Database

Nikolaos Lagos1 and Salah Ait-Mokhtar and Ioan Calapodescu

Abstract. Applications that process Point-of-Interest data are omni-
present nowadays. They range from digital maps to recommender
systems for places to visit, and personal assistants. The success of
such applications critically depends on the quality of the ingested
data. However, corresponding databases, especially when they are
crowdsourced, are often incomplete. Existing work on automatic
data completion approaches has only partially considered the task
for Points-of-Interest (POI). Such entities have a number of distinc-
tive properties - notably multiscript names, geo-spatial identity, and
temporally defined context -, which make the task more challeng-
ing. Here we present an approach to automatically complete POI se-
mantic tags in a crowdsourced database. We perform experiments on
multi-lingual data from Foursquare, a global location-based social
network, and observe that (i) POI names are strong predictors of POI
semantic tags: a character-based LSTM model trained only on POI
names gives 72.5% worst-case micro-precision and 50.38% micro-
F1 scores, (ii) appropriate use of spatio-temporal data leads to con-
sistent improvements (iii) using a structured representation of time
gives higher precision and requires less computation time than string-
based LSTM variants, however, the higher precision is achieved at
a cost of lower recall and micro-F1, (iv) an LSTM model trained
on semi-structured strings representing time, is competitive to fully
structured inputs in terms of recall.

1 INTRODUCTION

Points of Interest (POIs) can be described by a number of semantic
tags e.g. Falafel Restaurant, Bowling Alley etc. In Foursquare, users
select the tags from a hierarchical list of more than 900 categories2.

Semantic tags are not only used to guide humans but also as input
data to several applications such as recommender systems, trip plan-
ners, and/or artificial intelligence (AI) based personal assistants. The
success of such applications critically depends on the quality of the
ingested data, and most importantly the completeness of supporting
databases [2, 13].

In the last few years, with the advent of Location-Based Social
Networks (LBSNs), such as Foursquare, a lot of POI databases are
crowdsourced, which makes the problem of data completion even
more important. A number of works have been proposed to automat-
ically categorise POIs [6, 9, 19, 20, 23] but suggested techniques are
usually applied on a small sample of POI categories and focus on
limited geographical areas (i.e. cities or regions from a single coun-
try). Moreover, previous work is based on user data and most specifi-
cally the notion of check-ins i.e. visits to a POI explicitly declared by

1 Naver Labs Europe, France, email: nikolaos.lagos@naverlabs.com
2 https://developer.foursquare.com/docs/resources/categories as of 3rd Octo-

ber 2018

the user where geo-coordinates and time of visit are recorded. Gain-
ing access to such user data may become more difficult with new
privacy-related laws, such as EU’s General Data Protection Regula-
tion (GDPR) being applied (c.f. for a detailed analysis see Section 2).

The main contributions of this work are as follows.

• To our knowledge this is the first study of a multi-lingual, global
search-and-discovery database related to POI tag completion. We
formally define the problem and present a corresponding analysis.

• We propose that, as POIs are inherently not only geo-spatial but
also temporally defined entities, we should exploit temporal in-
formation extracted from POI attributes e.g. opening hours. Spe-
cialised processing is thus proposed.

• In contrast to previous work, we use only publicly available data
about POIs. This work can thus complement previous techniques
based on user check-ins, but can also be independently used in the
case that no such data is available.

The rest of the paper is organised as follows. We review related
work in Section 2. We define the problem in Section 3 and describe
our data completion method in Section 4. Experiments are presented
in Sections 5 and 6. Section 7 includes the conclusions of this work.

1.1 Industrial context

Our company Naver, provides, among other things, location-based
services. Good quality POI data is thus of major importance. In this
context, in Naver Labs Europe, we have been exploring automatic
multi-lingual methods for completing and correcting POI semantic
tags found in Foursquare’s database, a global crowdsourced location-
based social network3. The scope of our work is to support:

• A user searching for specific type of POIs in the vicinity of her/his
position. If POIs are not categorised under the appropriate type,
the user can not easily search for them and they will not be in-
cluded in the search results. In addition, proper POI categorisation
could also help in recommending possible alternatives.

• A user writing a review on a POI. Selecting the right POI metadata
when completing the review is time-consuming. We want to auto-
matically recommend appropriate metadata, including POI cate-
gories, to facilitate the task as much as possible.

2 RELATED WORK

Most of the work on Point-of-Interest categorisation has taken place
in the context of Location-Based Social Networks. There are two
main approaches to the problem.
3 We got access to this data thanks to an agreement between Naver Labs and

Foursquare.
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The first one requires access to check-in data and uses only such
data as input to the prediction model [20, 19, 9]. This includes
for instance POI unique identifiers, user unique identifiers, the time
and duration of the check-in, the number of check-ins, the lati-
tude/longitude of the user’s position, and sometimes users’ demo-
graphic information (e.g. age range, gender). Based on this informa-
tion, most of the existing work, attempts to categorise POIs in very
coarse-grained categories (e.g. home vs. work, or nightlife/bar vs.
restaurant) with the no. of categories to predict ranging from 3 to 15.

The second one is represented by He et al. [6] and Zhou et al. [23],
where the authors, in addition to check-ins, also try to use more fine-
grained information about the POIs. In the case of He et al. [6] this
includes general tags that may be related to categories but also to
other information e.g. "godzilla". Zhou et al. [23] are the first that
use the POI name and address tokens or more particularly token em-
beddings pre-computed on a domain and language-specific corpus.
However, they consider POI data as standard textual content, and per-
form token-based processing. However, corresponding databases are
often global, multi-lingual, and multi-script. This requires a different
approach to token-based representations. Although character-based
models are not new, we are the first ones to use them in this context.
In addition, we believe that there is a spatio-temporal aspect inherent
to the identity of POIs, including their opening/access times. We thus
propose different ways to represent temporal information.

With a different objective but in a related context, Jiang et al. [7]
apply machine classification techniques to the problem of fusing
different POI databases under a common classification hierarchy,
the North American Industry Classification System (NAICS). Their
study involves only a few American towns and they do not use POI
attributes as input features.

A number of works have been carried out on location prediction
in social streams, e.g. Twitter. The main research interest is in using
noisy and short text for classification. For instance, Cano et al. [4]
uses tweets to infer volatile POI classes according to specific tempo-
rary events happening at a specific location. Interested readers may
refer to Zheng et al. [22] for a comprehensive survey of the domain.
Despite superficial commonalities, this subject is different from the
one studied in this paper.

3 PROBLEM DEFINITION

Our goal is to complete POIs’ semantic tags in the dataset. For in-
stance, a typical place found in Foursquare’s database is "Παρα-
δοσιακό μπουγατσατζίδικο Μπαντής"4 with opening times "6:30-
15:00" and latitude/longtitude "40.647039/22.938023". The only cat-
egory attributed to the POI in the database is Bougatsa Place. How-
ever, missing, but pertinent, tags include Breakfast Spot, Pastry Shop,
and Snack Place. The objective is to complete such missing tags.

We consider POI semantic tag completion as the problem of com-
pleting a specific attribute of the dataset, the one that represents POIs’
categories, based on data from the remaining attributes.

Formally, a POI p should consist of an attribute that includes an
ideal, complete, category labelset i.e. set of relevant labels L ⊂ Λ,
where Λ = l1, ..., lm is the set of all possible labels, and other
attributes represented by the set A. In this work, the set of labels at-
tributed to each POI in the dataset i.e. the observed labelset, is incom-
plete. So, if Lo represents the observed labelset then Lo ⊂ L ⊂ Λ
where Lo can be the empty set. For instance, revisiting our exam-
ple, the observed labelset Lo = {Bougatsa P lace} while L =
{Bougatsa P lace,Breakfast Spot, Pastry Shop, Snack P lace}.
4 English translation:Traditional bougatsa place Badis.

We denote by y = (y1, ..., ym) an m-dimensional binary vector
where yi ∈ [0, 1] such that yi = 1 if and only if li ∈ L. Accordingly,
the m-dimensional binary vector yo = (y1

o , ..., y
m
o ) with yi ∈ [0, 1]

has yi
o = 1 if and only if li ∈ Lo. We assume that S ∪ T ∪ R = A

where S stands for the set of spatial attributes, T the set of the tem-
poral ones, and R the rest of the attributes. Considering again our
example, the spatial attributes latitude and longtitude would be in-
stantiated by the corresponding values. The temporal attribute would
include the opening times, while R the name of the POI.

We denote by x,xR,xS ,xT the vectors that represent corre-
spondingly A, R, S, and T , such that the observed p in the dataset,
is defined as

p = {x,yo} = {xR,xS ,xT ,yo} (1)

and we are trying to complete p such that

p = {x,y} (2)

We formulate our goal as a multi-label classification problem where
we want to find a classifier h : X → Y where X is the input space
(all possible attribute vectors) and Y the output space (all possible
labelset vectors), such that y = h(x).

We assume that the attribute containing opening times is included
in xT and the one with geospatial coordinates, e.g. latitude/ longi-
tude, in xS . Opening times and geospatial coordinates should have
non-null values. Optionally, xT may also represent attributes de-
scribing the times that different services are available (e.g. in the case
of restaurants, kitchen opening times may differ from bar opening
times and/or happy hours).

4 DATA COMPLETION METHOD

To find h, we follow a standard approach and transform our prob-
lem into finding a real-valued vector function f : X → S that
allows to indicate the relevance of a label li in relation to the in-
put i.e. f(x) = (f(x, l1, ), f(x, l2), ..., f(x, lm)) where f(x, li)
is the confidence of li ∈ Λ being a correct label for x and m is
the number of labels. Actually this corresponds to an estimation of
p(yi|x) : yi ∈ [0, 1]. Note that ideally, observed outputs should
be completely specified vectors, however in our context the training
instances are only partially complete, so of the form (xi, yi

o). We
follow the Binary Relevance method, thus learn m binary models,
each specialised into predicting whether one label is correct or not,
independently from the other labels. For an unseen x, the predicted
labels are then the union of the predictions of all the binary models.

To learn the binary models we execute the following steps:

• Attribute selection: In initial configurations we have followed the
procedure proposed by Biessmann et al. [2] where the attribute to
be completed is selected as the target and the rest of the attributes
are used as input features. However, based on further experiments,
we have elaborated this step into selecting the attributes that are
the most representative for our task (for instance ignoring aggrega-
tion meta-attributes, such as total no. of likes, and attributes with
highly sparse values such as twitter ids). This step reduces the
search space and actually the model not only converges faster but
also leads to slightly better precision and recall.

• Vectorisation: This step includes transforming the attributes in a
form that can be treated by the imputation models. In addition to
the traditionally distinguished types of categorical and sequential
data, we also explore specialised vectorisers for spatial and tem-
poral data. We will give more details in section 4.1.
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• Imputation: The probability of li being a correct label given x
is computed in this step. As explained in the previous paragraph,
our problem is casted as a supervised machine learning problem.
Details are provided in section 4.2.

4.1 Vectorisation

Categorical variables. We represent them with embedding vectors,
as usually reported in the literature [5, 2].

Sequential variables. Biessmann et al. [2] report that character-
based representations are more robust for a similar setting to ours
(i.e. sparse data and multiple languages). In addition, Joulin et al.
[1] and Biessmann et al. [2] mention that character n-grams can
perform better than simple, unigram, character-based LSTMs. After
experimentation we have adopted trigram character based LSTMs
that we train along with the classifier.

Temporal variables. In the case of POIs, temporal variables
describe opening times.5 Opening times represent recurrent intervals
of time. Exceptionally they may vary over different seasons and/or
specific periods of the year, such as Christmas. We can consider
though that overall they exhibit periodicity. In this study we compare
three alternative ways of representing and vectorising opening times.

• As a categorical variable (bucket-based). Transforming the string
into one-hot vector according to the intervals during which the
POI is open. For instance, if a POI opens every Monday at 9am
and closes at 9pm, then if we decide the granularity of the inter-
vals to be 3-hour ones daily, Monday would be represented with
the following vector [0, 0, 0, 1, 1, 1, 1, 0]. The granularity of the
intervals can be chosen based on a histogram of the values. We
have decided to use 1/2 hour intervals for each day and concate-
nate them to represent all days of the week (where the week is
repeated over the year). The concatenated vector is used as input.

• As a periodic variable. Opening time is periodic over two dimen-
sions: 7-day week and 24h day intervals. As Bishop states, such
quantities can conveniently be represented using an angular (po-
lar) coordinate and as points of a circle [3]. Consequently, to ap-
propriately transform days, opening and closing times, we create
two vectors that hold the corresponding Cartesian coordinates. For
instance, if the vector that represents instances of day-time hours
found in our training data is h, then each hi ∈ h is transformed to
two dimensions: ki = sin(2π× hi

24
) and yi = cos(2π× hi

24
) where

ki ∈ k and yi ∈ y. Then we use k,y as input vectors instead of
h. Days and minutes are transformed in a similar manner.

• As a sequential variable. As mentioned above, time is written as
a formatted string i.e. a semi-structured sequence of characters.
Thus, a possibility is to consider time as a sequential variable and
use the last state vector of a unigram-character based LSTM to
represent the string value of the opening times (cf. 5.1.2).

Spatial variables. Geographical coordinates are the most impor-
tant spatial attributes that characterise a POI. For instance, latitude
and longitude are two of the most frequently used geographical co-
ordinates. The predominant way of modelling coordinates is to dis-
cretise the input space [16, 21]. This could take the form of a grid
separated into a fixed number of cells. Usually in this case the form

5 As a POI may offer several different services, different opening times for
each service may be included in the data e.g. kitchen opening times vs bar
opening times.

and granularity of the cells has to be selected appropriately. In our
context, POI categories are usually country-specific (and sometimes
city or region-specific). After initial exploration, we have decided to
map our geo-coordinates to countries. We can then model the corre-
sponding data as categorical variables. A downside of that represen-
tation is that the model is not able to learn geographical regions in a
data-driven way (e.g. [14, 18]). We leave exploring dynamic ways of
learning appropriate representations for future work.

4.2 Imputation

Once we vectorise our attributes, as explained in the previous sec-
tion, we use a concatenation layer to combine them. So if a is a POI
attribute such that a ∈ A and φa(xa) ∈ �Da is the attribute specific
vectorisation function, where Da denotes the dimensionality associ-
ated with the attribute a, then the final input vector is a concatenation
of all vectorised individual attributes:

x̃ = [φ1(a1), φ2(a2), ..., φn(an)] (3)

where n denotes the number of attributes. We feed this to:

h = relu[Whx̃+ bh] (4)

After applying a dropout layer, we then calculate:

p(y|h,θ) = sigmoid[Wh+ b] (5)

where θ = (W,b,Wh, bh) are learned parameters of the model.
sigmoid(s) denotes the element-wise logistic function f(si) =

1
1+esi

. The parameters θ are learned by minimising the binary cross-
entropy loss function. The multi-label model outputs for each label a
probability score. To get from that the corresponding set of labels, a
constant can be applied as threshold (usually this is 0.5) [11].

Note that, in the general case of data completion, partially ob-
served labels can be considered as part of the inputs. We do not
follow this approach, we rather focus on an extreme case of label
incompleteness where no such partial observations are available.

5 EXPERIMENTS

5.1 Set up

5.1.1 Data

As mentioned in the previous sections, we run our experiments
on ≈900K POIs extracted from a large database provided by
Foursquare. The focus of the experiments is on (i). understanding the
capability of the model to predict POI categories, and (ii). exploring
the influence of different spatio-temporal attribute representations
on the data completion task. Details are provided below.

Categorisation hierarchy Our dataset includes 779 POI cate-
gories from the categorisation hierarchy of Foursquare (Table 16).
As the classification hierarchy is based on crowdsourced data, the
parts of the dataset that include more POI instances are represented
with more categories, resulting in it being heavily imbalanced. For
instance, the most well developed category is Food, with 336 cate-
gories distributed in 5 levels. The least developed one is Residence
having only 4 subcategories, over 2 levels.

6 https://developer.foursquare.com/docs/resources/categories as of 3rd Octo-
ber 2018
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Table 1. Category Distribution in the dataset

Root Category Levels Categories in Path

Food 5 336
Shop & Service 3 150
Professional & Other Places 3 74
Outdoors & Recreation 4 78
Arts & Entertainment 3 49
Travel & Transport 3 41
College & University 3 26
Nightlife Spot 3 25
Event 2 7
Residence 2 4

Semantic tag distribution. We have extracted a dataset of
POIs having spatio-temporal attributes from the existing Foursquare
database. We used the most well developed root category, Food,
as seed. The resulting dataset includes about 900K POIs. The
distribution of the categories is similar to the one found in the
original hierarchy, as shown in Table 17.

The label cardinality (i.e. average number of labels per POI) is
1.37, while the label density is 0.0018. The POIs that have strictly
fewer than two tags are 63% of the overall set of POIs. These num-
bers further illustrate the complexity of the problem: the cardinality
is relatively low due to incompleteness, while the density is also low,
meaning there is a relatively high number of distinct labels. To bet-
ter understand these numbers we provide the overall distribution of
semantic tags in Table 2. As shown, the dataset is skewed in terms
of the POI instances attributed to each category, with the first 10 top
categories having more than half of the POIs attributed to them. The
long queue of sparsely represented categories could also be an expla-
nation of the low density. It also worths noting that:

Category % tags

Fast Food Restaurant 10.35%
Café 8.28%
Pizza Place 7.70%
Coffee Shop 7.66%
Sandwich Place 5.77%
Restaurant 5.08%
American Restaurant 4.91%
... ...
Ice Cream Shop 2.03%
Breakfast Spot 1.93%
... ...
Diner 1.65%
... ...
Food 0.24%

Table 2. Percentage & distribution
of semantic tags

• Semantic tags attributed to the POI can be from different levels
of the category hierarchy. For instance the root category Food, the
second level category Pizza Place, and the third level category Ice
Cream Shop, are all included as semantic tags in the dataset. This
illustrates that there is no constraint on the tag(s) the user can input
i.e. they can come from any level of the hierarchy.

• The hierarchy is counter-intuitive at places. For instance, Restau-
rant and American Restaurant are siblings rather than having a
hierarchical relation between them. This could be explained from
the crowdsourced nature of the resource. A direct consequence is

7 Even if we used Food as seed, we find also the rest of the root categories in
the dataset. The reason is that POIs can be categorised using multiple root
labels, although at least one of the labels must have as seed Food.

that similar POIs tend to be labelled differently from users, not
only because all relevant labels may not be found by the user, but
also because differences between categories may be fuzzy.

• Spatio-temporal attributes should be more distinctive for some
classes than others. For instance, Breakfast Spots should open
early and close earlier than Bars, while Diners should be found
more frequently in the US rather than in other countries.

Point-of-Interest attributes. POI attributes include its name,
the latitude and longitude, and its opening times, transformed
into the different representations discussed in Section 4.1. It
is important to note that contrary to completely freely crowd-
sourced POI databases such as OpenStreetMaps [10], the for-
mat of these resources is normalised. Latitude and longtitude
are written in the standard form, normally with >10-decimal
point precision (e.g. latitude:55.76942424341726, longtitude:
44.948036880105064). Opening times are represented in the
form "day_1; opening_time_in_minutes_from_midnight_1; clos-
ing_time_in_minutes_from_midnight_1 | day_2...". The days and the
opening time intervals can have any order (e.g. day_2 i.e. Tuesday
can be included before day_1 in the string representing the opening
times). Comments are available for some of the POIs but as they are
relatively sparse we chose not to use them in the experiments.

Multi-linguality. An important characteristic of Foursquare’s
data is that it covers the whole globe. As a consequence, it is
highly multi-lingual. Previous work has focused only on a couple
of different languages, with each language represented in a separate
dataset and thus potentially processed with appropriately tuned
models (e.g. specific hyper-parameter tuning). In the case of POIs,
automatically creating such datasets is far from simple: POI string
attributes, especially their names, are short, so automatic language
identification techniques tend to be less accurate; POI names tend
to occasionally contain a mix of two or more different languages
e.g. Mr. Panino 北京小 ; and POI names are proper names in a
number of cases e.g. KiKi. This aspect influenced our choice of
using character-based models8. It is difficult to quantify the number
of different languages and alphabets included in our dataset as
automatic language identifiers are not reliable on short strings, such
as POI names. As a proxy, we have analysed the, relatively sparse,
comments related to POIs9. We have detected 46 languages in total,
although 38.5% of the comments are written in English and the top
10 most frequently used languages cover 76% of the comments. We
have found 9 different alphabets ranging from Russian to Chinese.
The POIs found in the dataset come from 100 different countries.

Silver standard. To generate training and test data, we used
approximate stratified sampling. The goal was to maintain the
distribution of positive and negative examples of each label by
considering each label independently. Consequently, we allocated
the dataset of 890K POIs proportionally into 70% for training, 20%
for development, and 10% for testing purposes. We would like
to highlight here, that actually the dataset is a silver standard, as
the sets of labels attributed to each POI are incomplete. This is an
important limitation that has to be kept in mind when interpreting
the experimentation results.

8 Intuitively, character-based models tend to be more robust in highly multi-
lingual setting than token (or word) based ones.

9 The analysis has been carried out with a proprietary language identifier that
performs comparably, if not better, to Langid.py
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5.1.2 Evaluated Models

We have developed a number of model variations that correspond to
the different representations discussed in Section 4.1. We compare
those to the following state-of-the-art imputation methods.

• BRknna [15]. Binary Relevance multi-label classifier based on k-
Nearest Neighbors method. k is set to 1 based on the results of a
grid search (k: {1,6}).

• Datawig_hash [2]. State-of-the-art method for data imputation
with categorical data, as reported by Biessmann et al. [2]. This
model encodes POI names and opening times as hashed char-
acter n-grams, while the country is represented as a categorical
variable. For fair comparison, we closely follow the model hyper-
parameters, regularization and optimization techniques introduced
in [2], with only small changes to allow multi-label imputation
(the original version performs only single-label imputation).

• Datawig_LSTM [2]. LSTM based state-of-the-art method, as in-
troduced by Biessmann et al. [2]. This model encodes POI names
and opening times with unigram-character LSTMs, and country is
represented as a categorical variable.

• Ours. The model presented in this paper. The input variations in-
clude: (i) Base. POI names as trigram-character based LSTMs.
When used alone, we consider it as a baseline for the rest of the
models. (ii) t_sincos. Temporal information as a periodic vari-
able. (iii) t_30. Temporal information as one hot vector based
on intervals of 30 min (buckets). (iv) t_LSTM. Temporal infor-
mation as sequence (unigram-character LSTMs). (v) s_geo. Geo-
coordinates as vectors representing countries.

For our model variations, we are using an architecture with one
hidden dense layer, followed by a dropout layer, and the output layer.
We use the Rectified Linear Unit as the activation function of the
hidden layer. The dropout rate is set to 0.3. The loss we use is binary
crossentropy. We have set an early stopping criterion for the training
based on a pre-defined threshold that takes into account the delta of
the loss between two consecutive epochs. For all sequential features
we applied a length of 50. For the LSTM layer we set the dimensions
of the embedding layer vector space to 128 and the number of the
LSTM hidden units to 128. The LSTM has a recurrent droupout rate
of 0.3. Experiments were run on a single GPU instance (1 GPU with
16GB VRAM, 4 CPUs, with 256GB RAM). Training was performed
with a batch size of 32. We used the Adam optimiser with the default
parameters recommended in [8].

5.2 Silver standard evaluation

The results reported below are on the test dataset, which has not been
used for training or validation purposes. We have calculated for each
model the average micro precision, micro recall and micro F1, ex-
cluding outlier values10, over 10 runs11. Results are shown in Ta-
ble 312.

5.2.1 POI names as category predictors

Our baseline predicts POI categories with 72.55% precision and
50.38% F1 scores. The micro-F1 is also higher than the state-of-the-
10 Outliers are values that fall below Q1-1.5*IQR or above Q3-1.5*IQR

where IQR is the interquartile range and Q1 and Q3 the first and third
quartiles [17].

11 Datawig_LSTM is averaged over 5 runs because of limited time.
12 Please note that more details, such as a box plot visualisa-

tion of the results, can be found in our technical report at
https://europe.naverlabs.com/publications/semantic-tag-completion.

Table 3. Average performance (%) over 10 runs (except for BRknna). Best
results are in bold. Standard deviation is also reported.

Model Micro-prec. Micro-rec. Micro-F1

BRknna [15] 41.35 39.90 40.61
Datawig_hash [2] 74.89±0.63 35.59±0.68 48.24±0.50
Datawig_LSTM [2] 69.03±0.54 37.47±0.77 48.56±0.59

Ours
Base 72.55±0.54 38.60±0.8 50.38±0.63
+s_geo 72.96±0.5 40.06±0.64 51.72±0.61
+t_LSTM 72.62±0.47 39.81±0.64 51.42±0.56
+t_30 74.96±0.8 36.50±0.71 49.10±0.58
+t_sincos 74.20±0.51 38.38±0.54 50.60±0.47
+s_geo+t_LSTM 73.56±0.35 41.61±0.4 53.15±0.38

+s_geo+t_30 74.96±0.72 37.38±0.98 49.88±0.80
+s_geo+t_sincos 74.61±0.34 39.50±0.56 51.65±0.48

art methods, which indicates that (i) the name is a strong predictor of
the category (ii) vectorising appropriately the name and optimising
the model accordingly is extremely important.

5.2.2 Improvements using spatio-temporal data

Appropriate addition of spatio-temporal information results in mod-
els with higher micro-precision and micro-F1 scores. The difference
between the baseline and the models including spatio-temporal in-
formation is consistent. The average difference in terms of F1-score
between the baseline and the best performing model is ≈2.7 absolute
percentage points in micro-F1 and ≈2.4 points in micro-precision.
Over the hundreds of millions of POIs included in the database of
Foursquare these differences are significant.

In the following paragraphs we take a more detailed look at how
the addition of each type of information impacts the results.

Spatial data In Table 4 we can see the categories for which perfor-
mance differences, when compared to the baseline model, are most
important. The results related to injecting spatial data seem to be
self-explanatory: categories with limited training data and strongly
correlated to the location of the POI are mainly included. Examples
include, Australian Restaurant and Brasserie (POI type found mainly
in France and the Francophone world). An interesting category is Pet
Café: in that case the model has learned that Cafés and Tea Shops
in Japan that have the character 猫 (meaning ’cat’) in the name are
probably categorised as Pet Cafés (the baseline favours Café instead).
Although most of the time spatial data have a positive impact, their
effect is generally limited in terms of micro scores, as the categories
that are improved are mainly part of the long tail. In practical terms
though this case is very important. Long tail categories are more rare
and thus more difficult to find in an explicit search.

Temporal data In the case of the temporal model there are perfor-
mance differences that intuitively make sense. For instance, the open-
ing times of Convenience Stores, Grocery Stores, and Bars, should be
particularly different compared to restaurants. However, other gains
are more difficult to explain, such as in the case of the category Por-
tuguese Restaurant. Analysing the corresponding predictions, we ob-
serve the following.

• The baseline occasionally has problems with seemingly easy pre-
dictions such as "Nando’s Mall of the North", although Nando’s
is a well known Portuguese chain of restaurants with thousands
of occurrences in the database (this happens especially when the
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Table 4. Top 10 categories in terms of performance difference to the
baseline (in the brackets the delta in precision)

s_geo t_30 s_geo+t_30

Australian(0.85) Portuguese(0.38) Tex-Mex(0.41)
Pet Café(0.77) Fish & Chips(0.31) Diner(0.26)

Trattoria/Osteria(0.66) Bubble Tea(0.26) Taco Place(0.25)
Hong Kong(0.61) Taco Place(0.24) Italian(0.23)

Austrian(0.58) Friterie(0.16) Wings Joint(0.17)
Brasserie(0.55) Convenience St.(0.11) Thai(0.14)

Mongolian(0.54) Noodle House(0.10) Snack Place(0.13)
Cha Chaan Teng(0.45) Chinese(0.09) Sandwich Place(0.12)

Tex-Mex(0.43) Grocery St.(0.08) Bakery(0.11)
Unagi(0.39) Bar(0.07) Convenience St.(0.11)

name of the POI includes a lot of characters). The regularity in the
opening times though (i.e. 11:00-21:00 on weekdays and 09:00-
23:00 on Friday and Saturday), seems to help the corresponding
model to be more confident and generate a correct prediction.

• In other cases, the name indicates that it should be a Portuguese
Restaurant but the opening times do not fit the corresponding dis-
tribution. For instance, Mando’s, a Mexican Restaurant, is pre-
dicted as a Portuguese Restaurant by the baseline because of the
obvious similarity of the name to Nando’s. However, the POI is
open daily 09:00-02:00. In that case, the t_30 model does not gen-
erate any predictions and thus no false positives.

The two points mentioned above are representative of the way in
which temporal information also helps with other categories.

Combining spatial and temporal data Categories in this case have
a strong geo-spatial character, constrained to a few countries, and in
addition opening times differ among these countries. For instance,
Tex-Mex Restaurant gains 0.21 points in micro-precision with the
addition of spatial data because a large percentage of these POIs
is found in the US and Mexico compared to other countries. In
addition, the distribution of times is characteristic for each country
and helps to further improve the predictions (Figure 1).

Figure 1. Tex-Mex opening time distribution in Mexico (left figure) and
the US (right figure). Regularity in opening times and characteristic time

ranges for each country on some days (especially Thursday) help to further
improve the predictions.

5.2.3 Computation time

The base (name-only) model took 27 hours and 33 epochs to con-
verge. The base + s_geo + t_30 model took less time with 24.5 hours
and only 19 epochs, while the base + s_geo + t_LSTM variant re-
quires the most computation time, 73 hours and 39 epochs. This is
a significant difference, especially in a production-oriented scenario
where models have to be regularly updated.

5.3 Restrospective evaluation

While the results obtained on the silver standard are promising, the
labels (i.e. semantic tags) attributed to each POI in the silver standard
are incomplete. This could lead to the precision being incorrectly pe-
nalised, as values predicted by the model are counted as incorrect
even if they are correct but absent from the test data due to incom-
pleteness - in that sense the micro-precision values presented here are
a worst-case scenario while the micro-recall ones may be optimistic.

To understand the potential impact of our method on the current
database we created a small gold dataset by manually and carefully
assigning complete sets of labels to 163 POIs. Label cardinality in
this sample is 2.8 instead of 1.37 in the silver standard. There
are several reasons for this difference: In some cases, it is obvious
that semantic tags are missing from the silver standard e.g. McDon-
ald’s is tagged as a Fast Food Restaurant but not a Burger Joint.
This is plainly illustrated in Figure 2, which shows the results of
a search, using Foursquare’s data, for POIs with the semantic tag
Noodle House in a small part of Paris. The silver dataset includes
only 20 results while 50 additional Noodle Houses are predicted by
our system. Those results are counted as incorrect in our evaluation.
However, we can see that the predictions clearly designate the 13th
arrondissement, an area with a lot of Asian Restaurants, as having
several noodle houses (the database includes only a couple). This
sounds reasonable. Looking closer at the results, we see that the pre-
dictions are actually correct: La Table du Ramen is labelled as a Chi-
nese Restaurant by users, while Ramen is a Japanese dish based on
noodles. Pho Bida Vietnam is labelled as a Vietnamese Restaurant,
however, Pho is a Vietnamese noodle soup, so the prediction seems
to be more precise than the existing label.

Figure 2. Example of predictions that are considered wrong in our silver
standard evaluation due to label incompleteness. Red spots indicate POIs
where the semantic tag Noodle House is completed by the classifier. Blue

spots stand for Noodle Houses that already exist in the dataset.

However, there are also cases that are difficult to judge even for
a human, as some categories are inherently fuzzy. For instance,
Dunkin’ Donuts has been labelled as a Donut Place, but is it also
a Snack Place or a Fast Food Restaurant? In addition, semantics be-
tween seemingly distinct labels vary according to the country. For
instance, in the majority of countries, Starbucks is categorised as a
Coffee Shop, however, in Brazil half of the instances are also tagged
Café. This illustrates the difficulty of creating a gold standard.

Faced with this difficulty, we have also performed retrospective
evaluation i.e. the output of the system is given to human judges for
annotation, who then label completions as correct and incorrect [12].
The metric in this case is usually precision combined with the total
number of completion or errors found. We evaluated in this manner
our best performing model, Base + s_geo + t_LSTM, on 100 POIs
that were marked as errors in the silver standard evaluation. In the
case of multiple predicted labels, if all labels were correct then we
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considered the whole prediction correct. In the case that m out of n
predicted labels were correct we calculated a score that corresponds
to the m/n ratio. Results are shown in Table 5. Projected completions
account for more than 7% of the number of labels, i.e. 11900 addi-
tional labels, at a projected micro-precision reaching ≈86%.

We have to note here that we follow a strict evaluation approach
i.e. the label has to be exactly the same as in the ground truth to
be considered correct. However, in some cases the model predicts
categories that are one level higher in the POI category hierarchy
of Foursquare. For instance when the prediction is Bar while in the
ground truth the label is Cocktail Bar or Sports Bar. In these cases
the error is not potentially as important as predicting Bakery while
the correct category is Japanese Restaurant. We analysed such cases
in the retrospective evaluation. Out of the 100 silver standard errors, 7
were due to generalisation and 8 due to label specialisation (e.g. Em-
panada Restaurant was predicted instead of Mexican Restaurant),
while 3 of them were errors in the silver standard. In future work,
the notion of error importance should be introduced in our metrics to
account for such differences.

6 BONUS APPLICATION: CATEGORY TREE
REFINEMENT

While the main objective of this work is database completion, we
found that it can also be used to provide visual (and statistical) cues to
human curators to help them refine Foursquare’s category hierarchy.

The second (and last) layer of activations in our Neural Network
architecture can be understood as an embedding of the POI cate-
gories. We have used a combination of PCA and t-SNE for dimen-
sionality reduction and matplotlib to visualize the corresponding re-
sult. In Figure 3 we can see the visualisation, after filtering out rare
semantic tags (filtered out tags were attributed to less than 5 POIs in
our dataset). Different colours represent different categories.

An illustrative example is given in the Figure, where we zoom
into a specific area. In the zoom, in addition to colours, we project
a number representing each category. The median of the coordinates
of all POIs of a category is used to position the number in the 2D
space. We can see that all the Japanese restaurants are clustered
together, which conforms to the corresponding part of the manu-
ally created Foursquare hierarchy (see Japanese Restaurant subcate-
gories). However, in addition, we find that Ramen Restaurant is very
close to the Noodle House category, which is in turn in the middle
of Asian restaurant related categories. In the Foursquare category hi-
erarchy, no specific relation exists between Ramen Restaurant and
Noodle House, or Noodle House and other Asian types of restaurants
(i.e. the only common ancestor is the root category Food).

7 CONCLUSIONS

We have presented an approach to multi-lingual completion of POI
semantic tags in a dataset from Foursquare, a global crowdsourced
Location-Based Social Network. The data in the domain present a
number of challenges: multiple tags can be correct for each POI;
spatio-temporal data that characterise the POIs require specific pre-
processing; and there are hundreds of categories that can be used to
tag the POIs. In addition, the distribution of semantic tags is severely
skewed and data related to POIs includes noisy information.

In this context, semantic tag completion is a multi-label classifi-
cation problem. To tackle the problem we propose a neural-based
approach where metadata from POI attributes, notably their names,

Figure 3. Visualisation of categories after PCA and t-SNE dimensionality
reduction and zoomed-in visualisation of Japanese, Asian, and other related

categories (zone 1). Different colours stand for different categories.

geo-coordinates, and opening times, are used as inputs to the clas-
sifier. After extensive experiments we have observed that (i) POI
names are strong predictors of POI semantic tags: a character-based
LSTM model trained only on POI names gives 72.5% worst-case
micro-precision and 50.38% micro-F1 scores, (ii) appropriate use of
spatio-temporal data leads to consistent improvements (iii) using a
structured representation of time gives higher precision and requires
less computation time than a string-based LSTM variant, however,
the higher precision is achieved at a cost of lower recall and micro-
F1, (iv) an LSTM model trained on semi-structured strings represent-
ing time, is competitive to fully structured inputs in terms of recall.

The analysis of the results indicates that label incompleteness is
a particular difficulty for the evaluation of the task itself: when we
use existing (incomplete) data as ground truth, values predicted by
the model are counted as incorrect even if they are correct but ab-
sent from the test data due to incompleteness. Therefore the reported
precision values correspond to a worst-case scenario. In addition, es-
pecially in production, the notion of error importance should be in-
troduced in our metrics. This would account for differences between
errors due to predicting labels that are more general (e.g. Bar instead
of Cocktail Bar), different but compatible (e.g. Noodle House instead
of Vietnamese Restaurant), or incompatible ones (e.g. Bakery instead
of Japanese Restaurant).

We plan to deploy the proposed solution as a tool for database cu-
rators and maintainers. This live test will provide us with additional
human evaluation, and give us a better appreciation of the strengths
and weaknesses of our approach.
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Table 5. Results of retrospective evaluation.

Model

No. of predictions
marked as errors

in the silver standard evaluation
that are actually correct

Total no. of predictions
(average)

Projected
micro-prec. (silver)

Projected no. of correctly
imputed semantic tags in

the current test set
(Original no.of labels)

Base +
s_geo + t_LSTM

47/100 85414 0.8592 (0.7356) ≈11900 (151K)
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