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Abstract. Ontologies are widely used to formally represent abstract
domain knowledge. Logic reasoning ensures the logical consistency
of ontologies, and infers knowledge implicitly encoded in ontolo-
gies. It has been shown both theoretically and empirically that for
large and complex ontologies, reasoning is still time-consuming and
resource-intensive. Meta-reasoning exploits machine learning tech-
niques to tackle the important problems of understanding the source
of reasoning hardness and to predict reasoning efficiency, with the
overall goal of improving reasoning efficiency. In this paper, we high-
light recent advances in meta-reasoning for Semantic Web ontolo-
gies, briefly present technical innovations and results, and discuss
important problems for future research.

1 Introduction and Motivation

Ontologies describe abstract concepts and the complex relationships
among them, and are widely used to represent complex knowledge
in many application domains [1, 17, 14]. Expressive ontology lan-
guages OWL 1 DL [8] and OWL 2 DL [4] are the lingua franca
for these communities. Their precise semantics enables logical rea-
soning, which includes the maintenance of the logical soundness of
ontologies (i.e. consistency checking) and the inference of implicit
knowledge from ontologies (i.e. classification).

These ontology languages are highly expressive, thus they also
possess high worst-case computational complexity for the above core
reasoning tasks. For example, consistency checking of an ontology
in SHOIN (D), the description logic (DL) underlying OWL 1 DL,
has NEXPTIME-complete worst-case complexity [8]. The complex-
ity of the same problem for SROIQ(D), the DL underlying OWL
2 DL, is even higher (2NEXPTIME-complete) [4].

Significant algorithmic and implementation advances have been
made over the past decades. However, it has been shown empiri-
cally that reasoning on large and complex ontologies can still be
time-consuming and resource-intensive for state-of-the-art reason-
ers [5, 12]. Moreover, there are large variations in hardness of dif-
ferent ontologies [7]. Therefore, it is non-trivial to identify the most
efficient reasoner given an ontology. On the other hand, it has also
been observed that as a whole, the state-of-the-art ontology reason-
ers are robust [6], that it is highly likely that one of the reasoners
performs sufficiently well on a given ontology. Therefore, it is highly
desirable to be able to predict and select automatically the best rea-
soner on-the-fly.

The aim of meta-reasoning is to identify the most appropriate rea-
soner, from a pool of component reasoners, for a given ontology,
based on some criteria, such as the robustness and efficiency of per-
forming ontology reasoning. A meta-reasoner is able to exploit the
differences in strength of different reasoners, thus potentially achieve
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near-optimal performance, by choosing the most appropriate compo-
nent reasoner for a given ontology.

In this paper, we highlight our R2O2* meta-reasoning framework
(simply R2O2*) [10] for highly expressive ontology languages and
future work directions for meta-reasoning.

2 R2O2*: A Meta-reasoning Framework

In a series of works [19, 13, 9, 10], we have investigated the problem
of meta-reasoning. The aim of R2O2* is to construct a meta-reasoner
that predicts the most efficient component reasoner from a collection
of component reasoners and then select it to carry out reasoning on
that ontology efficiently. The R2O2* encompasses a number of main
components [10]:

Ontology hardness description It is essential to be able to pre-
cisely describe the hardness of an ontology without actually per-
forming reasoning. For this purpose we have designed a suite of
91 metrics to measure the design complexity of OWL ontolo-
gies [11, 19]. These metrics measure, syntactically and struc-
turally, the hardness of an ontology either as a whole, or for each
class, property or individual. For instance, some metrics measure
the numbers and percentages of certain language constructs (e.g.
general concept inclusion, or GCI) that are especially hard for a
reasoner to deal with. Some metric measures the degree of devia-
tion of the inheritance hierarchy from a pure tree structure.

Reasoning efficiency prediction By collecting reasoning time data
of a corpus of diverse ontologies, we can train prediction mod-
els that, given an ontology, accurately predict the actual reasoning
time of a given reasoner [13]. Such a prediction model lays the
foundation of meta-reasoning, as now we have a way of estimating
the reasoning time of a same ontology for a number of reasoners.

Learning-based reasoner selection Building on the above two
components, R2O2* ranks a collection of reasoners based on esti-
mated reasoning efficiency. R2O2* trains multiple models, includ-
ing learning to rank and multi-class classification, for reasoner se-
lection, and employs the stacking ensemble method to combine
these models to obtain more accurate predictive power.

We conducted comprehensive evaluation on a corpus of 1,760
ontologies and six state-of-the-art reasoners capable of supporting
OWL 1 DL ontologies. The main result can be seen in a violin plot in
Figure 1 that shows a combination of a boxplot and a mirrored kernel
density plot. Each shape contains the following components: (1) The
violin itself shows the distribution of reasoning time; (2) The cross
(×) shows the mean reasoning time of the reasoner; (3) The plus (+)
shows the median reasoning time of the reasoner; (4) The 3 horizon-
tal lines within each shape shows the 25%, 50%, and 75% of data,
respectively; (5) The grey dots represent the actual reasoning time of
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all ontologies. From left to right, the first six columns depict reason-
ing time of the six component reasoners. AutoFolio [15] is a general-
purpose state-of-the-art algorithm selection model. R2O2*(all) is our
meta-reasoner built with the ensemble of different reasoner selec-
tion models. Finally, VBR represents the ideal, virtual best reasoner
that can only be determined post hoc. As can be seen from the
figure, R2O2*(all) achieves the best reasoning performance except
VBR. R2O2*(all) outperforms Konclude by around 10% and JFact
by around 4000%; also, R2O2*(all) outperforms AutoFolio by more
than 10% in reasoning efficiency.
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Figure 1. Reasoning time comparison between component reasoners and
meta-reasoners from R2O2* [10].

Interestingly, we also observed that even though one of the com-
ponent reasoners, Konclude [18], dominates the others in efficiency,
almost each component reasoner is the most efficient one for some
ontologies. This observation further validates the robustness of the
ontology reasoner collective [6], and provides additional empirical
evidence of the effectiveness of the meta-reasoning approach.

3 Future Directions for Meta-reasoning

Reasoning is a core task for ontologies expressed in the OWL fam-
ily of languages. For large and complex ontologies, efficient reason-
ing remains a challenging problem, even for state-of-the-art reason-
ers. In this paper, we demonstrate, through our recent meta-reasoner
R2O2*, the fertile ground for collaboration between knowledge rep-
resentation and reasoning (KRR) and machine learning (ML). R2O2*
automatically selects the most efficient reasoner from a collection of
reasoners for a given new ontology. In this way, meta-reasoning can
take advantage of the various reasoning algorithms and optimisation
techniques implemented by different reasoners, thus being able to
achieve good and robust reasoning efficiency. We envisage a number
of important future research problems for meta-reasoning, and more
broadly for KRR+ML.

Representation learning All of existing prediction models for on-
tology reasoning efficiency make use of hand-crafted syntactic
and structural features. It is interesting to learn representations [2]
of important constructs, including classes, properties, and individ-
uals. The learned representations will have a wide range applica-
tions beyond reasoning efficiency prediction and meta-reasoning.

Reasoner characteristics Our R2O2* only considers the hardness
of ontologies. It is worth investigating how the characteristics of
reasoners can be taken into account.

Inefficiency repair If an ontology is predicted to be hard for reason-
ing, can it be repaired so that reasoning becomes efficient while
minimising impact on soundness/completeness?

ABox reasoning support Current meta-reasoners all focus on
TBox (terminology) reasoning. An ABox, which contains instance
data, could be orders of magnitude larger than a TBox. Thus, how
to characterise ABox hardness and support meta-reasoning for
ABox reasoning tasks, such as query answering [3] and materi-
alisation, is an important research problem [16].

Benchmark generation Meta-reasoning relies heavily on accurate
learning models, for both reasoning performance prediction and
reasoning selection. It is thus useful to be able to generate syn-
thetic yet realistic ontologies for continued model training.
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[7] Rafael S. Gonçalves, Bijan Parsia, and Ulrike Sattler, ‘Performance het-
erogeneity and approximate reasoning in description logic ontologies’,
In International Semantic Web Conference (ISWC 2012), pp. 82–98.

[8] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen, ‘From
SHIQ and RDF to OWL: The Making of a Web Ontology Language’,
Journal of Web Semantics, 1(1), 7–26, (2003).

[9] Yong-Bin Kang, Shonali Krishnaswamy, and Yuan-Fang Li, ‘R2O2: an
efficient ranking-based reasoner for OWL ontologies’, in International
Semantic Web Conference (ISWC 2015), pp. 322–338. (2015).

[10] Yong-Bin Kang, Shonali Krishnaswamy, Wudhichart Sawangphol,
Lianli Gao, and Yuan-Fang Li, ‘Understanding and improving ontol-
ogy reasoning efficiency through learning and ranking’, Information
Systems, 87, 101412, (2020).

[11] Yong-Bin Kang, Yuan-Fang Li, and Shonali Krishnaswamy, ‘Predict-
ing reasoning performance using ontology metrics’, In International
Semantic Web Conference (ISWC 2012), pp. 198–214.

[12] Yong-Bin Kang, Yuan-Fang Li, and Shonali Krishnaswamy, ‘A rigorous
characterization of reasoning performance – a tale of four reasoners’, in
1st Workshop on OWL Reasoner Evaluation (ORE-2012), (2012).

[13] Yong-Bin Kang, Jeff Z. Pan, Shonali Krishnaswamy, Wudhichart
Sawangphol, and Yuan-Fang Li, ‘How long will it take? Accurate pre-
diction of ontology reasoning performance’, in AAAI, (2014).

[14] Maurizio Lenzerini, ‘Data integration: a theoretical perspective’, in
Symposium on Principles of database systems (PODS 2002), PODS
’02, pp. 233–246, New York, NY, USA, (2002). ACM.

[15] Marius Lindauer, Holger H Hoos, Frank Hutter, and Torsten Schaub,
‘AutoFolio: An automatically configured algorithm selector’, Journal
of Artificial Intelligence Research, 53, 745–778, (2015).

[16] Jeff Z. Pan, Carlos Bobed, Isa Guclu, Fernando Bobillo, Martin J.
Kollingbaum, Eduardo Mena, and Yuan-Fang Li, ‘Predicting reasoner
performance on ABox intensive OWL 2 EL ontologies’, International
Journal on Semantic Web and Information Systems (IJSWIS), 14(1),
(2018).

[17] Ontology-Driven Software Development, eds., Jeff Z. Pan, Steffen
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