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1 Introduction

Modelling a problem as finding a shortest path in a graph has been
successful in many AI problems, including various types of planning.
Search algorithms such as A* owe their efficiency in part to the fact
that, when an intermediate node can be reached along multiple paths,
reaching it through one optimal path can be sufficient. However, the
classical shortest path framework might not be suitable for domains
such as planning a career pathway optimized to the skills needed
along the way. Career recommendations, including longer-term goals
and pathways, are an important emerging application [1].

In career pathway planning, the task is to plan a sequence of job
roles that would take a user from a current role to a goal role. Each
job role has associated a set of skills, and the user needs to have
the corresponding skills when being in a given role. Skills can over-
lap from one job to another. Variants of the career pathway planning
problem include: minimizing the number of new skills to acquire on
a path towards the goal role; and reaching a given target set of skills
in a shortest sequence of job roles. Applications go beyond career
planning. For example, an agent on a map may need to broadcast
some information to a given set of target listeners. Various locations
on the map have a given subset of subscribers (listeners) capable to
receive information broadcast at that location. The agent would need
to minimize that distance travelled and reach a number of broadcast
locations whose union of subscribers cover all the target listeners.

Motivated by such applications, we introduce graphs with item
sets, where each node has a set of items from a finite, global set.
We define two problems, for the two career planning cases outlined
earlier. We show that our problems are NP-complete, unlike the tra-
ditional shortest path problem, which is solved in polynomial time.

Work related to item sets includes analysing greedy best-first
search [4], and computing optimal delete-relaxed plans. Differences
include that, in the latter, limiting the applicable actions to at most 2
per state results in an easy problem. In contrast, our Theorem 2 and
its proof show an NP-hardness result even with such a small branch-
ing factor in use. A deeper comparison is beyond this paper’s focus.

2 Item Sets in Graphs

Definition 1 (Graph with item sets). Given a finite set A, called an
item universe, a graph with item sets, or an IS graph, is a graph G =
(V,E), where each node v has associated a set of items It(v) ⊆ A.

Definition 2 (Item set for a path). Given a path π = (v1, v2, . . . , vn)
in an IS graph, the item set of the path is It(π) =

⋃n
i=1 It(vi).
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Figure 1. A case where the prefix optimality does not hold.

Definition 3 (Item-set cost of a path). Given a path π in an IS graph,
its item-set cost is defined as costIS(π) = |It(π)|.
Definition 4 (Prefix optimality [3]). Given a cost function for
paths in a graph, we say that the cost function satisfies the pre-
fix optimality if, for any optimal path (v1, v2, . . . , vn), every prefix
(v1, v2, . . . , vi), with i ≤ n, is an optimal path from v1 to vi.

Many search problems from the literature satisfy the prefix opti-
mality. See [2] for a notable exception. We show that:

Proposition 1. The item-set cost lacks the prefix optimality property.

Proof. Figure 1 gives a counter-example. We show two paths from
s0 to s4, namely π1 = s0, s1, s3, s4 and π2 = s0, s2, s3, s4.
Their item costs are costIS(π1) = |∅ ∪ {i1, i2, i3} ∪ {i4} ∪
{i1, i2, i3, i4}| = |{i1, i2, i3, i4}| = 4; and costIS(π2) = |∅ ∪
{i4, i5}∪{i4}∪{i1, i2, i3, i4}| = |{i1, i2, i3, i4, i5}| = 5. It follows
that π1 is optimal. However, its prefix s0, s1, s3 is not an optimal
path from s0 to s3. Its cost is costIS(s0, s1, s3) = |∅ ∪ {i1, i2, i3}∪
{i4}| = |{i1, i2, i3, i4}| = 4. Path s0, s2, s3 has a better cost, as
costIS(s0, s2, s3) = |∅ ∪ {i4, i5} ∪ {i4}| = |{i4, i5}| = 2.

3 Paths to a Goal Node

In this section we focus on reaching a goal node (e.g., a goal role in
career planning), while minimizing the path item-set cost (e.g., the
number of new skills to learn along the way).

Definition 5 (Path-to-Node Problem – PtNP). Input: An IS graph G;
an initial node s0; a goal node sg; an integer k. The question is if a
path from s0 to sg exists with the item-set cost no larger than k.

Theorem 1. PtNP is NP-complete.

Proof. The problem belongs to NP, as we can verify a solution in
polynomial time. The NP-hardness is shown with a reduction from
the minimum k-union problem, an NP-hard problem [6]. In this prob-
lem, we have a universe U = {1, 2, . . . , n}, a set of subsets of U
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Figure 2. Graph for the PtNP instance built in the proof to Theorem 1.

S = {S0, S1, . . . , Sp−1}, with Si ⊂ U, ∀i, an integer k, and an in-
teger t. The question is whether a collection of k elements from S
exists such that the union of these elements has at most t elements.

Given an arbitrary instance of the minimum k-union problem, we
construct a PtNP instance in polynomial time. The graph G of the
instance is illustrated in Figure 2. The figure shows a toy example,
for p = 6 and k = 3, to avoid clutter. More generally, there is a node
s0 and a node sg . We also define k layers of nodes, with each layer
having p − k + 1 nodes. At layer i ∈ {1, . . . , k}, we have nodes
si,i, si,i+1, . . . , si,i+p−k. We define edges from s0 to every node in
layer 1, and from every node in layer k to sg . Furthermore, we define
edges from nodes si,m in layer i to nodes si+1,n in layer i + 1, for
m < n. See Figure 2 for an illustration. Nodes s0 and sg have an
empty item set each. A node si,m has its item set equal to Sm.

We claim that the instance of the minimum k-union problem has
a solution if and only if our PtNP instance has a path from s0 to sg
with an item cost no larger than t. Assume that the instance of the
minimum k-union problem has a solution, Sj1 , Sj2 , . . . , Sjk , where
the indexes are ordered as j1 < j2 < · · · < jk. Consider the path
s0 → s1,j1 → s2,j2 → · · · → sk,jk → sg . By construction, the
item set of this path is Sj1 ∪ Sj2 ∪ · · · ∪ Sjk and thus it has at
most t elements. Assume now that there is a path s0 → s1,j1 →
· · · → sk,jk → sg with an item set of at most t elements. Then
the collection Sj1 , . . . , Sjk is a solution to the minimum k-union
problem with no more than t elements in total.

4 Paths to a Target Item Set

Consider the case when we want to achieve a set of items, not nec-
essarily to reach a given node in the graph. For example, in career
pathway planning, a user may want to achieve a set of target skills.

Definition 6 (Path-to-item-set problem – PtISP). Input: An IS graph
G; an initial node s0; a set of items Ig; and an integer k. The ques-
tion is if a path π exists such that: it originates in s0, it has at most
k edges, and its item set is a superset of Ig: Ig ⊆ It(π).

Theorem 2. PtISP is NP-complete.

Proof. The problem clearly belongs to NP, as we can verify a solu-
tion in polynomial time. The NP-hardness is shown with a reduction
from the set cover problem, an NP-hard problem [5]. In the set-cover
problem, we have a universe U = {1, 2, . . . , n}, a set of subsets of
U S = {S0, S1, . . . , Sp−1}, with Si ⊂ U, ∀i, and an integer k. The

Figure 3. Graph for the PtISP instance built in the proof to Theorem 2.

question is whether a collection of at most k elements from S exists
such that the union of these elements is U (i.e., they cover U ).

Given an arbitrary instance of the set cover problem, we construct
a PtISP instance in polynomial time. Figure 3 illustrates the IS graph
G of the PtISP instance. Nodes are defined as follows. For every
subset Si in S (in the set cover problem instance) we define two
nodes, si and sia. In addition, there is one node sp at the right. Nodes
si, with i < p, have an empty set of items each. Node sia has the
item set Si. Node sp has the item set {α}, where α is a new symbol,
not contained in U . Edges in the graph G are defined as follows:
(si, sia), (si, si+1), and (sia, si+1). See Figure 3 for an illustration.
In the PtISP instance, define Ig = U ∪ {α}.

We claim that the PtISP instance has a solution of at most p + k
edges if and only if the set cover problem has a solution (cover) of at
most k subsets.

Consider that the PtISP instance has a solution of at most p +
k edges. Observe that every solution must contain node sp, as the
symbol α is required (i.e., defined in Ig), and no other node contains
this symbol in its item set. Thus, every solution is a path from s0
to sp, and therefore every solution has at least p steps (edges). This
further implies that our solution with at most p + k edges contains
at most k “detours” of the type si → sia → si+1. The item sets of
the nodes of the type sia contained in the solution form a cover of U .
Thus, U has a cover of at most k elements.

Consider now that U has a cover set of at most k elements. In the
PtISP instance, construct a path with a detour si → sia → si+1 for
each Si contained in the cover of U , and a “shortcut” si → si+1 in
all other cases. The resulting path has at most p+ k elements (since
there are at most k detours), and it is a solution to our instance (i.e.,
we cover Ig = U ∪ {α}).

5 Conclusion

Motivated by long-term career pathway planning, we discussed two
problems for optimal paths in graphs with item sets, and showed their
NP completeness. Future work includes efficient problem represen-
tations, optimal and approximate algorithms, and effective heuristics.
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