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Abstract. We seek to improve crowd counting as we perceive lim-
its of currently prevalent density map estimation approach on both
prediction accuracy and time efficiency. We show that a CNN re-
gressing a global count trained with density map supervision can
make more accurate prediction. We introduce multilayer gradient fu-
sion for training a density-aware global count regressor. More specif-
ically, on training stage, a backbone network receives gradients from
multiple branches to learn the density information, whereas those
branches are to be detached to accelerate inference. By taking advan-
tages of such method, our model improves benchmark results on pub-
lic datasets and exhibits itself to be a new solution to crowd counting
problem in practice. Our code is publicly available at:

https://github.com/GeorgeChenZJ/deepcount

1 Introduction

Crowd counting is a task to count people in image. It is mainly used
in real-life for automated public monitoring such as surveillance and
traffic control. Different from object detection, crowd counting aims
at recognizing arbitrarily sized targets in various situations including
sparse and cluttering scenes at the same time. Figure 1 illustrates
some of those challenging scenarios. In recent years, crowd counting
has drawn more attention from computer vision researchers and has
been in significant progress.

Early methods [7, 13, 33, 6, 17, 38] attempt to solve the problem
by detecting each individual pedestrian in the crowd. These meth-
ods often perform poorly in the face of complex conditions such as
those illustrated. The recent development of crowd counting comes
from DNN-based methods which have achieved commendable per-
formance. These methods [37, 1, 32, 36, 2, 24, 20, 27, 29] concen-
trate on generating the demanding density maps before integrating
them to the count. They are therefore categorised into density map-
based methods. However, density maps have yet in effect to show
too much importance in practice except for opportunely providing
for demonstration, but are expensive to compute, and their quality
is difficult to guarantee. Meanwhile, methods that regress the global
count directly have remained untouched for a while in research fron-
tiers.

Raising state-of-the-art performances in many works, density
maps have shown undeniable contribution to the improvement of pre-
diction precision. One advantage of being density map-based may be
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Figure 1. Representative images for challenges of non-uniform density,
intra- and inter-scene variations in scale and perspective, and cluttering. In
the figure, GT. means ground truth and P. means prediction made by our

model.

that information with respect to location, scale alike is fed to the
network through density supervision. Consequently, multi-scale or
multi-column architectures [37, 1, 32, 2, 24] are usually adopted to
fuse features from different scales to capture these kinds of informa-
tion. Still, there exists two main drawbacks: first, computational cost
drastically increases along with the growth of number of columns;
second, useful information learned by low-level detectors might be
lost through forward propagation. Likewise, supervision information
contained in gradients would be attenuated through backward propa-
gation, making low-level detectors difficult to learn.

Besides, noise locally occurs due to uncertainty of annotation po-
sition on large-scale targets while Gaussian dispersion can only al-
leviate the issue to short extend. On the contrary, a global count is
immune to local noise, but does not carry location information which
can be crucial for the network to develop attention on elusive targets.

To address these problems, we propose a novel Gradient Fusion
based model called DeepCount for crowd counting (network archi-
tecture shown in Figure 2), making efforts to both avert expenditure
of multi-column architecture and enhance resistance to local annota-
tion noise. As in Figure 2, our proposed model contains a backbone
network with convolution layers deeply regressing a global count.
Some auxiliary modules branch out to produce density maps with
corresponding spatial dimensions and to feed gradients back to the
backbone. There are five branches having different depths and inde-
pendent parameters so as to learn features in different aspects. Each
branch will directly access different levels of the backbone to in-
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culcate knowledge to it deeply and make it more perceptive on the
density distribution of the image, namely to be density-aware.

In inference phase, the backbone network can be used unaccompa-
nied by any branches as a regressor to solely predict the global count
at fastest speed, or, if needed, with an auxiliary branch to also vi-
sualise a density map. Expensive computation is taken out, but with
functionality promised.

Compared to other multi-column methods, our model fuses gradi-
ents other than features and avoids relying on the noisily supervised
and computationally expensive density maps to make prediction. By
so doing, our model incorporates advantages of accuracy, flexibility,
and efficiency.

Extensive experimental results on four benchmark datasets
demonstrate significant improvements of our method against the
state-of-the-art methods on Shanghai Tech Part A, Part B and UCF-
QNRF datasets and excellent performance on Mall dataset.

The rest of the paper is structured as follow: we review literatures
for crowd counting in section 2; section 3 provides the detailed in-
terpretation of our method; section 4 reports experiment results; in
section 5, we further discuss our findings and insights; the paper is to
be concluded in section 6.

2 Related works

2.1 Detection-based methods

Early crowd counting methods tend to rely on detection approach.
Low-level hand-crafted features such as Histograms of Oriented
Gradients, silhouette-oriented features are exploited for traditional
classifiers such as Support Vector Machine and Random Forest
[7, 33, 6, 17, 38]. Following are CNN-based methods (e.g. Faster
R-CNN [25]) which have shown credible precision [19]. Nonethe-
less, in such times when the subject of crowd counting was more on
the stage of pedestrian detection, performances of these methods on
highly dense crowd scenes were similarly limited.

2.2 Count regression-based methods

Count regression-based methods are proposed to overcome limits en-
countered by detection-based methods. The idea of these methods is
to regress a global count from the input image. There are methods
using ridge regression [4, 3], log-linear regression [22] or MLP [16]
on low-level hand-crafted features to estimate the count. While they
work satisfactorily on invariant scenes of sparse density, hand-crafted
features can hardly represent enough variance and intricacy in com-
plex counting scenarios. Alternatively, with the development of deep
learning, features can be black-boxed and deeply learned to target
the goal. Early success of applying deep learning methods on crowd
counting would be the end-to-end deep CNN regression model by
Wang et al. [34]. Though, deep learning methods quickly narrowed
onto density map-based methods which have prevailed over the years
since, and it was not until recently in [14] that Idrees et al. reported
excellent experiment results on global count regression by advanced
CNNs: Resnet101 [9] and Densenet201 [11], notwithstanding their
focus on density map estimation.

2.3 Density map-based methods

Rodriguez et al. [26] first suggest the use of density map can improve
crowd counting results significantly. It is supported by Zhang et al.
[36] whose model produces small density map patches as well as the
patch count at its last layer. Following this density map approach,

Figure 2. The architecture of the proposed DeepCount Model. Module in
the grey box is the backbone regressor, below which are 5 branches

predicting density maps. Large-size numbers on the blocks are referred to in
detailed configuration in Table 1, while numbers in smaller font indicate the

feature map dimensions.

Zhang et al. [37] propose a multi-column architecture (MCNN) to
also address scale variance of the targets. Inspired by such, Cao
et al. [2] introduce Scale Aggregation Network (SANet) which ag-
gregates multi-scale features and fuses them in every layer. Like-
wise, Switching-CNN [1] has independent columns of CNN simi-
lar to multi-column network with different receptive fields, and ic-
CNN [24] aims at predicting high-resolution density maps with two
branches. Another set of methods devote themselves to trace context
information as well as other abstractions all in a bit to improve the
predicted density maps [32, 20, 27, 29]. On the other hand, CSRNet
[18] builds dilated convolution layers upon a VGG-16 [30] backbone
straightforward without too many manoeuvres, yet it reports excel-
lent results and therefore becomes more practiced at present.

Differently, our method embodies heterogeneity of multi-column
methods and straightforwardness of CSRNet whilst appearing as an
existence that is both regression-based and density map-based.

3 DeepCount

3.1 Gradient Fusion

We regard our methodology of designing the network as Gradient Fu-
sion. Multi-column methods such as MCNN[37] and CP-CNN[32]
are feature fusion methods assembling different columns features
from which are fused and gradients to which are separated. Fusing
feature maps of multiple columns entails lots of computation over-
head since each column cannot be without in order to make predic-
tion. In contrast, the method of gradient fusion fuses only gradient
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Table 1. Configuration of DeepCount network. In the table, Conv and Conv-tr mean convolution and transposed convolution respectively. The pattern
H ×W × C × C′ represents the dimension of convolution kernel. S denotes strides.

Module Backbone Branch 1 Branch 2 Branch 3 Branch 4 Branch 5

Input
Image

384× 512× 3
1× 1024 1× 1024 1× 1024 1× 1024 1× 1024

1
VGG 16

Layers 1-10
Conv-tr-S1

3× 4× 1024× 256
Conv-tr-S1

3× 4× 1024× 256
Conv-tr-S1

3× 4× 1024× 256
Conv-tr-S1

3× 4× 1024× 256
Conv-tr-S1

3× 4× 1024× 256

2
Conv-S1

3× 3× 512× 256
Depth

Concatenation
Depth

Concatenation
Depth

Concatenation
Depth

Concatenation
Depth

Concatenation

3
Conv-S2

3× 3× 256× 512
Conv-tr-S2

4× 4× 512× 256
Conv-tr-S2

4× 4× 512× 256
Conv-tr-S2

4× 4× 512× 256
Conv-tr-S2

4× 4× 512× 256
Conv-S1

1× 1× 512× 1

4
Conv-S1

3× 3× 512× 256
Depth

Concatenation
Depth

Concatenation
Depth

Concatenation
Depth

Concatenation

5
Conv-S2

3× 3× 256× 512
Conv-tr-S2

4× 4× 512× 256
Conv-tr-S2

4× 4× 512× 256
Conv-tr-S2

4× 4× 512× 256
Conv-S1

1× 1× 512× 1

6
Conv-S1

3× 3× 512× 256
Depth

Concatenation
Depth

Concatenation
Depth

Concatenation

7
Conv-S2

3× 3× 256× 512
Conv-tr-S2

4× 4× 512× 256
Conv-tr-S2

4× 4× 512× 256
Conv-S1

1× 1× 512× 1

8
Conv-S1

3× 3× 512× 256
Depth

Concatenation
Depth

Concatenation

9
Conv-S2

3× 3× 256× 512
Conv-tr-S2

4× 4× 512× 256
Conv-S1

1× 1× 512× 1

10
Conv-S1

3× 3× 512× 256
Depth

Concatenation

11
Conv-S1

3× 4× 256× 1024
Conv-S1

1× 1× 512× 1

12
Fc

1024× 1

Output P. Count
P. Density Map

48× 64
P. Density Map

24× 32
P. Density Map

12× 16
P. Density Map

6× 8
P. Density Map

3× 4

matrices in backpropagation during training. We acknowledge that
similar mechanisms are implemented in many works where they may
be called otherwise. We use the name Gradient Fusion here to serve
descriptive purpose to distinguish our methodology from other multi-
column methods on crowd counting.

In our network configuration (see section 3.2), the backbone mod-
ule is mostly shared with branches which produce different density
maps of different scales. Multi-source gradients are fused together
to train this critical backbone. Complexities of solving location es-
timation still exists for optimization of the parameters of the back-
bone. This restricts the backbone to learn location information to
help branches predict density maps. This is a process which instils
density-awareness to the backbone.

3.2 Network configuration

In order to signify our central point by comparing our model to oth-
ers, we demonstrate a relatively simple network design in this paper.
As shown in Figure 2, our proposed model consists of a straightfor-
ward down-sampling backbone and five branches interconnected to
it. The backbone by itself has relatively low complexity. It functions
as a deep CNN regressor which takes the crowd image as input and
predicts the global count by regression. We design the network to
have input size of 384 × 512 to cater most aspect ratios in practical
uses, whereas arbitrary larger input image sizes are tackled by di-
vision and combination. Correspondingly, there are density maps of
sizes {48× 64, 24× 32, 12× 16, 6× 8, 3× 4} produced.

Specifically, the backbone has a frontend which extracts fea-
tures from the input image. We transplant the first ten convolution
layers from pretrained VGG-16 as our frontend model similar to

CSRNet[18]. The frontend produces feature maps of 8 times smaller
spatial width and height relative to the input. Following are some
3 × 3 convolution layers to further dwindle the size of feature maps
until when its spatial dimension matches the input dimension of a
3 × 4 convolution layer entering to produce a 1 × 1024 vector. We
use 3×3 convolution with strides of 2 to halve the spatial dimension
of the feature maps in the backend. In addition, a standard 3×3 con-
volution layer is put between two down-sampling layers to further
deepen the network and to smooth the reduction of features.

As for branches, they work in an up-sampling manner. Branches
stemming from the last feature layer (1× 1024) of the backbone use
transposed convolutions to up-sample the feature maps. To the output
of each transposed convolution layer the deeper feature maps from
backbone with the same dimension are channel-wise appended. To-
gether, they form the input to the next transposed convolution layer.
1 × 1 convolution is used to reconstruct channels to produce den-
sity map prediction. At the end of the backbone, a scalar value is
produced as the global count prediction. We call our network Deep-
Count in short for deep CNN count regressor. Table 1 details the
network configuration.

3.3 Generating ground truth density maps

To produce ground truth density maps for training, we first apply
convolution by fixed Gaussian kernel with standard deviation σ = 5
(on the contrary of geometry-adaptive kernel adopted in most works)
to generate density map of the same resolution as the original image,
before sum pooling is employed to produce different sizes of density
maps. Five density maps are produced. Element sum of the density
map is the ground truth count for the image.
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3.4 Objective function

Labelling congested crowd data is indeed a painstaking task for hu-
man annotators. In some highly congested cases where the factual
number of people is inevitably untraceable. This results in many
annotations in congestions themselves being estimations and the
ground truths becomes noisy. Also, for large scale heads, the annota-
tion position is difficult to be exact. Hence, L1-norm loss is adopted
to enhance robustness against noise as well as to convey steady up-
dates to the network. We first define our objective function as:

L(Θ) =
1

2N

N∑
n=1

K∑
k=1

∑
i,j

|y′
nk − f(Xn,Θk)|ij (1)

where N is the size of the training batch, K(K = 6 & k ∈
{1, 2, ..., 6}) enumerates outputs of all branches and the global count
regressor, y′nk is the ground truth density map (or the global count
when k = 6), Xn is the input image and Θk denotes all parameters
in model f that contribute to making the corresponding kth predic-
tion.

Given this objective function as basis, we add a multiplier β to
accentuate the importance of the global count prediction on backbone
(where k = 6). We notate it as a function of k:

B(k) =

{
β, k = 6

1, k �= 6
(2)

Moreover, we add another hyperparameter ω to approximately ad-
just the loss to a reasonably small value (<10). An L2 regularisation
term is also added to the function in an attempt to reduce overfitting.
Hence, the objective function finally becomes:

L(Θ) = [
1

2N

N∑
n=1

K∑
k=1

∑
i,j

|y′
nk−f(Xn,Θk)|ij ·B(k)]·ω+ λ

2
‖Θ‖22

(3)

3.5 Implementation

VGG-16 model pretrained on ImageNet is used to initialise the fron-
tend of the backbone. Therefore, input images are normalised in the
same manner as how the VGG-16 model is trained. As for initialis-
ing the remaining part of the model, we use Xavier [8] initialisation
for weights and a constant value 0 for biases. With the exception of
the VGG-16 frontend where ReLU is the activation function, we set
parametric ReLUs (leaky ReLU):

a(x) =

{
x, x > 0

αx, x ≤ 0
(4)

following every convolution layer. We sweep hyperparameters and
choose λ = 1× 10−5, ω = 1× 10−2 and β = 16 for the objective
function in equation (3), and α = 0.2 for the activation parameter
[35] in equation (4). We use Gradient Descent optimisation with mo-
mentum 0.9 and initial learning rate 1 × 10−4 to train our model,
except for pretrained parameters in frontend where learning rate is
divided by a factor of 2 to initially 5 × 10−5, Batch size N is set to
32. On benchmark datasets, we train the network for around a hun-
dred epochs.

As alluded to above, to cope with images of varied sizes, we divide
the original image to 384 × 512 crops to feed into our network. In
inference, results from cropped images are to be merged to assemble
the original ones again.

4 Evaluation

In this section, we report evaluation results yielded by our method
introduced above. We evaluate our DeepCount network on four dif-
ferent public datasets: Shanghai Tech Part A and Part B [37], UCF-
QNRF [14] and Mall [4]. Training details for all datasets are the
same as mentioned in implementation section (section 3.5). In order
to make fair comparison with benchmark results, we do no more data
augmentation than random cropping and mirroring during training.

4.1 Evaluation metrics

For evaluation, we compute mean-absolute error (MAE) and root-
mean-squared error (RMSE):

MAE =
1

N

N∑
i=1

|Ci − CGT
i | (5)

RMSE =

√√√√ 1

N

N∑
i=1

||Ci − CGT
i ||2 (6)

where N is the number of testing images, Ci and CGT
i meaning pre-

dicted count and ground truth count respectively.

4.2 Shanghai Tech

Shanghai Tech[37] dataset includes Part A and Part B. Part A is the
dataset for congested crowd counting. It has 241,677 annotations in
300 training images and 182 testing images with an average number
501. On the other hand, images in Part B are relatively sparse and
all taken from streets in Shanghai. Our DeepCount model achieves
state-of-the-art performance on both datasets. Test results are shown
in Table 2.

Table 2. Test results on Shanghai Tech Part A and Part B.

Part A Part B

Method MAE RMSE MAE RMSE
MCNN [37] 110.2 173.2 26.4 41.3
Switching CNN [1] 90.4 135.0 21.6 33.4
DecideNet [19] - - 20.75 29.42
CP-CNN [32] 73.6 106.4 20.1 30.1
ic-CNN [24] 68.5 116.2 10.7 16.0
CSRNet [18] 68.2 115.0 10.6 16.0
PSDDN+ [21] 65.9 112.3 9.1 14.2
SANet [2] 67.0 104.5 8.4 13.6
DeepCount (ours) 65.2 112.5 7.2 11.3

4.3 UCF-QNRF

The UCF-QNRF [14] dataset has a greater number of annotations
(1,251,642) in higher quality images of a wider variety of scenes,
including sparse and dense ones. There are extremely dense scenes
in this dataset, so much so that a single image may have maximumly
12,865 of annotations in UCF-QNRF. It is considered a harder one.
Our method outperforms current methods (see Table 4).
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Table 3. Comparing between configurations and FLOPs of CSRNet and our DeepCount. Branch one (middle column) predicts the same- size density maps as
does CSRNet, while backbone predicts a global count without producing any density maps.

CSRNet (backend) DeepCount Branch 1 DeepCount (backend))

Layer Output
Million
FLOPs

Layer Output
Million
FLOPs

Layer Output
Million
FLOPs

Conv-s1
3× 3× 512× 512

48× 64× 512 7248
Conv-tr-s1

3× 4× 1024× 256
3× 4× 256 37

Conv-s1
3× 3× 512× 256

48× 64× 256 3624

Conv-s1
3× 3× 512× 512

48× 64× 512 7248
Conv-tr-s2

4× 4× 512× 256
6× 8× 256 101

Conv-s2
3× 3× 256× 512

24× 32× 512 906

Conv-s1
3× 3× 512× 512

48× 64× 512 7248
Conv-tr-s2

4× 4× 512× 256
12× 16× 256 403

Conv-s1
3× 3× 512× 256

24× 32× 256 906

Conv-s1
3× 3× 512× 256

48× 64× 256 3624
Conv-tr-s2

4× 4× 512× 256
24× 32× 256 1611

Conv-s2
3× 3× 256× 512

12× 16× 512 226

Conv-s1
3× 3× 256× 128

48× 64× 128 906
Conv-tr-s2

4× 4× 512× 256
48× 64× 256 6442

Conv-s1
3× 3× 512× 256

12× 16× 256 226

Conv-s1
3× 3× 128× 64

48× 64× 64 226
Conv-s1-p0

1× 1× 512× 1
48× 64× 1 2

Conv-s2
3× 3× 256× 512

6× 8× 512 57

Conv-s1
1× 1× 64× 1

48× 64× 1 0.2
Conv-s1

3× 3× 512× 256
6× 8× 256 57

Conv-s2
3× 3× 256× 512

3× 4× 512 14

Conv-s1
3× 3× 512× 256

3× 4× 256 14

Conv-s1-p0
3× 4× 256× 1024

1× 1× 1024 3

Conv-s1-p0(Fc)
1× 1× 1024× 1

1 0.001

Total 26500 8596 6034

Table 4. Test results on UCF-QNRF.

Method MAE RMSE

Idrees et al.(2013) [12] 315 508
MCNN [37] 277 426
CMTL [31] 252 514
Switching CNN [1] 228 445
Resnet101 [9] 190 277
Densenet201 [11] 163 226
Idrees et al.(2018) [14] 132 191
TEDnet [15] 113 188
DeepCount (ours) 95.7 167.1

4.4 Mall

Unlike the above datasets, images from Mall dataset[4] are surveil-
lance video frames from a static viewpoint at a same venue. There are
800 frames for training and the other 1200 for testing. Since crowds
in the dataset are sparse, Mall is not as challenging as others. Al-
though previous methods have shown very promising results on this
dataset, we still evaluate our model on it to demonstrate its excellent
performance on invariant scene and as well to make comparison with
some detection-based methods. (see Table 5).

Table 5. Test results on Mall.

Method MAE RMSE

R-FCN [5] 6.02 5.46
Faster R-CNN [25] 5.91 6.60
COUNT Forest [23] 4.40 2.40
Weighted VLAD [28] 2.41 9.12
DecideNet [19] 1.52 1.90

DeepCount (ours) 1.55 2.00

5 Discussion

5.1 Capacity and velocity

Arguably, the more parameters a neural network has, the greater its
potential is to have high capacity to model the underlying relation-
ship of the random variables. Although many cases suggest other-
wise, we do often see positive correlation between extra parameters
and increments of performance[18, 30, 9, 10]. Be that as it may, we
still tend to avoid expensive computation a larger network would bear
in practice. Trading off between capacity and velocity has been a
dilemma for long. Hereby, we explicate how the idea of our Deep-
Count network is able to pursue both capacity and velocity at the
same time by comparing it with CSRNet[18] in whose paper Li et al.
argue cogently about the effect of number of parameters and design
efficiency.

CSRNet and our backbone network use the same VGG-16 fron-
tend. In the backend, CSRNet predicts the density map and our
model predicts a global count. Assuming they receive the same
384×512×3 input (backends thus receive 48×64×512 input), we
detail their layer configuration with corresponding output and com-
putation cost of each layer in Table 3. In addition, we add branch
one which predicts the same density map as CSRNet to the table.
Computation cost is calculated in terms of number of floating-point
operations (FLOPs) that happens throughout a forward pass in the
backend. Number of FLOPs of one convolution layer is computed
as:

FLOPs = H ·W · C ·K1 ·K2 · C′ (7)

where it depends multiplicatively upon output feature map size H ×
W , convolution kernel size K1 ×K2, number of output channels C,
and number of input channels C′.

We also measure number of parameters as well as frame-per-
second (FPS) for both networks (see Table 6). Run time evaluation
is performed on one NVIDIA Tesla P40 GPU. As mentioned above,
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Figure 3. Examples of ground truths and output density maps of test data from Shanghai Tech Part B (top), Part A (middle), UCF-QNRF (bottom). Density
maps in the row starting with an image are the ground truths. The ones below are the predictions. The number in blue below the image is the predicted global
count by backbone alone. The last column shows original size ground truth density maps and prediction density maps up-sampled from outputs of branch one,

up-sampling being done by bilinear interpolation and separable Gaussian filter.

Table 6. Comparing number of parameters and inference speed between
CSRNet and the backbone of our DeepCount model.

Method SHT Part B
MAE

Million
Parameters FPS Speedup

CSRNet 10.6 16.3 33 1×
DeepCount(Ours) 7.2 21.4

(58.1 in total) 45 1.4×

the backbone of our DeepCount model can be a standalone network
detached from the rest in inference, and thereby becomes a count
regressor without computing the computationally expensive density
maps, and noticeably with better performance compared to other ap-
proaches.

As shown in Table 3 and Table 6, having a deeper architecture and
greater preponderance of parameters (58.1 million for training and
21.4 million for inference) though, our DeepCount backbone does
count inferences with much less FLOPs and therefore in higher ve-
locity, and perhaps more importantly, with higher accuracy. These
quantitative results suggest our proposed DeepCount model has the
ability of accommodating more variations while making faster and
better prediction. This implies its nature of outstanding capacity and
efficiency.

5.2 Comparison on branches

As we have obtained the global count regressed by backbone, we can
as well integrate the output density map to make count prediction like
common density map-based methods. In the following, we compare
predictions made between branches on MAE. Besides, we compute
FLOPs for each branch to analyse their computational costs. Results
are shown in Table 7.

As shown, the larger the density map, the harder it is to be pre-
cise. Immediate reasons for this may be that larger density maps are
sparser and usually awash with noise caused mostly by annotations
of large-scale heads. Our method avoids predicting the count relying
merely on density maps but exploits useful information from them
to rather train the global count regressor. This allows more accurate
predictions to be achieved.

Despite extra computation, there are situations in which density
map, which gives extra information about the distribution, becomes
a requirement. Our model can make directly count inference with
backbone at its full speed while optionally producing density maps of
multiple resolutions. User can choose smaller density maps to reduce
computational expensiveness or larger ones to get more illuminating
impression about the crowd distribution. Using bilinear interpolation
and separable Gaussian filter, the largest density map produced can
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Table 7. Comparing between outputs on different branches.

Branch 1 Branch 2 Branch 3 Branch 4 Branch 5 Backbone

Output Size 48× 64 24× 32 12× 16 6× 8 3× 4 1× 1
Million FLOPs 6034 2152 541 138 38 -
Shanghai Tech Part A 79.2 73.4 69.7 66.7 65.8 65.2
Shanghai Tech Part B 9.7 8.9 8.0 7.4 7.2 7.2
UCF-QNRF 193.3 185.0 155.3 112.3 96.9 95.7
Mall 4.74 2.89 2.46 1.77 1.56 1.55

be efficiently up-sampled to original resolution for high-definition
display, thus we argue it is unworthy to train a network to produce
a high-resolution density map. Figure 3 shows our predicted density
maps compared to their ground truths.

5.3 Significance of gradients

Gradients are considered crucial to the achievement of our model.
Hence, we detail more experiments to further cast light on the im-
portance of them.

Since derivatives of ReLU are a staircase function suppressing the
negative direction, gradients in half of its activation space are set to
naught. The back-propagation gradient matrices are sparse and may
hinder propagation of gradient flow and counterproductively cause
a large part of the network underused. Instead, Parametric ReLU
has non-zero gradients in all quadrants allowing the network to fully
learn. Table 8 shows results of training a network with all ReLU acti-
vations in comparison with our baseline network. As shown in Table
8, when gradients are sparse, the capability of the network drops.

Table 8. Comparing results between using ReLU(sparse gradients) and
PReLU(full gradients).

Activation SHT Part B MAE

ReLU 8.3
PReLU 7.2

Also, the idea of being density-aware by gradient fusion is to lever-
age gradients sourced from supervision of multi-scale density maps.
In ablation experiments (see Table 9), as we detach branches one
by one from the largest to the smallest in training, the backbone re-
ceives less gradients in each case, and then the trend of performance
degradation becomes more and more apparent. We also find that the
model results satisfactorily when even trained with only global count
on a dense dataset, while on a difficult one (sparse, non-uniform) it
does not converge always, but we see it resolve if pretrained on dense
dataset.

Table 9. Ablation on branches.

Ablation SHT Part B MAE

No ablation 7.2
Branch 1 ablated 7.4
Branch 1-2 ablated 7.7
Branch 1-3 ablated 8.2
Branch 1-4 ablated 8.3
Branch 1-5 ablated 9.1

By means of this, we are now safer to conclude that the abundance
of gradients has advantageous influence on our network and parame-
ters in branches are indeed instrumental in the training of backbone.
Giant as it may be, the network of branches is not a concern in an
inference deployment. Unless training efficiency is also in a serious
consideration, having a rationally greater number of parameters in
this auxiliary module should be deemed innocuous as long as perfor-
mance does not remain stagnant.

6 Conclusion

In this paper, we discuss advantages and limitations of current crowd
counting methods, in light of which we propose a novel DeepCount
network to be both fast and precise on count prediction and flexible
on density map generation. State-of-the-art performance on public
datasets evidences the effectiveness of our method. Our code is im-
plemented using Baidu’s PaddlePaddle. The code is publicly avail-
able at:

https://github.com/GeorgeChenZJ/deepcount
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