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Abstract. Recently, with the development of Convolutional Neural
Networks (CNNs), deep learning-based saliency detection methods
have advanced significantly. Most of the existing deep learning-based
methods attempt to extract semantic context information to yield a
saliency map. However, it is difficult to capture irregular context fea-
tures by using a standard convolution because such features are of-
ten unevenly distributed in complex scenes. To address this problem,
this paper proposes a novel saliency detection model named DCFA,
which is implemented using two important modules. First, we de-
sign a Deformable Feature Extraction Module (DFEM) to focus on
the unevenly distributed context features in both low-level details and
high-level semantic information. Second, a Channel and Spatial At-
tention Module (CSAM) is devised to assign the adaptive weights
of the features in the space and channel domains. The experimental
results show that the proposed model can achieve the state-of-the-art
performance on six widely used saliency detection benchmarks. Fur-
thermore, our proposed network is end-to-end and runs at a speed of
20 fps on a single GPU.

1 Introduction

Saliency detection aims to locate the attractive and interesting re-
gions in images, which plays an important role in many applica-
tions, such as person re-identification [3], visual tracking [13] and
image segmentation [10]. Considerable research has been performed
in recent years, leading to significant development in saliency de-
tection. Conventional approaches [5,36] usually design hand-crafted
low-level features and make heuristic hypothesizes, which often fail
in obtaining satisfactory results in complex scenes. Recently, deep
learning-based methods [14, 25, 27, 41] have made significant im-
provements in saliency detection because convolutional neural net-
works (CNNs) can learn high-level semantic features. Hence, seman-
tic context features are crucial for saliency detection under complex
scenes. Hou et al. [14] combined the low-level and high-level fea-
tures using short connections to predict the saliency maps. Zhao et
al. [41] used dilation convolution with different rates to extract multi-
scale features to yield more accurate saliency maps. However, the se-
mantic context features are often unevenly distributed in images, and
thus these methods cannot be used to extract the features accurately
because of the limitation of the standard convolution in the CNNs.

Deformable convolution [7] modifies the fixed shape of the stan-
dard convolution by introducing a set of offsets to shift the loca-
tion of the input features, which enables it to adaptively extract con-
text features. However, this paper mainly concentrates on creating
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the deformable convolution layer through an extra offset layer, it
does not discuss how to utilize the deformable convolution layer
properly in specific vision tasks. In this paper, we propose a novel
saliency detection model to better extract important features with
deformable convolution and feature attention, named DCFA. The
DCFA involves two important modules: (1) The Deformable Feature
Extraction Module (DFEM) can detect the context features that are
irregularly shaped owing to the deformable convolution. These con-
text features extracted using the DFEM can overcome the limitation
of standard convolution, which can significantly improve the saliency
detection performance. (2) The Channel and Spatial Attention Mod-
ule (CSAM) can learn adaptive weights of different features. Specifi-
cally, spatial attention focuses on the most salient regions in the space
domain and it can filter out background noises, and channel attention
can select more semantic meaningful features in the channel domain.
The design of the proposed modules is motivated by the following
two aspects:

First, salient objects generally have different scales and shapes.
The recent deep saliency detection models mainly focus on com-
bining the outputs from the intermediate network layers. Thus, al-
though such simple integrations may help extract multi-scale fea-
tures, the unevenly distributed context features cannot be well de-
tected because of the limitation of standard convolution. Unlike the
existing approaches, we propose a novel Deformable Feature Extrac-
tion Module (DFEM) to detect the irregularly distributed context fea-
tures. Specifically, we adopt the deformable convolution [7] in differ-
ent layers to locate the unevenly distributed salient features, which
can significantly improve the quality of saliency prediction.

Second, the different features in CNNs usually exert different in-
fluences. Low-level features generally have structural details but also
contain noises, whereas high-level features often carry rich semantic
information along with unimportant ones. These noises or unimpor-
tant features will prevent the generation of precise saliency maps.
However, many existing methods integrate such features without
any distinction, thereby leading to an inaccurate prediction. Inspired
by [4], which uses the channel and spatial attention to improve the
results of image caption, we design a Channel and Spatial Attention
Module (CSAM) to extract the most meaningful features adaptively
in different layers. The CSAM can highlight the crucial features and
suppress the unnecessary ones, which is essential for our model.

Our main contributions can be summarized as follows:

• We develop a Deformable Feature Extraction Module (DFEM),
which can capture the unevenly distributed context features to im-
prove the saliency prediction.

• We design a Channel and Spatial Attention Module (CSAM) to
select the most salient features and suppress the noises in the space
and channel domains.
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Figure 1: Overall architecture of the proposed DCFA.

• We compare the proposed DCFA with 13 state-of-the-art ap-
proaches on six widely used datasets. The experimental results
demonstrate that the proposed method can achieve the state-of-
the-art performance under different evaluation metrics.

The remaining paper is organized as follows. Section 2 provides
a review of the related work. Section 3 describes the architecture
of the proposed method. Section 4 shows the experimental results.
Section 5 presents the conclusion.

2 Related Work

2.1 Saliency Detection

Early saliency detection methods [5, 35, 36] are mostly based on the
low-level features such as color, texture and heuristic priors, but the
hand-crafted features and simple priors make it difficult to capture
the high-level semantic information. For example, Wei et al. [30] pro-
posed a boundary prior to measure the saliency of each superpixel via
the geodesic distance of the boundary. However, such methods often
fail when the saliency region is at the boundary of the image. To
solve the boundary prior failure problem, Zhu et al. [42] proposed a
boundary connectivity prior approach, in which a higher salient value
is assigned to the region with fewer boundary connections.

In recent years, due to the success of CNNs in computer vision,
deep learning-based methods have been widely used for saliency de-
tection. These models mainly employ the semantic information to
obtain the global saliency information. Cheng et al. [14] proposed a
novel saliency method in which short connections are introduced to
the skip-layer structures within the HED [33] architecture. In [14],
instead of connecting the loss layers directly to the last layer of each
stage, a series of short connections are introduced between the shal-
lower and deeper side-output layers, and the activation of each side
output layer is employed to highlight the entire salient object and pre-
cisely positions its boundaries. Zhang et al. [38] developed a generic
aggregating multi-level convolutional feature framework for saliency
detection. Luo et al. [21] proposed an approach that further improves
the edge accuracy by adding a boundary loss term to the typical
cross-entropy loss. Deng et al. [9] proposed a new recursive residual-
refinement network equipped with a residual-refinement block to
more accurately detect the salient regions of the input images. How-
ever, these methods cannot extract the unevenly distributed features
since standard convolution can only capture the features in regular
domains.
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2.2 Attention Mechanisms

Attention mechanisms have been successfully applied in various
tasks such as machine translation [11], pose estimation [6], and vi-
sual question answering [34,37]. Bahdanau et al. [2] developed an at-
tention model with differentiable soft alignments for machine trans-
lation. In recent years, attention models have been applied to several
vision tasks. Sermanet et al. [24] determined the participation region
via a recurrent attention model for fine-grained classification. Chu et
al. [6] proposed the incorporation of CNNs with a multi-context at-
tention mechanism into an end-to-end framework for human pose es-
timation. These works demonstrated that attention mechanisms can
facilitate saliency detection tasks by attending to information con-
text.

Zhang et al. [40] proposed an attention-guided network that selec-
tively integrates multiple levels of context information via the chan-
nel and spatial attention model. Wang et al. [29] devised an essen-
tial pyramid attention structure for salient object detection, which
enables the network to focus more on salient regions while exploit-
ing the multi-scale saliency information. Since attention mechanisms
have a great ability to effectively select features, it is suitable for
saliency detection. Inspired by [4], we adopt the channel and spatial
attention to choose the most salient features in both the channel and
space domains.

3 Proposed Model

In this paper, we propose a novel saliency detection model named
DCFA, which includes a Deformable Feature Extraction Module
(DFEM) and a Channel and Spatial Attention Module (CSAM). The
DFEM focuses on capturing the unevenly distributed context fea-
tures. The CSAM pays attention to assign larger weights to the most
salient features and weaken the weights of the unimportant ones
in the channel and space domains. We use the pre-trained Resnet-
34 [12] as our base feature extraction network. The overall architec-
ture of DCFA is shown in Figure 1.

3.1 Deformable Feature Extraction Module

The context feature is important for saliency detection. However,
salient objects usually vary considerably in terms of the scale and
shape, which is a challenging problem in saliency detection. Previous
deep learning-based models try to obtain different features by stack-
ing multiple standard convolutional layers, which is inefficient to
handle these complicated scenes, especially the unevenly distributed
salient objects. As shown in [7], the deformable convolution can cap-
ture the irregular features, so we design the Deformable Feature Ex-
traction Module (DFEM) to capture the scale and shape variation of
features.

Deformable convolution, which was first proposed in [7], can aug-
ment the spatial sampling locations in the feature layers with addi-
tional offsets and learn the offsets from the target tasks. However,
it mainly focuses on how to build the deformable convolution layer
through an extra offset layer. The authors do not discuss how to create
the deformable convolution layer in specific vision tasks. For exam-
ple, the authors simply used deformable convolution layer on high-
level feature layers while ignoring the low-level features. In saliency
detection, we found that the deformable convolution layer can be ap-
plied in both low-level and high-level feature layers, by which it can
produce more convincing saliency predictions.

Table 1: Deformable convolution settings in DFEM.

Layers Kernel settings
Resblock-1 {de-conv 64x7x7, de-conv 64x3x3}
Resblock-2 {de-conv 128x5x5, de-conv 128x3x3}
Resblock-3 {de-conv 256x3x3, de-conv 256x3x3}
Resblock-4 {de-conv 512x3x3, de-conv 512x3x3}

Table 2: Experiment results using different numbers of deformable
convolution (de-conv) layers. A higher Fmax

β and lower MAE corre-
sponding to better results.

Number of de-conv layers Training time/hour Fmax
β MAE

1 9 0.936 0.042
2 12 0.940 0.038
3 18 0.941 0.039

Input Output

Deformable 
convolution

Deformable 
convolution

Figure 2: Illustration of the deformable convolutional layer, taking
the DFEM after Resblock-3 as an example. It can be seen that the
deformable convolution layer can extract the irregular features.

Feature extraction of standard convolution 

Feature extraction of deformable convolution 

Figure 3: Feature extraction through standard and deformable con-
volutions. It turns out that deformable convolution can better detect
the unevenly distributed features of animals, such as the legs of the
sheep.

The deformable convolution layer is shown in Figure 2. We only
use the features from Resblock-1, 2, 3, and 4 since the features pro-
duced by the first convolution layer are excessively rough. Because
the sizes of the features of each block are different, kernels with dif-
ferent sizes can be used to extract the multi-scale context features.
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Figure 4: Channel and spatial attention module. Note that in the channel and spatial attention modules, the Avg Pooling is along the h,w and
channel directions, respectively.

In this paper, we use the 7×7, 5×5 and 3×3 deformable convolution
kernels in DFEM, and their details are presented in Table 1. Note that
the deformable convolution is computational in the training period,
and thus using two or three deformable convolution layers can yield
better results than using only one. Besides, the results obtained by
using two or three deformable convolution layers are closed, the rea-
son is that the receptive field is sufficiently large to extract the irreg-
ular features when using two or three deformable convolution lay-
ers. However, the use of three deformable convolution layers takes
a longer training period than using two layers, as indicated by the
experiment results in Table 2. Hence, we use two deformable convo-
lution layers after each Resblock in the final experiments.

Figure 3 shows the different effects of the standard and deformable
convolutions. It can be seen that the standard convolution is fixed
for all aspects of the feature, while the deformable convolution is
adaptively adjusted according to the objects’ scale and shape, which
is helpful to generate better saliency maps.

3.2 Channel and Spatial Attention Module

Given an image, it is obvious that the extracted features have different
influences on the final saliency map. The channel attention focuses
on what the salient object is while spatial attention pays attention
to where the salient object is. Therefore, we need to find the inter-
channel and inter-spatial relationships to locate important features.
The details of our channel and spatial attention module are shown in
Figure 4.

3.2.1 Channel Attention Module

The different channels of the features in CNNs generate different re-
sponses for different semantics. The channels contain various struc-
tural details for low-level features and different semantics for high-
level features. Thus, it is necessary to focus on the important features
and weaken the unimportant ones. We add the channel attention mod-
ule (CAM) after the DFEM to assign adaptive weights to the features.

The CAM assigns larger weights to the channels that show a high re-
sponse to salient objects, and it can be represented as follows:

CAM = Softmax(fc2(σ(fc1(AvgPool(X),W1)),W2))

X ′ = CAM �X

where X ∈ R
C×H×W is a feature map, CAM is the output of the

channel attention module, AvgPool is the average pooling along the
H,W direction, fc1 and fc2 are the fully connected layers that cap-
ture the channel dependencies, W1 and W2 are the respective weights
of fc1 and fc2, σ is the Relu non-linear activation function, and the
Softmax function is used to enhance the most salient channel and
weaken the non-salient channel. Finally, the weighted feature X ′ is
calculated by performing an element multiplication between CAM
and the original feature X .

3.2.2 Spatial Attention Module

Natural images usually contain a wealth of details of foreground
and complex background. Low-level features contain several de-
tails, while high-level features may include background noises that
may lead to inferior results. In saliency detection, the objective is
to identify detailed boundaries between the salient objects and the
background without other textures that can distract human attention.
Therefore, instead of considering all the spatial positions equally, we
adopt the spatial attention module after the DFEM to focus more
on the salient regions, which helps to generate effective features for
saliency prediction. The SAM can be described as follows:

SAM = Softmax(conv2(σ(conv1(AvgPool(Z),W1)),W2))

Z′ = SAM � Z

where Z ∈ R
C×H×W is a feature map, SAM is the output of

the spatial attention module, AvgPool is the average pooling along
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Table 3: Fmax
β and MAE values for different saliency detection approaches on all the tested datasets. The two best results are marked in red

and blue. ”+” means that the results are generated with post-processing by CRF. ”-” means that the author does not provide the saliency results
on the dataset.

SOD ECSSD HKU-IS PASCALS DUT-OMRON DUT-test
Methods

Fmax
β MAE Fmax

β MAE Fmax
β MAE Fmax

β MAE Fmax
β MAE Fmax

β MAE
RBD [42] 0.648 0.228 0.712 0.172 0.720 0.142 0.654 0.193 0.628 0.142 0.583 0.152
DRFI [15] 0.701 0.223 0.782 0.170 0.777 0.144 0.691 0.196 0.664 0.150 0.649 0.154
UCF [39] 0.807 0.148 0.903 0.069 0.888 0.062 0.819 0.111 0.729 0.120 0.772 0.111

Amulet [38] 0.796 0.144 0.915 0.059 0.897 0.051 0.834 0.099 0.743 0.098 0.777 0.084
DSS+ [14] 0.845 0.122 0.921 0.052 0.866 0.059 0.836 0.102 0.745 0.075 0.778 0.069

NLDF+ [21] 0.840 0.123 0.905 0.063 0.858 0.060 0.828 0.101 0.679 0.107 0.758 0.077
R3Net+ [9] 0.848 0.124 0.934 0.040 0.921 0.034 0.844 0.100 0.804 0.062 0.835 0.057
DGRL [28] 0.845 0.103 0.922 0.041 0.910 0.036 0.857 0.081 0.774 0.062 0.828 0.049

PiCANetR [20] 0.867 0.094 0.935 0.047 0.919 0.043 0.874 0.073 0.819 0.065 0.862 0.049
MLMS [31] 0.862 0.106 0.930 0.044 0.922 0.039 0.864 0.079 0.791 0.068 0.852 0.046

PFA [41] - - 0.922 0.045 0.931 0.032 0.871 0.077 0.862 0.058 0.872 0.039
PAGE+ [29] 0.842 0.108 0.934 0.037 0.921 0.031 0.853 0.083 0.794 0.059 0.841 0.047

CPD [32] 0.859 0.110 0.939 0.037 0.925 0.078 0.856 0.078 0.797 0.056 0.865 0.042
Ours 0.873 0.103 0.940 0.038 0.934 0.031 0.883 0.071 0.828 0.056 0.881 0.038
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Figure 5: Illustration of the PR curves (first row) and F-measure curves (last row) on the six widely used datasets.

the channel direction, conv1 and conv2 denote the convolution layer
and batch normalization layer, which capture the spatial dependen-
cies, W1 and W2 are the respective weights of conv1 and conv2,
σ is the Relu non-linear activation function, and Softmax is used
to enhance the most salient space and weaken the non-salient space.
Finally, the weighted feature Z′ is computed by performing the ele-
ment multiplication between SAM and the original feature Z.

3.3 Loss Function

In machine learning and mathematical optimization, loss functions
represent the cost of inaccurate predictions in classification prob-
lems. Same as [14], we use the cross-entropy loss between the fi-
nal saliency map and the ground truth in saliency detection. The loss
function is defined as

Ls = −
size(Y )∑

i=0

(Yi log(Pi) + (1− Yi log(1− Pi)))

where Yi is the ground truth of pixel i, and Pi is the value of the
predicted saliency map of pixel i.

4 Experimental Results

4.1 Datasets and Evaluation Metrics

4.1.1 Datasets

The performance evaluation was performed on six standard bench-
mark datasets: ECSSD [35], HKU-IS [17], SOD [22], PASCAL-
S [18], DUT-OMRON [36] and DUTS-test [26]. ECSSD [35] con-
tains 1000 images with many semantically meaningful and complex
structures. HKU-IS [17] contains 4447 challenging images, each of
which usually has multiple disconnected salient objects, overlap-
ping the image boundary or low color contrast. SOD [22] includes
300 challenging images, which usually have complex backgrounds.
PASCAL-S [18] contains 850 images selected from the PASCAL
VOC 2010 segmentation dataset. DUT-OMRON [36] has 5168 high-
quality images, which have one or more salient objects and relatively
complex backgrounds. DUTS [26] is a large-scale dataset, which
contains 10553 images for training and 5019 images for testing.

4.1.2 Evaluation Metrics

To quantitatively evaluate the improvements of the proposed model,
we employed maximum F-measure, MAE scores and PR curve as the
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Figure 6: Visual comparison.

evaluation metrics. As described in [32], the metrics are computed
as follows.

The precision of a binary map is defined as the ratio of the number
of correctly labeled salient pixels to all the salient pixels in this binary
map. The recall value is the ratio of the number of correctly labeled
salient pixels to all the salient pixels in the ground-truth map. The
formula is as follows,

precision =
|TS ∩DS|

|DS|

recall =
|TS ∩DS|

|TS|
where TS denotes the true salient pixels, DS denotes the salient

pixels detected by the binary map, and | · | denotes the cardinality of
a set.

Given a saliency map with continuous values normalized in the
range of 0 to 255, we computed the corresponding binary maps by us-
ing every possible fixed integer threshold. Therefore, the F-measure
curve can be obtained by connecting the F-measure scores under dif-
ferent thresholds. The maximum F-measure, denoted as Fmax

β , is
an overall performance indicator computed using the weighted har-
monic of precision and recall,

Fβ =
(1 + β2) · precision · recall

β2 · precision+ recall

where β2 is set as 0.3 to emphasize the precision, as suggested
in [1].

The MAE is used to quantitatively measure the average difference
between the saliency map of the network output P and the ground
truth map Y .

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|P (x, y)− Y (x, y))|

The MAE value indicates the similarity of a saliency map com-
pared to the ground truth [23].

The Precision-Recall (PR) curve is a standard metric to evaluate
the saliency performance. The precision and recall are computed by
comparing the predicted saliency map and the ground truth. Fur-
thermore, the precision-recall pairs are computed considering all the
saliency maps in a dataset under different thresholds, ranging from 0
to 255. These values are plotted as the PR curve.

4.2 Implementation Details

We used the Resnet-34 network [12] pre-trained on ImageNet [8]
as our basic model. The DUTS-train dataset was used to train our
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model. As suggested in [19], we did not use the validation set and
trained the model until the training loss converged. To make the
model robust, we adopt several data augmentation techniques such
as random brightness, saturation and contrast changing, and ran-
dom horizontal flipping. In the training period, similar to other deep
saliency methods [9], we used the stochastic gradient descent (SGD)
to train the model, and setted the momentum as 0.9, weight decay
as 0.0005, and learning rate as 0.001. We resized the input image
to 256 x 256 for training, and the saliency map during testing was
restored to the original size using bilinear interpolation. Our model
was trained on a single 1080Ti GPU with a mini-batch size of 12, and
it took about 12 hours to train the entire model. The inference for a
400×300 image took only 0.05s (20 fps) using the trained model.

4.3 Comparison with State-of-the-arts

We compared our method with 13 state-of-the-art approaches on
six tested datasets, including CPD [32], PAGE [29], PFA [41],
MLMS [31], PiCANet [20], DGRL [28], R3Net [9], NLDF [21],
DSS [14], Amulet [38], UCF [39], DRFI [15] and RBD [42]. For
fair comparison, we use saliency maps provided by the authors or
their released codes with default settings.

In Table 3, we show our quantitative comparison results. Some
methods such as the DSS, R3Net, and PAGE adopt the fully con-
nected conditional random field (CRF [16]) as the post-processing to
enhance the saliency map. Clearly, our model achieves the best re-
sults without any pre-processing and post-processing. In addition to
the numerical comparisons, we plot the precision-recall curves and
F-measure curves for all the compared methods over the six datasets.
As shown in Figure 5, the solid red line, which represents the pro-
posed method, corresponds to the best performance among all com-
pared methods at most thresholds. In particular, the proposed ap-
proach exhibits the best performance among those of all the datasets
in terms of the F-measure. Although the PFA method is superior to
our method in terms of both the PR curve and the Fmax

β on the DUT-
OMRON dataset, our method is considerably more robust on datasets
such as the ECSSD, PASCAL, and HKU-IS. These datasets are dif-
ferent from the DUT training set, and our method considerably out-
performs the PFA on these datasets.

In Figure 6, we show the qualitative comparison. It can be ob-
served that the proposed model can handle various challenging sce-
narios, including images with low contrast (rows 1, 5, and 9), com-
plex object boundaries (rows 2 and 5), varying object scales (rows 3
and 6), small scale objects (rows 4 and 9), objects touching the image
boundary (row 5) and multiple objects (rows 4, 6 and 8).

4.4 Ablation Study

To investigate the importance of the different modules in our method,
we conducted an ablation study as shown in Table 4, where a
higher Fmax

β , and lower MAE correspond to better results. The pro-
posed model containing all the components (i.e., the Basic Resnet-34
(BASIC), Deformable Feature Extraction Module (DFEM), Chan-
nel Attention Module (CAM) and Spatial Attention Module (SAM))
achieves the best performance. This demonstrates that all the compo-
nents are necessary for the proposed method to obtain the best salient
object detection result.

5 Conclusion

This paper proposes a novel saliency detection model named DCFA.
We design a deformable feature extraction module to capture un-

Table 4: Ablation study using different component combinations.

BASIC DFEM CAM SAM Fmax
β MAE

� 0.928 0.049
� � 0.934 0.042
� � � 0.937 0.040
� � � 0.938 0.040
� � � � 0.940 0.038

evenly distributed features to improve the saliency detection results.
Furthermore, we employ a channel and spatial attention module to
focus on the crucial features and suppress the noises. The proposed
model achieves excellent performance and produces visually favor-
able results. The experimental results on six widely used datasets
verify that our proposed approach outperforms 13 other state-of-the-
art methods under different evaluation metrics. Besides, the proposed
method is an end-to-end network and runs at a speed of 20 FPS in the
inference period.
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