
Tutor-Instructing Global Pruning for Accelerating
Convolutional Neural Networks

Fang Yu1,2 and Li Cui1∗

Abstract. Model compression and acceleration has recently re-
ceived ever-increasing research attention. Among them, filter prun-
ing shows a promising effectiveness, due to its merits in signifi-
cant speedup for inference and support on off-the-shelf computing
platforms. Most existing works tend to prune filters in a layer-wise
manner, where networks are pruned and fine-tuned layer by layer.
However, these methods require intensive computation for per-layer
sensitivity analysis and suffer from accumulation of pruning errors.
To address these challenges, we propose a novel pruning method,
namely Tutor-Instructing global Pruning (TIP), to prune the redun-
dant filters in a global manner. TIP introduces Information Gain (IG)
to estimate the contribution of filters to the class probability distribu-
tions of network output. The motivation of TIP is to formulate filter
pruning as a minimization of the IG with respect to a group of pruned
filters under a constraint on the size of pruned network. To solve this
problem, we propose a Taylor-based approximate algorithm, which
can efficiently obtain the IG of each filter by backpropagation. We
comprehensively evaluate our TIP on CIFAR-10 and ILSVRC-12.
On ILSVRC-12, TIP reduces FLOPs for ResNet-50 by 54.13% with
only a drop in top-5 accuracy by 0.1%, which significantly outper-
forms the state-of-the-art methods.

1 INTRODUCTION

Convolutional neural networks (CNNs) have yielded state-of-the-
art results on a variety of applications such as image classification
[7], object detection [21], and semantic segmentation [23]. However,
the deep CNNs bring in prohibitively expensive computational and
memory costs, making it a great burden to be deployed on the hard-
ware devices with limited storage and computation resources, espe-
cially for the mobile and IoT systems. Therefore, efficient model
compression and acceleration, aiming to reduce the number of com-
putations and parameters, enables broader application of deep neural
networks.

In this context, some efforts have been made for model compres-
sion and acceleration using specialized hardware implementation, in-
cluding weight pruning [5], parameter quantization [4] and binariza-
tion [15]. Though theoretically plausible, the models compressed by
these methods require specialized supports to be accelerated. In con-
trast, filter pruning [9, 1, 10], a.k.a. channel pruning [11] or network
slimming [22], converts dense CNNs into smaller compact networks
through directly removing filters as a whole. In this case, the com-
pressed models can be well supported by various off-the-shelf com-
puting platforms. In addition, filter pruning can effectively reduce the
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Figure 1: An illustration of pruning filters based on Information Gain (IG).
(a): The class probability distribution p(y|x) of an uncompressed network
output w.r.t. an input image. (b): The class probability distribution p(y|x)
after pruning filters with high IG. (c): The p(y|x) after pruning filters with
low IG.

floating-point operations (FLOPs) and parameters of model, while
maintaining the accuracy almost intact. Moreover, filter pruning is
orthogonal to other accelerating techniques, which can be further ac-
celerated by other techniques without extra operation. In this work,
we focus on filter pruning.

Current practices [19, 11, 32] perform filter pruning in a layer-
wise manner, where networks are first evaluated for redundancy, then
pruned and fine-tuned layer by layer. Unfortunately, these layer-by-
layer based pruning approaches suffer from some drawbacks. Firstly,
for various CNNs, layer-wise pruning approaches require expensive
per-layer sensitivity analysis to determine the number of pruned fil-
ters at each layer. Otherwise, a fixed pruning rate applied to all con-
volutional layers will damage some layers sensitive to pruning, lead-
ing to a dramatical drop in performance. Secondly, when applied
to extremely deep networks (e.g., ResNet-1001 [8]), the layer-wise
methods are inefficient or even impractical to prune and fine-tune the
deep CNNs layer by layer. Thirdly, some sophisticated networks have
complicated structures, e.g., shortcut connection [7], where some
layers have branches connected to other layers. It is intractable for
layer-wise methods to handle such networks with complex connec-
tivity. Lastly, but most significantly, to evaluate the redundancy of fil-
ter per layer, the layer-wise methods usually prune filters which have
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little impact on the next layer. However, the errors caused by pruned
filters will be accumulated and amplified when propagating through
multiple layers, degrading the performance of the pruned networks.

In contrast to pruning filters layer by layer, we propose a global
pruning method to prune the redundant filters, which can address
the problems mentioned above. More specifically, we first calculate
the Information Gain (IG) [26] of filters on the class probability dis-
tributions of network output with respect to input samples. The IG
of filter quantifies the influence of filter removal on network output,
instead of the influence on the next layer. Thus, it will not make sub-
stantial negative influence on network performance when pruning the
group of filters with the lowest IG across all convolutional layers, as
shown in Figure 1. In addition, the computation for IG of filters can
be efficiently achieved by our proposed Taylor-based approximate
algorithm (TBAA), which is able to be performed on any CNNs.
It is noteworthy that the implementation of TBAA relies on a pre-
trained prior network (we refer to it as tutor network) which provides
prior class distributions w.r.t. the same samples (ground truth). In
the sequel, we name our pruning method as Tutor-Instructing global
Pruning (TIP).

Our main contributions are summarized as follows:

• We introduce information gain (IG) to estimate the contribution
of filters to class probability distributions, and propose a Taylor-
based approximate algorithm (TBAA) to efficiently calculate it.

• Based on IG and TBAA, we propose the tutor-instructing global
pruning method (TIP) to prune the redundant filters in CNNs.

• By TIP, we provide a pruning strategy for Residual Networks,
which have some constraints for pruning.

• Extensive experiments on CIFAR-10 and ILSVRC-12 demon-
strate the effectiveness and efficiency of our TIP.

2 RELATED WORKS

Weight pruning Weight pruning is an unstructured pruning
method that targets at zeroing out some weights in filters. It was suc-
cessively proposed in optimal brain damage [18] and optimal brain
surgeon [6] to prune weights based on the second-order derivative of
loss function. Recently, Han et al. [5] proposed an iterative approach
to prune weights with small values below a given threshold. Guo et
al. [3] proposed dynamic network surgery composed of pruning and
splicing. Yu et al. [31] prune weights in filters to minimize the re-
construction error of the final response layer. Unfortunately, these
methods only produce the pruned networks with irregular sparsity,
which requires specialized library or hardware design to store a large
number of indices for efficient speedup.

Filter pruning Filter pruning [19, 13, 11, 9, 20] belongs to
structured pruning, aiming at producing regular sparsity in networks.
In this way, the compressed networks can be accelerated on generic
computing platforms without specialized support. In [19], Li et al.
prune filters with small �1 norm, where per-layer sensitivity analysis
is used to determine which layers are sensitive to pruning and how
many filters can be safely pruned at each layer. Similarly, a series of
layer-wise pruning methods have been proposed. In [13], Hu et al.
prune filters based on the average percentage of zero values (APoZ)
in output feature maps. He et al. [11] proposed LASSO-based chan-
nel selection strategy and least square reconstruction to prune fil-
ters. ThiNet [24] was put forward to preserve the filters which mini-
mize reconstruction error of output on each layer. However, sensitiv-
ity analysis which adds extensive computation is essential for these
methods to achieve good performances. To avoid sensitivity analysis,

Molchanov et al. [25] analyzed several greedy criteria for pruning,
and proposed saliency estimation for filters based on the sensitivity
of loss. More recently, Ding et al. [1] used binary filter search to si-
multaneously decide the pruning quantity for each layer, and He et
al. [10] employed geometric median to recognize the replaceable fil-
ters for each layer. On the other hand, some works attempt to impose
sparse constraints on filters [30] or the scale of batch-normalization
[22] when training networks. These methods do not need sensitiv-
ity analysis and can be performed to prune globally. However, these
methods require expensive training from scratch when obtaining the
compact CNNs. In our work, the proposed TIP can globally prune
filters without sensitivity analysis and expensive training. We need
only choose a single compression ratio parameter, and TIP can auto-
matically determine the appropriate filters for each layer.

Other methods Apart from network pruning, there are some
other works on model compression and acceleration. Network quan-
tization [4, 27, 15] aims to reduce the number of bits used to represent
the weights and gradients. Furthermore, BinaryNet [15] constrains
weights and activations as binary bit, which dramatically reduces
the model size compared with the full-precision version. However,
these methods also require hardware support for new numeric for-
mats. Knowledge distillation [12] targets at improving a small com-
pact network through transferring knowledge from a large teacher
network, whose drawback is the need to select or manually design
the decent compact network.

3 THE PROPOSED APPROACH

3.1 Preliminaries

Formulation Given a convolutional neural network with pa-
rameters W = {W1,W2, ...,WL} and a dataset D =
{(x1, y1), ..., (xN , yN )} composed of N input-output pairs, the class
probability distribution that maps inputs x to their corresponding out-
puts y can be denoted as p(y|x,W). The parameter of the l-th con-
volutional layer is represented as Wl ∈ R

Nl+1×Nl×kw×kh , where
Nl+1 is the number of filters, Nl is the number of filters’ kernels,
and kw × kh is the kernel size of filters. The j-th filter in Wl can
be represented as w

j
l ∈ R

Nl×kw×kh , whose removal will result in
deleting its corresponding bias term, batch-normalization term, out-
put feature map and related input kernels at the next layer.

We use a binary mask β ∈ {0, 1}m representing the condition
of all filters, where 1 denotes filter is preserved, 0 denotes filter is
removed and m is the total number of filters. For image classifica-
tion, the task of filter pruning can be formulated to minimize the
cross-entropy loss on the dataset under sparsity constraints on filters,
written as:

min
W∗ −

∑N

i=1
yi log p(y|xi,W

∗)

s.t. W
∗ = β �W,

‖β‖0 = (1− γ)m,βi ∈ {0, 1}, i = 1, 2, ...,m,

(1)

where W∗ is the remaining filters after W being pruned with filters
whose β is equal to 0,� is multiplication with broadcasting, ‖ · ‖0 is
standard �0 norm and γ is the designated pruning rate.

Information gain Information gain [26] is a popular statistic
tool for feature selection. It quantifies the change in information en-
tropy of random variable T from a prior state to a state that takes
some condition as given. Formally, it is defined as:

IG(T, a) = H(T )−H(T |a), (2)
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where H(·) denotes entropy, and H(·|·) denotes conditional entropy
of T given the value of attribute a.

3.2 Information Gain of Filters

The optimization problem (1) is non-convex and NP-hard, so there is
no effective way to solve such �0 norm optimization problem. An al-
ternative approach is to greedily prune an amount of γm filters with
the least impact on network across all layers. Information gain can
quantify how much information is changed about the class proba-
bility distribution p(y|x) of network output given the condition of
filters being removed from network. Importantly, the higher infor-
mation gain of a certain filter, the more information is gained by this
filter, which quantifies the more contribution of this filter to network
output. In contrast, the filters with the lowest IG carry little infor-
mation, whose removal will not potentially incur much information
loss. Figure 1 provides an illustration of pruning filter based on IG.

We use the concept of IG to reformulate the problem (1). Con-
sidering that the ground truth yi has no effect on output distribution
p(y|x,W), we neglect yi, and reformulate (1) as a minimization with
respect to IG of the pruned filters on p(y|x,W) under a sparsity con-
straint on filters:

min
W

IG[p(y|x,W),W]

s.t. W = W−W
∗,W

∗ = β �W,

‖β‖0 = (1− γ)m,βi ∈ {0, 1}, i = 1, 2, ...,m,

(3)

where W is a set of pruned filters in the network. The IG objective in
(3) can be written as:

IG[p(y|x,W),W] = H[p(y|x,W)]−H[p(y|x,W)|W = 0] (4)

= H[p(y|x,W)]−H[p(y|x,W
∗)], (5)

where H[p(y|x,W)] is the entropy of output distribution when keep-
ing all filters, and H[p(y|x,W∗)] is the entropy of output distribution
when pruning the set of filters W.

Compared with (1), the constrained optimization (3) is easier to
solve as it does not require expensive training trial to minimize the
cross-entropy loss on the dataset. However, the optimization (3) is
still NP-hard. To relax it, we assume filters in network are i.i.d. ran-
dom variables which are determined by distributions of training data,
randomness of training data and randomness of training algorithm.
Under this assumption, the IG objective in (3) can be computed by
the sum of IG of individual filter. Hence, the sparsity-constrained op-
timization (3) can be rewritten as:

min
w

∑
w
IG[p(y|x,W),w]

s.t. w ∈ W,W = W−W
∗,W

∗ = β �W,

‖β‖0 = (1− γ)m,βi ∈ {0, 1}, i = 1, 2, ...,m,

(6)

where w is an individual pruned filter from W. The IG objective in
(6) can be written as:

IG[p(y|x,W),w] = H[p(y|x,W)]−H[p(y|x,w
∗)], (7)

where w∗ is the remaining filters after an individual filter w is re-
moved.

3.3 Approximate Algorithm for IG Computation

Optimization problem (6) can be solved by exhaustive search to find
an amount of γm individual filters with the lowest IG via Eq. (7).

However, the computation of Eq. (7) is prohibitively expensive, as
the IG of a filter is measured by accumulating the entropy difference
between the original network output p(y|x,W) and the pruned net-
work output p(y|x,w∗) over the entire dataset. Moreover, the time
complexity of exhaustive search is linear to the number of filters.
Hence, it is intolerable when the pruned network is very deep. To
efficiently solve the problem (6), we propose a Taylor-based approx-
imate algorithm (TBAA) for IG computation.

We assume that a prior class probability distribiton w.r.t. the same
input sample is pt(y|x), which is provided by a pre-trained tutor net-
work. The entropy in Eq. (7) can be efficiently obtained by borrow-
ing from the property of entropy3. We convert the form of entropy in
Eq. (7):

H[p(y|x,W)] = Hpt [p(y|x,W)]−DKL[p(y|x,W)||pt(y|x)],
(8)

H[p(y|x,w
∗)] = Hpt [p(y|x,w

∗)]−DKL[p(y|x,w
∗)||pt(y|x)],

(9)

where Hpt is the cross entropy with pt(y|x) and DKL is Kullback-
Leibler divergence. Combining Eq. (7-9), we have

IG[p(y|x,W),w] ={Hpt [p(y|x,W)]−Hpt [p(y|x,w
∗)]}

−{DKL[p(y|x,W)||pt(y|x)]−DKL[p(y|x,w
∗)||pt(y|x)]}

=ΔHpt −ΔDKL, (10)

where Δ denotes the value change. For better readability, we use
Hpt(·) to denote the cross entropy Hpt [p(y|x, ·)] and DKL(·) to
denote KL-divergence DKL[p(y|x, ·)||pt(y|x)] in Eq. (10). Consid-
ering an individual filter w, ΔHpt and ΔDKL can be estimated by
approximating Hpt(W) and DKL(W) with first-order Taylor expan-
sion near w=0, respectively. Specifically, ΔH is simplified by ex-
panding Hpt(W):

ΔHpt =

(
Hpt(w

∗) +
∂Hpt(W)

∂w

T

w +R1(w = 0)

)
−Hpt(w

∗)

≈ ∂Hpt(W)

∂w

T

w, (11)

where R1(w = 0) is 1-th order remainder term which can be ne-
glected. Similarly, ΔDKL is simplified as:

ΔDKL ≈ ∂DKL(W)

∂w

T

w. (12)

With the above Eq. (10-12), we obtain the IG of filter:

IG[p(y|x,W),w] ≈
(
∂Hpt(W)

∂w
− ∂DKL(W)

∂w

)T

w. (13)

Equation (13) reveals that the IG of a filter can be approximated
by matrix product of its weight value w and the first-order deriva-
tive ∂Hpt (W)

∂w
− ∂DKL(W)

∂w
w.r.t. this filter. We have more insights

into this equation. Firstly, the weight value of filter can imply an
indirect effect on the output distribution. For example, a filter with
larger weight value has a more significant impact on its output fea-
ture map, indirectly affecting the subsequent layers by forward prop-
agation. Secondly, ∂Hpt (W)

∂w
− ∂DKL(W)

∂w
reveals the saliency of filter.

As this derivative is derived from the Taylor expansion near w=0, it

3
H[P ] = −∑

x p(x)log [
p(x)
q(x)

q(x)] = −∑
x p(x)log q(x) −

∑
x p(x)log

p(x)
q(x)

= HQ[P ]−DKL[P ||Q]
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Figure 2: The workflow of TIP. The IG of each filter is computed over the
entire training set by TBAA. TIP then prunes filters with the lowest average
IG and fine-tunes the remaining filters by SGD, where pruning and fine-tuning
are iterative.

can directly reflect the removal influence of a filter on the output dis-
tribution by backpropagation. For instance, if one filter has a large
weight value but a small derivative value, this filter obtains low IG
on p(y|x,W) and can be pruned from the network.

3.4 Implementation Details

In this subsection, we point out several implementation details of our
TIP with respect to Eq. (13). The workflow of our TIP is illustrated
in Fig. 2.

Information gain loss To obtain the first-order derivative of
Eq. (13) w.r.t. all filters, we define the information gain loss:

LIG = Hpt [p(y|x,W)]−DKL[p(y|x,W)||pt(y|x)], (14)

where pt(y|x) is the ground truth. It can be converted from the logit
output z of tutor network into logit probability by softmax function

pk(y|x) = exp(zk)∑C
c=1 exp(zc)

, (15)

where k is class index and C is the total number of classes. After
performing error backpropagation of LIG, we can easily obtained
the IG of all filters via Eq. (13). Note that LIG is only used to obtain
IG, but not used to optimize the parameters of filters.

Selection of the tutor network In the pruning pipeline, the tutor
network participates in computation of IG to determine which filters
to be pruned. In general, a larger and deeper tutor network can pro-
vide a more accurate class distribution about ground truth, but the
more inference wall-clock time is required. To balance pruning qual-
ity and pruning cost, we select the pre-trained original network of
pruned network as its tutor network. The effect for selection of tutor
network will be discussed in Section 4.4.

Dimension conversion Note that filter w is a tensor of
R

Nl×kw×kh , which is necessary to be flattened to the vector of
R

Nlkwkh×1. In this way, the result of IG in Eq. (13) is a single value
rather than a high dimensional tensor, which avoids extra computa-
tional conversion.

Averaging IG over entire training set The measurement of IG
needs to be evaluated over the entire training set since IG estimated
by a small amount of data will have an information bias on data.
Thus, we average Eq. (13) over the entire training set to decide which
filters to be pruned.

Pruning strategy Our pruning approach takes a pre-trained net-
work as input. To prune a ratio γ of filters with the least impact on this
network, we consider the information change of remaining filters af-
ter pruning, and thus adopt a prune-finetune iterative strategy. To start
with, we traverse all the training samples, compute the average IG of
each filter, and remove p% filters with the lowest average IG across

all layers. We then re-organize the remaining filters to a smaller net-
work and transfer the corresponding parameters into it. Afterwards,
we fine-tune this re-organized network by stochastic gradient descent
(SGD), during which we re-evaluate the average IG of remaining fil-
ters via Eq. (13). We repeat the pruning and fine-tuning process until
the pruned network is converged or the maximum iteration epoch is
achieved. Algorithm 1 summarizes the overall procedure.

Algorithm 1: Algorithm Description of TIP
Input: Training set D, batch size S, pruning rate γ, pruning

granularity p%, maximum epoch T ;
Output: The compact pruned network;

1 t := 1;
2 Compute average IG of each filter over D via Eq. (13);
3 Remove p% filters with the lowest average IG;
4 Construct a smaller network and transfer parameters;
5 repeat

6 for i← 0 to
|D|
S

do

7 Obtain the logit output z of both networks;
8 Obtain p(y|x,W) and pt(y|x) via Eq. (15);
9 Obtain LIG via Eq. (14);

10 Obtain ∂LIG
∂w

for all filters by backpropagation;
11 Compute average IG of each filter via Eq. (13);
12 Fine-tune the re-organized network by SGD;
13 end

14 if t× p% < γ then

15 Remove p% filters with the lowest average IG;
16 Construct a smaller compact network and transfer the

corresponding parameters;
17 end

18 t := t+ 1;
19 until convergence or t reaches the maximum epoch T ;

3.5 Pruning Residual Networks

For some classical plain CNNs, e.g., AlexNet [17] and VGGNet
[29], they are simply stacked by the convolutional layers. Pruning
these networks will not affect the connectivity patterns of architec-
ture. However, for the advanced networks, i.e., Residual Networks
[7], some constraints for pruning must be considered. For instance,
feature maps of each residual block are element-wise added to form
the residual flows. Therefore, the order and size of residual flows
should be consistent with the feature maps of each block. In addi-
tion, the size of residual flows is expanded by linear projection or
subsampling in different stages on ResNet, so it is necessary to con-
sider the size matching of residual flows during pruning process. In
practice, the layer-wise methods [19, 10] usually choose to prune
the internal layers in each block to avoid pruning such constrained
layers. In addition to the internal layers, our TIP can also prune the
constrained layers on ResNet. We take ResNet-50 and ResNet-56 to
illustrate our pruning strategy on ResNet with linear projection and
with subsampling, respectively.

ResNet-50 is a typical ResNet, which contains four stages of resid-
ual blocks with different size. Note that the size of residual flows in
each stage is matched by the linear projection y = Wx. Due to this
structure, it is flexible to expand or shrink the residual flows in each
stage. Therefore, TIP removes the entire residual flow with the low-
est IG in the same stage, resulting in removal of corresponding filters
and feature maps along this shortcut flow, as shown in Fig. 3(a). More
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Figure 3: An illustration of pruning ResNet. For ResNet with linear projec-
tion, TIP removes the entire residual flows like (a) in the same stage, result-
ing in removal of corresponding filters in each block and feature maps. For
ResNet with subsampling, TIP removes the entire residual flows, including
the expanded flows by subsampling in all stages like (b).

specifically, if all filters along the residual flow in the same position
(i.e., filters that produce feature maps added to the same shortcut
flow) are the group with the lowest IG, this flow is considered to
make little contribution to the output distribution. Hence, this resid-
ual flow and corresponding filters are safely deleted, which will not
cause the error and disorder in residual mechanism. Meanwhile, the
corresponding parameters in linear projection are removed to match
the size change of residual flows.

ResNet-56 is performed with subsampling to expand the residual
flows in each stage. In this case, the size of residual flows at the latter
stage must be twice as large as the former. Owing to this constraint,
TIP directly removes the entire residual flow whose filters are the
group with the lowest IG, including the expanded flows by subsam-
pling in all stages, as shown in Fig. 3(b).

3.6 Theoretical Acceleration Analysis

We provide a brief analysis to illustrate the effect of architec-
ture hyper-parameters on the floating-point operations (FLOPs) con-
sumption (which we will use in our experimental results to com-
pare the various approaches). For a CNN model, the total number
of FLOPs at the l-th convolutional layer with the batch size B can be
given as

FLOPs = (2× cinkwkh)× wohoco ×B, (16)

where (cin, win, hin) is the size of input tensor, (Nl, kw, kh) is the
size of filter and (co, wo, ho) is the size of output tensor.

If a ratio Pl of filters at the l-th convolutional layer are pruned
from network, the reduction of FLOPs is

FLOPsreduce = (2× cinkwkh)× wohocoPl ×B. (17)

4 EXPERIMENT

We implement our method using Pytorch. The effectiveness valida-
tion is performed on two datasets, CIFAR-10 [16] and ILSVRC-12
[28]. CIFAR-10 contains 50k training images and 10k validating im-
ages, which are categorized into 10 classes for image classification.
Compared with CIFAR-10, ILSVRC-12 is a larger scale image clas-
sification dataset, which comprises 1.28 million images from 1k cat-
egories for training and 50k images for validation.

4.1 Efficacy of Pruning via Information Gain

In this subsection, we first investigate the efficacy about pruning fil-
ters with IG and compare it with other pruning criteria using AlexNet
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Figure 4: Comparison of different filter pruning criteria on AlexNet.

on ILSVRC-12. AlexNet is a plain CNN with five stacked convolu-
tional layers containing a total of 1,152 filters, which is convenient
to evaluate various pruning criteria. To illustrate the effectiveness of
our method, considering that the cross-entropy loss can reflect the
class distributions of network output, we record the increase of cross-
entropy loss after globally pruning filters one by one without fine-
tuning. We refer to pruning filters with the lowest IG and highest
IG computed by our TBAA as IG-AA-L and IG-AA-H, respectively.
For comparison, we conduct the following experiments: pruning fil-
ters with the lowest IG computed by exhaustive search (IG-ES-L),
with the least �1 norm (L1) [19], with the least APoZ (APoZ) [13]
and random pruning (Random). Notably, as APoZ and IG methods
are data-dependent, we use 100,000 random samples to determine the
contribution of filters. We perform these methods to globally delete
filters one by one without fine-tuning. The results are evaluated on
the validation set of ILSVRC-12.

Figure 4 shows the increase of cross-entropy loss with respect
to the number of pruned filters. We have three observations. Firstly,
we observe that IG-AA-L and IG-ES-L incur the least loss increase,
while IG-AA-H has the most significant loss increase among all re-
sults. It reveals that IG of filters can accurately measure the contri-
bution of filters to network output. Secondly, the curve of IG-AA-
L is similar to IG-ES-L, demonstrating that IG computed by our
approximate algorithm has a comparable efficacy with the exhaus-
tive search. Notably, our approximate algorithm is more efficient and
time-saving. Thirdly, IG-AA-L outperforms the popular pruning cri-
teria APoZ and L1. Their motivation is to assume that the removal
of filters has a minimal impact on the next layer. However, the prun-
ing errors are actually accumulated and amplified when propagat-
ing forward to the network output. In contrast, IG of filters directly
quantifies their effect on the class distributions of network output, so
pruning filters with the lowest IG can accurately remove the most
redundant filters, minimizing the damage to the pruned networks.

4.2 Comparison with State-of-the-art Methods

We evaluate the effectiveness of our TIP on CIFAR-10 [16] and
ILSVRC-12, and compare our results with the following state-of-the-
art methods: L1-pruned [19], AFP [2], FPGM [10], VCNNP [32],
AOFP [1] and GAL [20]. L1-pruned and VCNNP are traditional
layer-wise pruning methods which are based on sensitivity analysis.
AFP, FPGM and AOFP use various approaches to determine prun-
ing quantity of filter for each layer but are still layer-by-layer. GAL
utilizes generative adversarial learning for structural pruning in an
end-to-end manner.

Results on CIFAR-10 We experiment with VGG-16, ResNet-
56, ResNet-110 and DenseNet-40 [14] on CIFAR-10 [16]. We train
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the baseline models from scratch for 200 epochs to ensure conver-
gence, and select them as the tutor networks. For pruning, we set the
maximum epoch to 90 and batch size to 128. The learning rate is
initialized to 0.01 and divided by 10 per 20 epochs. The momentum
and weight decay are set to 0.9 and 0.0005, respectively. The pruning
granularity p% is set to 1%. Note that the pruning rate γ controls the
ratio of pruned filters in initial filters. We use TIP-γ to denote our
results under different pruning rates.

The classification accuracy, FLOPs and the number of parameter
of various pruning methods are reported in Table 1. As shown in Ta-
ble 1, our TIP outperforms the state-of-the-art methods on CIFAR-
10. For example, for pruning VGG-16, compared with L1-pruned-
A, VCCNP and AOFP-A4, TIP-80% achieves a higher accuracy of
93.48% and obtains the higher reduction in FLOPs of 72.45% and pa-
rameters of 94.90%. Similarly, for pruning ResNet-56, ResNet-110
and DenseNet-40, our TIP also achieves a higher accuracy than these
methods, while obtains more reduction in FLOPs and number of pa-
rameters. Compared with these state-of-the-art methods, our TIP uti-
lizes IG to globally explore the least contributing filters, whose re-
moval leads to little performance degradation, thus producing supe-
rior results.

Table 1: Pruning results of VGG-16, ResNet-56, ResNet-110 and DenseNet-
40 on CIFAR-10. In all tables, our results are denoted as TIP-γ, where γ is the
pruning rate of filter. PR represents the pruned rate. “n.p.f.” means TIP does
not prune the residual flow of ResNet. “-” means the corresponding result is
not reported. M/B means million/billion.

Model Accu.(%) FLOPs(PR) #Param.(PR)

VGG-16 93.73 314.16M(0%) 14.72M(0%)
L1-pruned-A[19] 93.40 206.00M(34.20%) 5.40M(64.00%)
VCNNP[32] 93.18 190.00M(39.10%) 3.92M(73.34%)
AOFP-A4[1] 93.47 108.00M(65.27%) -
TIP-80% 93.48 86.53M(72.45%) 0.75M(94.90%)

AOFP-A5[1] 93.28 77.00M(75.27%) -
TIP-82% 93.34 71.94M(77.10%) 0.70M(95.24%)

AFP-E[2] 92.94 63.70M(79.69%) -
TIP-84% 93.22 62.76M(80.02%) 0.46M(96.88%)

ResNet-56 93.92 126.58M(0%) 0.85M(0%)
L1-pruned-B[19] 93.06 90.90M(27.60%) 0.73M(13.70%)
TIP-15%(n.p.f.) 93.78 81.12M(35.91%) 0.70M(17.65%)
GAL-0.6[20] 93.38 78.30M(37.60%) 0.75M(11.80%)
TIP-15% 94.04 76.56M(40.30%) 0.65M(23.25%)

FPGM-only-40%[10] 93.49 59.40M(52.60%) -
TIP-28% 93.59 58.07M(54.12%) 0.46M(45.89%)

GAL-0.8[20] 91.58 49.99M(60.20%) 0.29M(65.90%)
TIP-33% 92.99 48.85M(61.41%) 0.27M(68.23%)

ResNet-110 94.47 255.01M(0%) 1.73M(0%)
GAL-0.1[20] 93.59 205.70M(18.70%) 1.65M(4.10%)
TIP-30%(n.p.f.) 93.42 161.20M(36.79%) 0.76M(56.97%)
L1-pruned-B[19] 93.30 155.00M(38.60%) 1.16M(32.40%)
TIP-30% 93.76 151.36M(40.64%) 0.67M(61.27%)

DenseNet-40 94.25 290.11M(0%) 1.06M(0%)
VCNNP[32] 93.16 156.00M(44.78%) 0.42M(59.67%)
TIP-30% 93.67 119.02M(58.97%) 0.38M(64.15%)

Results on ILSVRC-12 We experiment with ResNet-34 and
ResNet-50 on ILSVRC-12. We use the pre-trained models provided
by PyTorch4 as baseline and tutor networks. We set the maximum
epoch to 50 and use a mini-batch 128 to fine-tune. The learning rate
is initialized to 0.1 and divided by 10 per 10 epochs. Other settings

4 https://pytorch.org/docs/stable/torchvision/models.html

Table 2: Pruning results of ResNet-34 and ResNet-50 on ILSVRC-12.

Model Top-1(%) Top-5(%) FLOPs(PR)

ResNet-34 73.30 91.42 3.68B(0%)
L1-pruned-B[19] 72.17 - 2.76B(24.20%)
FPGM-only-30%[10] 72.54 91.13 2.17B(41.10%)
TIP-30% 72.63 91.24 2.12B(42.39%)

ResNet-50 76.15 92.87 4.12B(0%)
VCNNP[32] 75.20 92.10 2.47B(40.00%)
TIP-30%(n.p.f.) 75.38 92.67 2.40B(41.75%)
FPGM-only-30%[10] 75.59 92.63 2.38B(42.20%)
GAL-0.5[20] 71.95 90.94 2.33B(43.44%)
TIP-30% 75.81 92.98 2.31B(43.93%)

FPGM-only-40%[10] 74.83 92.32 1.92B(53.50%)
TIP-40% 75.23 92.77 1.89B(54.13%)
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Figure 5: Number of remaining filters at each layer. Left: VGG-16 on CIFAR-
10. Right: ResNet-56 on CIFAR-10.

are the same as pruning on CIFAR-10.
In Table 2, we report the top-1/5 classification accuracy and

FLOPs of various filter pruning methods. Results in Table 2 show that
our TIP achieves the state-of-the-art results on ILSVRC-12. For ex-
ample, for pruning the ResNet-50, compared with FPGM-only-40%,
our TIP-40% achieves higher top-1 accuracy (75.23% vs. 74.83%)
and top-5 accuracy (92.77% vs. 92.32%) with a higher reduction in
FLOPs (54.13% vs. 53.50%). The results on two benchmarks indi-
cate our TIP can produce more compact pruned networks with bet-
ter performance than the state-of-the-art methods. Besides, pruning
residual flow can yield better performance than not pruning residual
flow in ResNet (denoted as n.p.f.). It reveals the residual flows exist
redundancy, some of which can be safely removed by TIP.

4.3 Pruned Structure Analysis

We visualize the pruned structures of VGG-16 and ResNet-56 on
CIFAR-10, as shown in Fig. 5. For VGG-16, we learn that filters at
some shallow layers (layer 2, 3, 4, 5) are less pruned than those at
the subsequent layers. This finding is consistent with the sensitivity
analysis in [19] and [13], where they found that the shallow layers
of VGG-16 on CIFAR-10 are more sensitive to pruning. We infer
that at the shallow layers, the receptive field of filters is relatively
small. These filters mainly extract the low-level features of input im-
ages (e.g., edge, corner), which are more important for classification,
so these filters obtain higher IG on the output distribution. In con-
trast, considerable amount of filters are at the deep layers of VGG-
16, and their receptive field cover the whole images from CIFAR-10.
These filters capture the structured information and semantic context
of images. However, these features are numerous and low-resolution,
some of which are redundant for classification. The corresponding
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Figure 6: Accuracy drop for ResNet-56 on CIFAR-10 with varying pruning
rates.

filters obtain lower IG and are pruned from the network.
Different from the pruning pattern of VGG-16, considerable filters

at the shallow layers are pruned on ResNet-56, as shown on the right
of Fig. 5. We conjecture that due to the introduction of the residual
mechanism, the low and high level semantic features can be com-
bined for further analysis at these deeper layers. The filters at the
deep layers obtain higher IG and thus are preserved. Moreover, we
find that the first layers of each stage (layer 20 and 38) are preserved
with relatively more filters, which is also consistent with the sensitiv-
ity analysis [19]. It can be considered that the size increase of resid-
ual flows needs more precise residual errors, which leads to filters
at the first blocks in each stages with higher IG and prevents them
from removal. For instance, at the layer 20, TIP-28% has larger size
of residual flows than TIP-33% (10 vs. 9), and TIP-28% is preserved
with more filters at the layer 20 (32 vs. 27).

To test the practical speedup of pruned structures, we measure
the forward time of the pruned ResNet-56 on CIFAR-10 on one
GTX2080Ti GPU with a batch size of 128. In Table 3, we report
the practical speedup rate and theoretical speedup rate (i.e., pruned
rate of FLOPs). We find that there is a gap between practical speedup
and theoretical speedup. We infer this gap may come from the lim-
itation of IO delay, buffer switch, and parallelization bottleneck on
intermediate layers.

Table 3: Execution time for ResNet-56 on CIFAR-10. All models are tested
on a Nvidia GTX 2080Ti GPU with a batch size of 128.

Model
Measured Practical Theoretical
time(ms) speedup rate speedup rate

ResNet-56 27.52 - -
TIP-15% 17.22 37.43% 40.30%
TIP-28% 14.82 46.15% 54.12%
TIP-33% 13.05 52.58% 61.41%

Table 4: Accuracy and wall clock time for pruning ResNet-56 on CIFAR-10
by different tutor networks. In this table, “min” means minute.

Tutor network (Accu.) Pruned network (Accu.) Wall clock time
ResNet-20 (92.20%) 93.01% 45min

ResNet-32 (93.86%) 93.56% 57min
ResNet-56 (93.92%) 94.04% 87min

ResNet-110 (94.47%) 94.16% 212min

4.4 Parameter Study

Effect of tutor network In the previous experiments, the tutor net-
work of all pruned networks were set as their pre-trained networks.

Figure 7: Accuracy for ResNet-56 on CIFAR-10 regarding pruning interval
(Left) and pruning granularity (Right). Solid line and shadow denote the mean
value and standard deviation, respectively.

To investigate the effect of tutor network, we use ResNet-56 with a
pruning rate of γ = 15% on CIFAR-10 as baseline. We attempt to
use pre-trained ResNet-20, ResNet-32 and ResNet-110 as tutor net-
work to prune ResNet-56. The pruning setting is the same as base-
line. We record the accuracy of pruned ResNet-56 and wall clock
time of pruning process, as shown in Table 4. It reveals that the more
powerful the tutor network, the higher the performance of pruned
network is, but the more pruning cost it takes.

Varying pruning rates To study the effect of pruning rate on
TIP, we prune ResNet-56 on CIFAR-10 with a pruning rate γ vary-
ing from 0% to 50%. In Fig. 6, we report the accuracy drop and
pruned FLOPs under different pruning rates. We observe when the
pruning rate is less than 18%, the compressed network performs bet-
ter than the uncompressed one, which can be considered as the reg-
ularization effect introduced by filter pruning. As the pruning rate
increases, the compressed network have a more speedup, but its ac-
curacy also drops, which indicates there is a trade-off between accu-
racy and speedup in reality.

Effect of pruning interval The pruning interval controls how
many epochs our TIP conducts a pruning operation at the end of
fine-tuning phase. In our experimental setting, the pruning interval
is set to 1 by default. To study the influence of pruning interval, we
attempt to change the pruning interval from 1 to 10. We use ResNet-
56 on CIFAR-10 with a pruning rate of γ = 15% and interval = 1
as baseline, and results are averaged over 3 random seeds. As shown
on the left of Fig. 7, the fluctuation in accuracy along with differ-
ent interval is less than 0.5%. This result reveals the performance of
pruned network is not sensitive to pruning interval.

Effect of pruning granularity In all experiments, the pruning
granularity p% was set to 1%, which controls ratio of per pruning. To
study its effect, we use ResNet-56 with a pruning rate of γ = 15%
and p% = 1% as baseline. We change p% from 1% to 15%, and re-
sults are averaged over 3 random seeds. Note that, the pruning granu-
larity of 15% means single-shot global pruning for ResNet-56 under
γ = 15%. As shown on the right of Fig. 7, we find that although
by a slight margin, pruning filters with a smaller pruning granularity
yields better performances.

5 CONCLUSION

In this work, we have proposed TIP to effectively prune the redun-
dant filters in CNNs. Without the need of per-layer sensitivity anal-
ysis, TIP calculates IG of filters by our proposed Taylor-based ap-
proximate algorithm (TBAA) to quantify the contribution of filters
to class probability distribution, and iteratively prunes filters with
the lowest IG. Extensive experiments have shown the outstanding
performances of our proposed method.
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