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Abstract. To improve the performance in ill-posed regions, this pa-
per proposes an atrous granular multi-scale network based on depth
edge subnetwork(Dedge-AGMNet). According to a general fact, the
depth edge is the binary semantic edge of instance-sensitive. This
paper innovatively generates the depth edge ground-truth by mining
the semantic and instance dataset simultaneously. To incorporate the
depth edge cues efficiently, our network employs the hard parameter
sharing mechanism for the stereo matching branch and depth edge
branch. The network modifies SPP to Dedge-SPP, which fuses the
depth edge features to the disparity estimation network. The granular
convolution is extracted and extends to 3D architecture. Then we de-
sign the AGM module to build a more suitable structure. This module
could capture the multi-scale receptive field with fewer parameters.
Integrating the ranks of different stereo datasets, our network outper-
forms other stereo matching networks and advances state-of-the-art
performances on the Sceneflow, KITTI 2012 and KITTI 2015 bench-
mark datasets.

1 INTRODUCTION

Visual perception is a fundamental problem that focuses on the ca-
pability to obtain accurate results in a 3D scene. Depth estimation is
an important part of perception, which has various essential applica-
tions, such as autonomous driving, dense reconstruction, and robot
navigation. As a type of passive depth sensing techniques, stereo
matching estimates the disparity from rectified image pairs.

The classical pipeline for disparity estimation involves finding cor-
responding points based on matching cost and post-processing. With
the development of deep learning, learning-based methods acquire
cues from classical ones, they are embedded in different modules that
attempt to obtain a better result. However, because of the discontinu-
ous inference process and the shallow features, the early CNN-based
methods capture a terrible performance in ill-posed regions. Nowa-
days, the end-to-end disparity estimation network is proposed to im-
prove the performance.

Currently, there are two main methods to optimize the networks
in ill-posed regions. The first approach captures the additional fea-
tures and constraints using auxiliary networks, such as semantic seg-
mentation and edge detection subnetworks[5, 16, 19]. However, the
semantic segmentation tasks are incapable to distinct the overlap in-
stance with the same label. And the classical edge information con-
tains a large number of noise edges. Those issues induce dispar-
ity estimation misjudgments. Secondly, some network utilize a set
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Figure 1: (a)&(b) the left and right images from KITTI 2015; (c)&(e) the
predicted depth edge and disparity map from training set; (d)&(f) the ground-
truth of the depth edge and the disparity estimation.

of stacked 3D convolution modules[2, 5] or parallel structures [1]
to capture multi-scale context information. These methods are use-
ful but greatly increase computational consumption and memory re-
sources.

In view of the above problems, this paper proposes a multi-task
learning network called Dedge-AGMNet that effectively alleviates
the drawbacks of both previous methods. We generate depth edge
ground-truth and propose the depth edge auxiliary network. Sharing
the feature extraction module with the stereo matching main network,
the auxiliary branch provides the depth edge constraints. For effec-
tive multi-task interactions, we design the Dedge-SPP that embeds
the depth edge features to the main branch. Compared with tradi-
tional edge detection, the proposed network substantially reducing
the noise edges.

The paper proposes a novel module, called the AGM module. Re-
ferring to Res2Net[6], we extract the granular convolution from its
block and extend to the 3D representation. Retaining the advantages
of multi and large scale receptive field, we employ the parallel struc-
ture to trade-off the running latency and the scale of the receptive
field. The main contributions of this work are summarized as fol-
lows:

• We propose the multi-task learning network Dedge-AGMNet that
optimizes the feature extraction module with hard sharing param-
eter, and utilizes the Dedge-SPP to incorporate depth edge cues
into disparity estimation pipeline.

• The AGM module is designed to capture the multi-scale informa-
tion while requiring fewer parameters at a reduced computational
cost.

• Our method achieves state-of-the-art accuracy on the Sceneflow
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Figure 2: The pipeline of the proposed atrous granular multi-scale network based on depth edge subnetwork(Dedge-AGMNet).

dataset, KITTI 2012 and KITTI 2015 stereo benchmark.

2 RELATED WORK

2.1 Stereo Matching

Depth from stereo has been widely studied for a long time in
the literature. The traditional stereo matching methods[14] have
been proposed for four steps: matching cost computation[22], cost
aggregation[12], optimization[15], and disparity refinement. Re-
cently, convolutional neural networks have become popular in solv-
ing this problem. Zbontar and LeCun [22] were the first to use
CNN for matching cost computation. Luo et al.[12] designed a novel
Siamese network to treat the computation of matching cost as a
multi-label classification, which computes the inner product between
the left and the right feature maps. Seki et al.[15] raised the SGM-Net
that predicts SGM penalties for regularization.

Inspired by other pixel-wise labeling tasks, the end-to-end
neural networks have been proposed using the fully-convolution
network[11] for disparity estimation. Mayer et al.[13] designed the
first end-to-end disparity estimation network, DispNet, which uti-
lizes the encoder-decoder structure with short-cut connections for
second stage processing. Kendall et al.[10] raised GCNet, a cost vol-
ume formed by concatenating the feature maps to incorporate con-
textual information. This network applies the 3D encoder-decoder
architecture to regularize the cost volume. To find correspondences
in ill-posed regions, Chang and Chen[2] proposed the PSMNet to
regularize cost volume using stacked multiple hourglass networks in
conjunction with intermediate supervision.

Currently, Chabra[1] proposed a depth refinement architecture that
helps the fusion system to produce geometrically consistent recon-
structions, and utilized 3D dilated convolutions to construct hour-
glass architecture. Meanwhile, XianZhi Du et al.[5] designed a sim-
ilar construction with three atrous multi-scale modules, while it is
useful to aggregate rich multi-scale contextual information from cost
volume. Base on the PSMNet [2], both of them achieved state of the
art on the different stereo datasets.

2.2 Multi-scale Features

The multi-scale feature is an important factor in the pixel predicted
tasks, such as semantic segmentation and disparity estimation. Be-
cause ambiguous pixels require a diverse range of contextual infor-

mation, ASPP[3] was designed to concatenate various feature maps
with multi-scale receptive fields. To further quest the importance of
the receptive field, Yang et al.[20] proposed Dense ASPP to con-
catenate a set of different atrous convolutional layers densely. The
approach encourages feature reusing by constructing a similar struc-
ture with the DenseNet[9]. Instead of representing the multi-scale
features in a layer-wise manner, Gao et al.[6] designed novel archi-
tecture, called Res2Net. The network uses hierarchical residual-like
connections in a single block to represent it at a granular level. Con-
trolling the same computational resources as ResNet block, Res2Net
achieved more accurate results.

2.3 Multi-task Learning network

Focus on improving the accuracy of the ill-posed regions where
the single stereo matching networks are difficult to predict. Yang
et al.[19] proposed SegStereo to embed the semantic features, and
regularized semantic cues as the loss term. Xianzhi Du et al.[5] uti-
lized foreground-background segmentation map to improve disparity
estimation. This paper believed that better awareness of foreground
objects would lead to a more accurate estimation. Song et al.[17, 16]
proposed EdgeStereo which composes a disparity estimation subnet-
work and an edge detection subnetwork. By combining the advan-
tages of the semantic segmentation and edge detection, we propose
the depth edge detection auxiliary network.

3 Dedge-AGMNet

The proposed Dedge-AGMNet is composed of a depth edge detec-
tion branch and a disparity estimation branch. The depth edge subnet-
work provides geometric knowledge and constraints without adding
irrelevant edges. We also utilize the granular convolution to design a
more efficient 3D aggregate filtering module. It is worth noting that
our network only estimates the disparity map but not predicts depth
edge in the inference process, which decreases the parameters signif-
icantly.

3.1 Network Architecture

The structure of the proposed Dedge-AGMNet is shown in Fig.2. The
network consists of five parts, feature extraction, depth edge predic-
tion and embedding, cost volume construction, 3D aggregation, and
disparity prediction.
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Figure 3: The architecture of depth edge detection branch. The red dashed
box denotes the sharing feature extraction module.

For the feature extraction from both subnetworks, we retain the
ResNet-like structure used in PSMNet[2] except that the first down-
sampling operation occurs at L1 but not first conv.

We present the depth edge subnetwork with corresponding loss
function to provide geometrical constraints for the shared features.
In addition, instead of SPP[2], the Dedge-SPP module is constructed
to fuses the geometric knowledge from depth edge subnetwork. The
details are described in Section 3.2.

The cost volume consists of two parts: a concatenation volume and
a distance volume, which is explained in Section 3.4. We process the
cost volume with a pre-hourglass module and three stacked AGM
modules. And details are described in Section 3.3.

In the disparity estimation subnetwork, the three stacked AGM
modules are connected to output modules to predict disparity maps.
The details of the output modules and the loss functions are described
in Section 3.4.

3.2 Depth edge auxiliary task

3.2.1 Validity analysis & Generation of dataset

Without additional knowledge or constraints, it is difficult to find
correct correspondences in ill-posed regions. The classical edge
subnetwork[17, 16] is beneficial, but it captures considerable edge
noises, such as object pattern and inner edges. This non-semantic in-
formation heavily interferes with the disparity estimation. Semantic
segmentation subnetworks[19, 5] are commonly used. However, se-
mantic boundaries always lack the edge for overlap instances that
have the same label, it induces disparity estimation misjudgment. As
shown in Fig.4, depth edge combines the advantages of classical edge
and semantic map, it segments different individuals accurately with-
out edge noise.

In the autonomous driving scene, a single foreground object al-
ways could be considered the same depth, this paper utilizes the bi-
nary instance bounds to represent the depth edges for the foreground
object. We employ binary semantic boundaries to compensate for
the lacking background edges. In summary, we generate the depth
edge map by mining the instance&semantic ground-truth in stereo
datasets.

3.2.2 Structure of subnetwork

As shown in Fig.3, except to share parameters in the feature ex-
traction module, the auxiliary network adds L5(a similar structure

Figure 4: The first row denotes left images, the second row presents the dis-
parity ground-truth, the third row shows the classical edge and the semantic
segmentation map, and the last row displays the depth edge maps. The yellow
box presents the noise edge performance in the smooth region. The red box
compares the performance in the disparity change region.

with L4[2]) to capture more features. Different from the classi-
cal edge detection network[18], our network does not predict the
depth edge based on bottom side features. But those features are
useful to provide detailed edge information, we utilize the shared
concatenation[21] to fuse multi-frequency features, and only predict
the edge at the last stage.

The bottom features F = {F1, F2, F3} are output from the fea-
ture re-extraction module(A1, A2, A3), and the top features with K
channels are represented by F5. The shared concatenation is as fol-
lows:

{F5(1), F, F5(2), F, ..., F5(K), F}
the depth edge branch adopts a similar architecture as CASENet but
contains several key modifications.

• The different task. Fist, compared with the semantic edge, the
depth edge ground-truth consists of the boundaries from the in-
stance and semantic map. It contains more useful edge informa-
tion. Besides, we simplify the task from multi-label to binary la-
bel, which decreases the task complexity substantially. And drive
the auxiliary branch to pay more attention to the edge details but
not the classication.

• Fewer parameters. Since the limitation of the parameters and com-
putational cost, in contract to CASENet[21], we adopt about 1/8
channels in the feature extraction module. However, we believe
that the simplied task could utilize fewer channels to capture the
required features.

• Similar to CASENet, Our network handles more channels(K) for
top features. But instead of building the relationship between each
channel and corresponding label, we believe that more channels
mean greater importance. Compared to the different probability
from corresponding channels, the subnetwork selects the highest
probability as the predicted probability for depth edge.

Besides, since the classical edge lacks semantic information,
EdgeStereo[16] only shares parameters in shallow layers to capture
low-frequency features. In constrast, The depth edge contains the se-
mantic and instance information, our network still shares parameters
in the high layers. The network could employ semantic information
to suppress the interference of non-depth noise edges. We will illus-
trate it in Section 4.3.
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3.2.3 The incorporation of the networks

This paper designs the depth edge loss function to optimize the shar-
ing feature extraction. Because the depth edge label is a binary rep-
resentation, we use the binary cross-entropy loss instead of multi-
label[21]. It denoted as LedgeP (Xi;W ) and Yi denote the predicted
probability and ground-truth for the image pixel Xi.

Ledge (Xi,W ) =

{
α× log(1− P (Xi;W )), if Yi = 0
β × logP (Xi;W ), if Yi = 1

(1)
in which

α =
|Y +|

|Y +|+|Y−|
β =

|Y−|
|Y +|+|Y−|

(2)

where |Y +| and |Y −| represent the number of positive samples and
negative samples, respectively.

Since the disparity discontinuity point is always on the depth
boundaries. the depth edge gradient is more consistent with the
change of the disparity map, and Ldedge−disp is presented as fol-
lows:

Ldedge−disp =
1

N

∑
i,j

|∂xdi,j | e−γ|∂xξi,j | + |∂ydi,j | e−γ|∂yξi,j |

(3)
where N denotes the number of pixels, γ is the loss intensity, ∂d and
∂ξ present the disparity and the depth edge map gradient, respec-
tively.

Whats more, we concatenate the depth edge features with the out-
put of L4 to modify the SPP[2]. Dedge-SPP is designed to share the
geometric knowledge with the disparity estimation branch.

3.3 Atrous granular multi-scale module

3.3.1 Structure of AGM module

We propose AGM-module. As shown in Fig.5, the AGM module
combines the advantages of the hourglass and the parallel structure.
The hourglass structure could reduce the feature size reasonably, we
utilize the short-cut connection to transmit shallow features. Besides,
the parallel structure with the dilated granular convolution boosts
the performance significantly. Compared to the standard convolu-
tion, granular convolution captures multi-scale context information
that requires fewer parameters. Meanwhile, the parallel structure bal-
ances the running latency and the scale of receptive field.

3.3.2 Granular convolution

The blue dashed box of Fig.5 illustrates the details of granular con-
volution. It shows that the number of receptive fields in granular con-
volution is approximate G times than the standard convolution. The
granular convolution divides the input features into several groups,
the output features of the previous group are input to the next group
of filters along with another group of input feature maps. The fea-
tures map v = (v1, v2, ..., vG), vi ∈ RW×H×c/G(groupnumber).

∑
denotes the concatenation operator and <,> denotes standard con-
volution. We formulate granular convolution as follows:

v′ = wpw

∑G

g=1
v̂′g

= wpw

∑G

g=1

g∑
i=1

< w1... < wiv(g−i) >>

(4)

3D Deconv

(stride=2)

3D Conv

(stride=2)

3D Conv

Figure 5: The architecture of AGM module. The blue dashed box illustrates
the granular convolution.

where the weight w = (w1, w2, ..., wG), wi ∈ R
c
G
× c

G
×s×s. And

the wpw denotes the weight of point-wise convolution weight.
Keeping the channel and size of the feature map, the parameters

of standard and granular convolution is shown below:
Standard convolution:

Nstandard = Cout × Cin × s× s = C2 × s2

Granular convolution:

Ngranular = Cin × Cout × s

C
× s

C
× (G− 1) + Cout × Cout

= Cin × Cout × s× s× (
G− 1

G×G
+

1

s× s
)

≈ 1

G
×Nstandard

(5)

3.3.3 Running latency

Granular convolution utilizes the internal cascade structure to capture
the multi and large receptive field. However, As one layer is split-
ted into two or more sequential layers, the latency increases progres-
sively. Therefore, this structure increases running latency inevitably.
K and G denote the number of sequential layers and groups, respec-
tively. The running latency of the cascade and parallel structures are
shown as follow:

RLparallel = G− 1 = 1/K ×Rcascade

In summary, contrasted with standard convolution, the computa-
tional cost of granular convolution is about 1/G times. The hyper-
parameter G = K = 4, AGM module utilizes the parallel structure
to trade-off the running latency and the scale of the receptive field.

3.4 Cost volume

We designed the cost volume by stacking the concatenation module
and the distance module. The former provides the overall informa-
tion of the features, which is formed by concatenating left feature
maps with their corresponding right feature maps[10].and the latter
calculates the difference between the two at disparity level to provide
feature similarity information[1].
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Figure 6: Results on the KITTI 2015 test sets. From left: left stereo image, disparity map, error map.

3.5 Output module and loss function

The output module contains two stacked 3D convolution layers and
the upsampling operator. The volume cd from the output module is
converted into a probability volume with a softmax function σ(.)
along the disparity dimension. The predicted disparity d̂ calculated
as follows:

d̂ =

Dmax∑
d=0

d× σ(−cd) (6)

The predicted disparity maps from the three output modules are
denoted as d̂1, d̂2, d̂3, and Ldisp is as follows:

Ldisp =
3∑

i=1

λi × SmoothL1

(
d̂i − d∗

)
(7)

where λ denotes the coefficients and d∗ represents the ground-truth
disparity map.Therefore, by combining Ldisp, Ledge and the related
loss Ledgedisp, we have

Ltotal = Ldisp + a× Ledge + (1− a)× Ledgedisp (8)

4 EXPERIMENT

In this section, we train the proposed model on the Sceneflow,
Cityscapes and KITTI datasets, but evaluate it only on the Scene-
flow and KITTI datasets. The disparities of the Cityscapes dataset
are obtained by SGM algorithm[8] but not the ground truth. The pa-
per presents datasets and network implementation in Section 4.1 and
Section 4.2. And illustrates the effectiveness of each module in Sec-
tion 4.3 and Section 4.4. Then, the evaluation results on the different
datasets are presented.

4.1 Datasets and evaluation metric

4.1.1 Stereo dataset

Sceneflow is a large scale synthetic dataset containing three sub-
sets(Flyingthings3D, Driving and Monkaa ), which provides approx-
imately 35000 training and 4000 testing stereo image pairs of size
960 × 540. It consists of left and right images, complete ground-
truth disparity maps and segmentation images. This paper adopts
end-point-error (EPE) as the evaluation metric.
Cityscapes is an urban scene-understanding dataset. This dataset
provides 3475 rectified stereo pairs, fined annotated segmentation
maps and corresponding disparity maps precomputed by SGM.

KITTI 2012 and KITTI 2015 are both driving scene datasets.
KITTI 2012 provides 194 training and 195 testing image pairs, while
KITTI 2015 contains 200 training and 200 testing image pairs. With
a size of 1240 × 376, both datasets provide sparse disparity maps.
Twenty image pairs have remained as the validation set. The main
evaluation metric for KITTI 2015 is D1-all error, which computes
the percentage of pixels for which the estimation error is ≥ 3px or
≥ 5% from the ground-truth disparity. The main evaluation criterion
for KITTI 2012 is Out-Noc, which computes the percentage of pixels
for which the estimation error is ≥ 3px for all non-occluded pixels.

4.1.2 Depth edge dataset

Sceneflow & Cityscapes & KITTI 2015 According to the method
proposed in Section 3.2.3, this paper generates the ground-truth of
depth edges for their corresponding dataset, respectively.

4.2 Network implementation

The Dedge-AGMNet architecture is implemented with PyTorch. All
the models are trained using the Adam optimizer(β1 = 0.09 β2 =
0.999). We use 4 Nvidia TITAN XP GPUs when training the mod-
els, and the batchsize is fixed to 8. The images are randomly
Cropped to 512 × 256. The coefficients of disparity outputs are set
as follows:λ1 = 0.5, λ2 = 0.7, λ3 = 1.0. In Ledgedisp, γ = 0.5.

The training process of our network contains two steps. For
the first step, we pre-train Dedge-AGMNet only on the Sceneflow
dataset. The initial learning rate is set to 0.001, then down-scaled
by 2 every 2 epochs from epoch 10 to 16. The maximum dis-
parity (Dmax) is set to 192. Besides, we fine-tune the pre-trained
model with stepped learning rates of 0.001 for 300 epochs on KITTI
2012/2015. Furthermore, we extend the training to 70 epochs on
Sceneflow to get the final results.

For the second step, we combine Sceneflow and Cityscapes as the
pre-trained dataset. And employ the same training strategy to obtain
the compared result. Finally, our network is fine-tuned with learning
rates of 0.001 for 600 epochs and 0.0001 for another 400 epochs to
capture the final results.

4.3 Effectiveness of depth edge network

As shown in the graph of Fig.7, with more and deeper shared layers
in the feature extraction, the EPE decreases significantly on Scene-
flow. To prove the effectiveness and generalization of depth edge
auxiliary task, this paper embeds the depth edge subnetwork into
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MODEL MODULE RESULT
Hourglass Cost volume Hard parameter sharing SPP Parameters Sceneflow(EPE) KITTI 2015(D1-all)

PSM [2] [2] - [2] 5.27M 0.884 1.67
AGMNet � [2] - [2] 3.85M 0.801 1.62
AGMNet � � - [2] 3.88M 0.754 1.56

Dedge-AGMNet � � � [2] 3.88M 0.648 1.57
+Cityscapes � � � [2] 3.88M - 1.45

Dedge-AGMNet � � � � 3.98M 0.645 1.54
+Cityscapes � � � � 3.98M - 1.38

Table 1: Ablation study on the Sceneflow test set and the KITTI 2015 validation set. The symbol ′�′ denotes the module we proposed. ’+Cityscapes’ denotes
that the network pre-trains on the hybrid dataset, which contains Sceneflow and Cityscapes dataset.
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Figure 7: The graph: the relationship between the performance and the shared layers. ’fc’ denotes first conv. The histogram: Embedding the Depth edge
auxiliary subnetwork into PSMNet[2], GwcNet[7] and our network.The blue columns are the original results, the orange columns show the results that sharing
parameters in feature extraction module. And gray columns mean that adding the hard parameter sharing mechanism and Dedge-SPP together.

a 0 0.2 0.5 0.8 1
D1-all 1.38 1.42 1.48 1.45 1.47
EPE 0.62 0.64 0.65 0.65 0.65

Table 2: Control experiment for the weight a of loss function. We computed
the D1-all and the EPE on the KITTI 2015 validation set.

PSMNet[2],GwcNet [7] and our AGMNet. As shown in the his-
togram, utilizing the hard parameter sharing mechanism, the depth
edge subnetwork could optimize the feature extraction module. The
EPE of Sceneflow is reduced about 15% ∼ 20%. It is worth empha-
sizing that this module does not add any parameters and computa-
tional cost any more. On Sceneflow dataset, the Dedge-SPP module
does not improve the accuracy of the disparity map remarkably.

As shown in Table 1, Dedge-SPP plays a significant role to im-
prove the accuracy on KITTI 2015. Without estimating the depth
edge in the inference process, Dedge-SPP only increases few param-
eters(0.1M) to obtain the depth edge features. Besides, while adding
Cityscapes dataset, the 3-px error is reduced clearly on KITTI valida-
tion set. This dataset guides the auxiliary subnetwork to learn more
accurate features of depth edge on city scenes.

In the pre-training process, we fixed the hyper-parameter a = 0.5
and select the optimal setting for the weight a on KITTI 2015. As
shown in Table 2, when a = 0, the validation set could obtain the
best performance. It demonstrates that, for the fine-tuned network,
smoothen the disparity map play a more important role than learning
the depth edge feature on KITTI 2015.

Model Hourglass Dilation rate Sceneflow(EPE)
PSMNet [2] - 0.889
AGMNet � 1 4 8 - 0.836
AGMNet � 1 2 3 4 0.823
AGMNet � 1 2 4 8 0.821
AGMNet � 1 4 8 16 0.801

AGMNet � 1 4 16 32 0.842

Table 3: The AGMNet network is dened as the version that only replaces the
hourglass structure. All the models are trained with the same learning strategy.

4.4 Best setting of AGM module

The experimental results in Table 3 show that when the dilation rate
is set to an appropriate range, the parallel structure with four granular
convolutions can achieve better results than three. We conclude that
the AGM module with dilation rates of 1, 4, 8, and 16 provides opti-
mal performance. All the AGM-base networks outperform PSMNet.
Under the best AGM module settings, the EPE is reduced by 9.3%
on Sceneflow dataset.

4.5 Result

As shown in Table 1, the result shows that the module we pro-
posed has a certain effect to promote the network. Compared to
PSMNet[2], our proposed network has a 27.0% reduction on Scene-
flow and 17.4% on the KITTI 2015 validation dataset.
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mthod > 2px(%) > 3px(%) > 4px(%) > 5px(%) Mean Error
Noc All Noc All Noc All Noc All Noc All

GC-Net[10] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 0.7
SegStereo[19] 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.5 0.6

EdgeStereo[17] - - 1.73 2.18 1.30 1.64 1.04 1.32 - -
PSMNet[2] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 0.6

EdgeStereo-v2[16] 2.32 2.88 1.46 1.83 1.07 1.34 0.83 1.04 0.4 0.5

Dedge-AGMNet 2.02 2.56 1.26 1.64 0.95 1.24 0.77 1.01 0.4 0.5

Table 4: Comparison with the top publiced methods on the KITTI stereo 2012 test set.

All(%) Non-Occluded(%) Runtime
Method D1-bg D1-fg D1-all D1-bg D1-fg D1-all (s)

GC-Net[10] 2.21 6.16 2.87 2.02 5.58 2.61 0.9s
PSMNet[2] 1.86 4.62 2.32 1.71 4.31 2.14 0.41s

SegStereo[19] 1.88 4.07 2.25 1.76 3.70 2.08 0.6s
EdgeStereo[17] 1.87 3.61 2.16 1.72 3.41 3.00 0.7s

EdgeStereo-v2[16] 1.84 3.30 2.08 1.69 2.94 1.89 0.32s

AGMNet 1.66 4.30 2.10 1.53 3.89 1.92 0.84s
Dedge-AGMNet 1.54 3.37 1.85 1.41 2.98 1.67 0.9s

Table 5: Comparison with the top publiced methods on the KITTI stereo 2015 test set.

Mod. EPE Mod. EPE Mod. EPE
GC-Net 2.51 SegStereo 1.45 PSMNet 1.09
CSPN 0.78 AMNet32 0.74 ours 0.520

Table 6: Comparison with the top publiced methods on the Sceneflow test set.

Figure 8: Results on the KITTI 2012 test sets. (a) denotes left stereo image,
(b) denotes disparity map and (c) presents the error map.

Sceneflow: We compared the performance of PSMNet with other
state-of-the-art methods, such CSPN[4], AMNet32[5]. As shown in
Table 6, Dedge-AGMNet ranks first compared to other published pa-
pers, which shows the effectiveness of the depth edge auxiliary task
thoroughly.

KITTI 2012 and 2015: Our approach achieves state-of-the-
art performances on KITTI 2012 and KITTI 2015 benchmark
datasets.Utilizing the best hyper-parameter setting selected in the ex-

periment, we train our model for 1000 epochs on KITTI 2015. Then
estimate the disparity maps for the 200 testing images. According to
the online leaderboard, as shown in Table 5, the D1-all for the Dedge-
AGMNet is 1.85%, which ranks in the fourth place. Similarly, we
calculate the disparity for the KITTI 2012 test set. As shown in Ta-
ble 4, the result ranks fourth, too.

Fig.6 and Fig.8 give qualitative results on the KITTI 2012 and
2015 test sets, which demonstrates that our network produces high-
quality results in ill-regions.

5 CONCLUSION

In this paper, we propose the Dedge-AGMNet, a stereo matching
network optimized by depth edge. This paper expounds on the supe-
riority of the auxiliary depth edge task and generates the depth edge
ground-truth innovatively. Dedge-AGMNet contains two main mod-
ules: Depth edge subnetwork and AGM module. We utilize the hard
parameter sharing mechanism to joint optimize the feature extrac-
tion module. And design Dedge-SPP to fuse the depth edge features.
The proposed AGM module provides multi-scale context informa-
tion while consuming fewer computational resources. The ablation
study demonstrates the effectiveness of the above modules. In our
experiment, Dedge-AGMNet achieves state-of-the-art performances
and outperforms other multi-task learning models. The proposed net-
work ranks in the first place on Sceneflow and fourth place on both
KITTI 2012 and 2015. In the future, we plan to apply the depth edge
auxiliary task on a real-time stereo matching network.
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