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Figure 1: The left figure shows a 3D reconstructed indoor scene as
a wire-frame mesh. The right figure shows a user who is exploring
this indoor scene in VR. The scene was captured by photos and laser
scanner recordings. The 3D reconstruction consists of one mesh and
to interact with single objects, the scene has to be segmented. Thus,
the scene can only be viewed in VR without any further processing
after the reconstruction.

Abstract. The segmentation of point clouds is conducted with the
help of deep reinforcement learning (DRL) in this contribution. We
want to create interactive virtual reality (VR) environments from
point cloud scans as fast as possible. These VR environments are
used for secure and immersive trainings of serious real life applica-
tions such as the extinguishing of a fire. It is necessary to segment the
point cloud scans to create interactions in the VR. Existing geometric
and semantic point cloud segmentation approaches are not power-
ful enough to automatically segment point cloud scenes that consist
of diverse unknown objects. Hence, we tackle this problem by con-
sidering point cloud segmentation as markov decision process and
applying DRL. More specifically, a deep neural network (DNN) sees
a point cloud as state, estimates the parameters of a region growing
algorithm and earns a reward value. The point cloud scenes origi-
nate from virtual mesh scenes that were transformed to point clouds.
Thus, a point to segment relationship exists that is used in the re-
ward function. Moreover, the reward function is developed for our
case where the true segments do not correspond to the assigned seg-
ments. This case results from, but is not limited to, the usage of the
region growing algorithm. Several experiments with different point
cloud DNN architectures such as PointNet [13] are conducted. We
show promising results for the future directions of the segmentation
of point clouds with DRL.

1 Introduction

The usage of virtual reality (VR) trainings such as in [16] has a lot
of benefits. Serious situations can be trained in secure and immersive
VR environments. To create immersive experiences, the 3D content
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Figure 2: Schema of the proposed DRL point cloud segmentation
framework. The point cloud Pt=0 at time step t = 0, t ∈ N is given
as state representation. The segmentation parameters are estimated
as action by a DNN agent. The segmentation is applied by a geo-
metric segmentation algorithm. After that, the updated point cloud
Pt>0 and the reward are given back to the agent till the point cloud
is segmented.

has to be created for the VR environments. Usually, the content con-
sists of objects that are used for the interaction, non active objects
and the background environment. Real world environments can be
captured by a laser scanner or a camera, reconstructed from a point
cloud and used as content. After the acquisition of the content, some
objects of interest have to be made interactive. To realise the inter-
action with objects, certain physical properties have to be assigned
to them. If the content is acquired by sensors from a real scene, the
objects are not separated and the scene has to be segmented for the
assignment of the physical properties and scripting processes. See
Figure 1 for an illustration of this problem.

The automation of the segmentation would save a lot of time as
the production of an interactive VR scene has a lot of steps such as
scanning, segmentation, reconstruction via triangulation, cleaning of
the reconstruction, texturing, rigging and scripting. There are several
geometric point cloud segmentation algorithms [5] such as region
and edge based methods. While the former suffer from the selection
of the initial seed points, the latter are susceptible to noise. Model fit-
ting methods such as Random Sample Consensus do not work well in
case of complex shapes. When applying a clustering algorithm such
as K-Means, an appropriate K has to be selected. The same applies
for the P-Linkage algorithm [10], where a scale parameter has to be
set by the user. Thus, the point cloud segmentation algorithms only
fit to specific use cases or need the input of certain expert parameters.

The usage of a deep neural network (DNN) for the segmentation
of point clouds could be promising as there are a lot of supervised
approaches with semantic segmentation [9, 30, 12] and object clas-
sification [27, 3, 12]. However, a semantic segmentation or object
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classification point cloud DNN cannot recognise objects accurately
that are not learned in the training phase. Therefore, we tackle the
segmentation problem by deep reinforcement learning (DRL) in this
contribution which consists of:

• A theoretical DRL point cloud segmentation framework with a
first approach as realisation.

• A framework to produce virtual test data in order to train different
models.

• A reward function which rates a true and an assigned segment vec-
tor for the case of different segment numbers for the same object.

• Experiments with different point cloud network architectures3.

The document is structured as follows. In Section 2, the related
work is reviewed briefly. The considered point clouds and the seg-
mentation problem are described in Section 3. Our training envi-
ronment and the reward function are described in Section 4. Sub-
sequently, we describe some experiments with different DNNs in
this environment and the results in Section 5. The whole approach
is discussed in Section 6 followed by future developments that are
described in Section 7.

2 Related Work

2.1 Creation of 3D Environments

3D environments can be created by the reconstruction from 3D point
clouds. The point cloud acquisition can be done via photogramme-
try, 3D laser scanning, RGB-D scanning, videogrammetry and stereo
camera scanning. According to Wang et al. [24], the most accurate
procedures are 3D laser scanning and photogrammetry. Currently,
we use this techniques to create interactive 3D environments such as
in Figure 1. These methods produce large dense point clouds with
about 107 points which we would like to segment offline. In contrast
to our offline approach, Valentin et al. [22] introduced an online se-
mantic segmentation tool, called SemanticPaint, which works with
a RGB-D camera. A user can scan and label an environment inter-
actively. Steinlechner et al. [19] developed an interactive system for
point cloud segmentation, too. They developed different tools such as
a lasso and a brush such that a user can segment the objects of inter-
est. We can imagine to combine interactive solutions such as in [22]
or [19] with the proposed segmentation framework to segment point
cloud scenes as fast and accurate as possible in case of inaccurate
algorithmic segmentations.

2.2 Neural Nets

There are different approaches to input a point cloud into a neural
net. View based methods project the 3D data into a 2D representation
such that 2D image processing can be applied. For instance, Yavar-
tanoo et al. [27] used a stereographic projection of a 3D mesh model
as input of a CNN. Chen et al. [3] developed a model that selects
the best perspective projection of a mesh for a 3D classification task.
They used the REINFORCE algorithm [25] to train a model for the
projection selection. In comparison to our approach, they also used
DRL in combination with point clouds.

Volumetric methods transform the 3D point cloud into a voxel
grid. The authors of [11, 26] used binary voxel grids to apply 3D
CNNs. Additionally, more features can be assigned to a voxel such

3 The source code for the training environment can be accessed at https:
//github.com/mati3230/smartsegmentation.

as the 2D equivalent of adding RGB values to a greyscale image. Liu
et al. [9] added RGB values to a voxel. They averaged the colour val-
ues of the points that lie within a voxel and assigned this mean colour
to it. Moreover, they also used DRL to steer an eye window that sam-
ples voxels from a point cloud to conduct a semantic segmentation. In
contrast to our work, the task of the DRL agent is to steer an eye win-
dow. However, we also use voxels with more than binary features in
our experiments. As the memory requirements of voxels grow cubi-
cally with their resolution [14], octrees are leveraged with a quadratic
growth with respect to the grid resolution [14, 23]. The authors of
[14, 23] developed special octree DNN operations such as the convo-
lution to prevent massive calculations with empty voxels. The octree
nets can be easily integrated in our system and could speed up our
experiments massively or a higher voxel resolution could be chosen.

Qi et al. developed PointNet++ [13] which directly learns from a
point cloud and takes different point densities into account. Basically,
PointNet++ uses multi layer perceptrons with shared weights to com-
bine local point features and a global point cloud feature for its com-
putation. They used the farthest point sampling to achieve a better
coverage of the point set than by using random sampling [13]. How-
ever, we used random sampling for simplicity in our first experiments
as described in Section 4.3. Zhang et al. introduced the Link Dy-
namic Graph CNN (LDGCNN) [30] which computes the local point
features by considering the nearest neighbourhood. Similar to Point-
Net [12], the predecessor architecture of PointNet++, a global point
feature is calculated in the LDGCNN, too. Both networks, PointNet
and LDGCNN, can be used to realise semantic segmentation as well
as object classification and are also used in our experiments.

The tasks of these nets are mostly point cloud classification and se-
mantic segmentation. By our knowledge, we are the first who develop
a framework for estimating parameters of point cloud segmentation
algorithms with DRL.

2.3 Datasets

There are several point cloud datasets with different properties
[4, 29, 8, 2, 26, 28]. Some of them include labelled real world scenes
where one point cloud contains several objects such as in [4, 6]. To
use the ScanNet dataset [4] with our system, the mesh scenes have
to be transformed to point clouds. The semantic3D.net dataset [6]
can potentially be used without further processing if our system uses
another segmentation algorithm as the region growing algorithm that
needs the normal information of a point. Additionally, we do not con-
sider to estimate the normals of the points [7] as the estimation re-
sults can be very noisy which reduces the performance of the point
cloud algorithm. Other datasets contain only point clouds with sin-
gle objects such as in [26, 18, 21, 28]. To use the datasets with single
objects for our training, the objects have to be composed to scenes.
Some datasets are generated with different sensors which provide
different kind of information [4, 1]. ScanNet [4] was acquired by a
RGB-D sensor whereas the Joint-2D-3D-Semantic dataset [1] was
captured with a RGB camera. Moreover, some datasets do not pro-
vide the colour information such as the ModelNet dataset [26]. As
our intend was to develop a first realisation of the DRL segmenta-
tion framework with isolating disturbing factors such as noise, we
decided to use simple virtual point cloud scenes.

3 Point Cloud Segmentation

A point cloud P ∈ R
|P |×D is considered as a matrix of spatial

points. There are |P | points in the point cloud and an i-th point

M. Tiator et al. / Point Cloud Segmentation with Deep Reinforcement Learning 2769

https://github.com/mati3230/smartsegmentation
https://github.com/mati3230/smartsegmentation


pi ∈ P has at least D ≥ 3 spatial features. The segment of the
point pi is characterised by the value si ∈ N ∪ {−1}. A point cloud
consists of several objects and in contrast to the part segmentation
task [28], we want to segment the top level objects in the point cloud
P . The objective of the segmentation of a point cloud is to assign
each point pi to a segment si �= −1 such that each segment re-
presents an object. Initially, each point pi is unsegmented what we
encoded with si = −1. The output of the segmentation is a vector
ŝ ∈ (N∪{−1})|P |. For the remaining document, we will denote the
true segment vector with s and the assigned segments with ŝ. The as-
signed segment vector ŝ is usually constructed by an algorithm such
as the region growing algorithm which is used in this contribution.
Ideally, the assigned segment vector ŝ should be equal or close to the
true segment vector s.

4 Training Environment

Estimating the parameters of a geometric point cloud segmentation
algorithm could be formulated as supervised learning problem. Thus,
a dataset with appropriate parameters and point cloud states has to be
constructed. Currently, it is unknown which geometric segmentation
algorithms or states are appropriate for an ideal segmentation such
that the construction of a dataset could be suboptimal. Therefore, we
consider the segmentation problem as reinforcement learning prob-
lem where we can develop appropriate state representations and se-
lect appropriate geometric segmentation algorithms without the con-
struction of an explicit dataset.

In reinforcement learning, a markov decision process (MDP)
M = (S,A, T,R, γ) is considered [20, p. 37]. It contains a set of
states S, a set of Actions A, a transition model T , a reward signal R
and a discount factor γ. The goal is to optimise a policy so that the ac-
cumulated reward is maximised [20, p. 42]. The point cloud segmen-
tation is considered as MDP as follows. Given a point cloud, an agent
estimates the parameter of a geometric segmentation algorithm as ac-
tion and receives feedback through a reward function and it receives
the next state as updated point cloud. Practically, the agent is op-
timised with respect to the discounted reward in the generalised ad-
vantage estimation (GAE) of the proximal policy optimisation (PPO)
algorithm [17] in this contribution. A schema of the whole process
is depicted in Figure 2. Furthermore, the state transition matrix T is
not considered as we apply model free learning.

4.1 Action

In our framework, the agent has to segment the point cloud within
multiple steps. In one step, the agent has to specify the parameters of
the region growing algorithm which is described in the point cloud
library [15]. The agent can choose a value from −1 to 1 for every
parameter as action which is multiplied to a specific range of the pa-
rameters. The region growing parameters are the seed point ps of a
region, the number of neighbours Ks to grow a region and an angle
threshold δ as well as a curvature threshold c. The range of a seed
point ps depends on the dimensions of the original scene such as in
Table 2. The thresholds are used to specify if points belong to the
same region and if they can be used as seed points. The angle thresh-
old concerns the cosine angle between the normal of a seed point and
the normal of a candidate point that could belong to a region. If this
angle is smaller than δ, the point is assigned as candidate. If the cur-
vature value of a candidate is smaller than c, the candidate belongs
to a region.

In sum, an action a is in [−1, 1]6. It is unlikely that an estimated
seed point ps is equal to a point pi in the point cloud P . Hence, we
choose the nearest unsegmented point of the Kq nearest neighbours
in the point cloud P to the estimated point as seed point. The episode
is finished if every point of the Kq nearest neighbours is already seg-
mented. Additionally, the maximum number of segmentation steps
is bounded by a parameter tmax ≥ O(st), tmax ∈ N. The function
O ∈ N measures the number of objects in a segment vector. Hence,
the agent has the possibility to apply at least as much segmentation
steps as there are objects in the point cloud scene.

4.2 Scene Generation

To develop a prototypical realisation of the DRL segmentation
framework, point clouds which can be segmented are necessary. The
point clouds have to be labelled such that a reward value can be
calculated after a segmentation. We transform 3D Meshes to point
clouds such that a point to object relation exists. The data genera-
tion4 consists of two main steps, namely, data acquisition and point
cloud generation. In the first step of the data acquisition, specific cat-
egories of objects that are stored in a list will be downloaded from
a 3D mesh model provider. The download is managed by a bot and
the data is stored in specific folders appropriately. The folder struc-
tures, file types and additional data of the downloaded 3D meshes is
not standardised. Hence, the second step of the data acquisition is to
structure the downloaded files in a data table. In this data table, the
files and their paths are listed. For example, a 3D mesh as .fbx file
and, if given, the corresponding materials with textures are listed in
this data table. After these two steps of downloading and structuring,
the point cloud scenes can be generated.

To simulate a simplified environment of a room scan as in Fig-
ure 1, the scenes should be indoors and consist of four walls, a floor
and a ceiling. Minimum and maximum sizes of the room in meters
have to be specified for all three spatial axis by the user. Rooms with
random widths, heights and depths between the minimum and max-
imum sizes are generated for each scene. For each object category
which was acquired in the data acquisition process, a minimum and
a maximum height in meters is specified to scale an object. Addition-
ally, it is possible to specify heights of subcategories. For instance,
the minimum and maximum height can be specified for the category
plant. A subcategory of a plant can be a tree with a corresponding
minimum and maximum height.

After a room is generated, the next step is to place an object of a
specific category into the room. We choose a random category and a
random position in the room. Subsequently, the object is uniformly
scaled by the specified height of the category. Eventually, the object
protrudes out of the wall. Hence, the bounding box of the object is
calculated and the object is translated in the negative direction in
which it protrudes the most out of the room. After that, the object
is assigned with mesh colliders of the Unity 3D engine to prevent
object intersections with other objects that does not exist in the realty.
A minimum and maximum number of objects that should be placed
in the room can be specified such that a random number between this
range can be chosen for every room.

Some objects are positioned in the air due to the random position-
ing. Hence, gravity is applied for three seconds to arrange the objects
on the floor. The next step is to transform the mesh scene consisting
of a room and objects into a point cloud. For every mesh, points are

4 The source code for the data generation is available at https://
github.com/mati3230/pc_data_generator.
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Figure 3: Left: A mesh scene that is created by the data generator. Middle: The corresponding point cloud scene with coloured segments. Right:
Histogram of the curvature values of the point cloud scene in the middle.

sampled within the triangles of a mesh with respect to the size of a
triangle. An exemplary point cloud scene that originates from a mesh
scene is depicted in Figure 3.

4.3 State Representation

The state of the environment is the basis for the action selection of
the agent. Currently, there are two different state representations that
can be selected, namely a point cloud or a voxel representation. In
contrast to the segment feature of P in Section 3, the segment feature
is represented as binary feature, i.e. a point is segmented or not what
we encoded with si ∈ {−1, 1}.

As we consider neural nets that process a point cloud with a fixed
size of points, we have to sample from the point cloud. The point
clouds produced with the data generation in Section 4.2 have more
points for the walls than for the remaining objects. Therefore, we se-
lected the points randomly and the user has to specify the proportion
of the wall points ψ ∈ [0, 1] in the sampled point cloud. Additionally
to the state as point cloud, P can also be represented as voxel grid.
A voxel has an occupied feature and can have optional additional
features such as mean normal features and a mean curvature feature.
Thus, the whole voxel grid has the dimension of vx × vy × vz × vd
where vx, vy and vz characterising how many voxels are used for
the spatial dimensions. The dimension vd represents the number of
additional features. Moreover, all features of a voxel are set to zero
if a point pi that lies within a certain voxel is already segmented.

4.4 Reward Function

The reward function should measure the fraction of the correctly as-
signed segments ŝ subject to the corresponding true segments s of
the point cloud P . The pointwise, and thus elementwise, inequality
of the segment numbers in ŝ and s could be considered. However, if
a segmentation algorithm is used that assigns a correct but different
segment number ŝi = j to an object with the true segment number
si = k, a mapping m(j) = k has to be constructed such that the
inequality between the segment vectors can be calculated.

Algorithm 28 outputs such a mapping m(j) = k and the num-
ber of unsegmented points u. Unsegmented points can occur since a
segmentation algorithm not necessarily segments each point. A his-
togram for the k-th segment with the different assigned segments is
created from Line 4 to Line 13 of Algorithm 28. Subsequently, the
order of the true segments is determined by a sort function to create
the mapping m in Line 14.

Finally, the mapping is created from Line 15 to Line 28. In Line
21, a specific assigned segment is chosen according to a certain crite-
ria. We choose the most frequent assigned segment within an object.

Now it could be iterated over all elements of ŝ to get the corre-
sponding true segment with the mapping m. An error e is incre-
mented for every i-th point where the assigned segment ŝi differs
from the true segment si. The mapping m is not defined for every j
in case of more assigned segments than true segments. In this case,
the error e is also incremented for every j that is not defined in m.
Lastly, the reward r is calculated by r = 1− e+u

|P | .
The distribution of segments in s can be skewed such that one

object dominates the point cloud with most of the points. In this
case, it is possible to achieve a high reward when just one segment
is assigned to the whole point cloud. This behaviour is punished by
subtracting a segment difference d. The segment difference is mo-
delled as d = |O(s) − O(ŝ)| and the reward function changes to
r = 1− e+u

|P | − fd ·d. The factor fd can gain or dampen the segment
difference punishment.

The value range of the reward r is [−fd · dmax, 1] whereas dmax

is the maximum segment difference. If considering the case e = 0
and u = 0, it follows that d = 0 and r = 1. Consider the case
of e + u ≈ |P | and a maximum segment difference dmax. Since
the seed point ps of a region is assigned directly to a segment [15],
the error e is less than the number of points |P | and can be 0. The
case of e = 0 happens if only one point is segmented and the
remaining points are unsegmented due to small region thresholds.
Hence, r is mainly determined by the value of the segment differ-
ence d if considering the case of e = 0 and u = |P | − 1 than
lim

|P |→∞
|P |−1
|P | = 1. The segment difference d depends on the max-

imum number of steps tmax. If tmax = O(s), than the maximum
value of d is dmax = |O(s) − tmin|. The variable tmin is the min-
imum number of segmentation steps. If tmax > O(s), than the fol-
lowing applies:

dmax =

{ |tmax −O(s)| if |tmax −O(s)| ≥ |O(s)− tmin|
|O(s)− tmin| else

(1)
Finally, the agent gets feedback in terms of the reward for every

segmentation time step t in the environment. The feedback is ex-
pressed as the change of the reward drt = rt − rt−1 with rt=0 = 0.
The first action of the agent is done with time step t = 1 and the ter-
minal step of an episode is expressed with t = T whereas T depends
on the maximum number of segmentation steps tmax and how many
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Algorithm 1: Creation of a mapping m which maps an
assigned segment ŝi = j to a true segment si = k.

Input: s, ŝ
Output: m,u

1 k hists ← ∅;
2 m ← ∅;
3 u ← 0;
4 for i ∈len(s) do

5 k = s[i];
6 j = ŝ[i];
7 if j = −1 then

8 u++;
9 continue;

10 if k �∈ k hists then

11 k hists.add(k, histogram);
12 k hists[k].update(j);
13 end

14 Sort k hists;
15 for k histogram ∈ k hists do

16 k = k histogram.key() ;
17 histogram = k histogram.value() ;
18 while True do

19 if histogram = ∅ then

20 break;
21 j ← selection(histogram);
22 if j ∈ m then

23 remove j from histogram;
24 else

25 m[j] ← k;
26 break;
27 end

28 end

points are already segmented. See Section 4.1 for a description of the
terminal condition. The complete reward function at a time step t is
shown in Equation 2. The subscript t is added to the number of in-
correct assigned segments e and the number of unsegmented points
u to point out that these quantities are calculated at each time step.
The user can decide if the difference punishment is whether be ap-
plied at the terminal time step T or when more than the true number
of objects O(st) are segmented. This user decision is expressed by
the ∨ sign of Equation 2.

rt =

⎧⎨
⎩

0 if t = 0
1− et+ut

|P | if 0 < t < T ∨ 0 < t < O(s)

1− et+ut
|P | − fd · dt if t = T ∨ t ≥ O(s)

(2)

5 Experiments

The point clouds that are considered in this contribution are un-
ordered and the D = 8 features are:

• three spatial features for the coordinates of a point,
• three spatial features for the normal of a point,
• one spatial feature for the curvature of a point and
• one feature for the segment of a point.

The normal vector is a direction in R
3 which is perpendicular to

the surface of a point. Additionally, the curvature is considered as the

rate of change of the tangent vector of a point. The point normals are
given from the transformed point cloud scenes. The curvature feature
is estimated by using the normal estimation method of Hoppe et al.
[7] by calculating the eigenvalues of a 3 × 3 covariance matrix of
a point and its neighbourhood. After that, the curvature feature is
calculated as the fraction of the smallest eigenvalue divided by the
sum of eigenvalues.

We experimented with four scenes which are generated according
to Section 4.2 with about 104 points. The details of the point cloud
scenes can be seen in Table 2. We set the fraction of points for the
wall to ψ = 0.3 and the sampling size to 1024.

After a query point is given as action, it is searched for the
Kq = 30 nearest neighbours. Besides the range of a seed point ps,
the range of the action parameters are specified in Table 1. The range
of the neighbourhood parameter Ks and the angle threshold δ were
found by applying segmentations manually with the proposed en-
vironment. The lower bound of the curvature threshold range was
found by assuming that faces lie within one segment. Hence, we
assume that a candidate point belongs to a region if it has a lower
curvature than 0.025 which is true for the most of the faces in our
scenes. The upper bound should just capture the whole range of pos-
sible values of the scenes. A histogram of representative curvature
values is depicted in Figure 3 on the right. The maximum number of
segmentation steps is set to tmax = 15 and the segment difference
factor to fd = 0.0125.

Table 1: Minimum and maximum parameters of an action in the pro-
posed environment.

Parameter Min Max

Ks 10 30
δ 10◦ 67.5◦
c 0.025 0.3

Table 2: Properties of the different point cloud scenes that we used for
the experiments. Due to the walls, the scenes have at least six objects
plus some additional objects in the room.

Nr. Nr. of points Nr. of objects Range (x,y, z)T

1 9982 9 ≈ (2.7, 3.1, 2.0)T

2 9973 8 ≈ (2.7, 3.0, 1.9)T

3 9993 9 ≈ (3.4, 3.4, 1.6)T

4 9995 9 ≈ (3.3, 3.0, 1.8)T

To identify a network for further optimisations, we trained the
LDGCNN of Zhang et al. [30], a modified PointNet [12] and a voxel
based net as point cloud networks in the proposed environment of
Section 4 with the first scene in Table 2. We selected the bubble sort
algorithm in Line 14 of Algorithm 28. The true segments were sorted
in descending order according to the number of points they occupy.
The optimisation is conducted with the PPO algorithm of Schulman
et al. [17] with the stable baselines framework5. Here, we used the
default PPO parameters for the first experiment. All nets output the
action parameters that are described in Section 4.1 and a state value
estimate which is in R. The network architecture ongoing from a
point cloud network is depicted in Figure 4.

The architecture of the voxel based net is described in Table 3. In
case of using the point cloud P as input for the LDGCNN and the
PointNet, the first three spatial features of P are standardised by a z

5 The stable baselines framework can be accessed at github.com/
hill-a/stable-baselines (accessed 13.11.2019).
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Network: N × 1

mlp(A) mlp(8)

mlp(1)

Figure 4: Action and value calculation. We used standard mlp con-
nections whereas the last layers conduct linear activations and the
hidden layer (mlp(8)) conducts a ReLu activation. The action esti-
mation is depicted by mlp(A), where A corresponds to the number
of segmentation parameters. The state value is estimated by mlp(1).

standardisation to have a zero mean and a standard deviation of one.
The layer with the output classes of the LDGCNN is replaced with
a fully connected layer with 40 neurons. Furthermore, we used the
segmentation PointNet that is proposed in [12].

Table 3: Architecture of the voxel based net. The input point cloud
is transformed to a voxel grid with a resolution of vx = 60, vy =
60, vz = 60. According to Section 4.3, a voxel has vd = 5 features
consisting of an occupied state, a mean normal in R

3 and a mean
curvature value. The kernel and stride sizes are equal for all three
dimensions. The padding of the Conv and the MaxPool layers are
valid. The convolution layers are using the ReLu activation function.
The stride and the kernel values are the same for every dimension
(e.g. a kernel value of 3 is equal to (3, 3, 3))

Layer Input Out Channels Kernel Stride

Conv 60× 60× 60× 5 16 6 1
MaxPool 55× 55× 55× 16 / 3 2

Conv 27× 27× 27× 16 32 5 1
MaxPool 23× 23× 23× 32 / 3 2

Conv 11× 11× 11× 32 64 3 1
MaxPool 9× 9× 9× 64 / 3 2

Conv 4× 4× 4× 64 64 2 1
MaxPool 3× 3× 3× 64 / 3 1
Flatten 1× 1× 1× 64 / / /

Table 4: Architecture of the transformation net (T-Net). The calcula-
tion of the transformation matrix after the last fully connected layer
was not changed in comparison to [12].

Layer Input Out Channels Kernel Stride

Conv N ×D × 1 64 1× f 1× 1
Conv N × 1× 64 128 1× 1 1× 1

MaxPool N × 1× 128 / N × 1 2× 2
Flatten 1× 1× 128 / / /

FC 128 256 / /

The models are trained with tensorflow on a machine with 32GB
DDR4 RAM, one NVidia GeForce RTX2080 and an Intel Core i7-
9800X CPU. The LDGCNN and the voxel based net had a mean
update rate of 10 steps per second. Thus, the training of 1.6M train-
ing steps takes approx. 2 days on our machine. The LDGCNN con-
ducts an expensive k nearest neighbour operation in the edge convo-
lution [30] step at every frame which slows down the performance.
The voxel based net uses expensive 3D convolutions at every step
which are slower than the 2D equivalent. The PointNet had a mean
update rate of 20 steps per second. According to Figure 6, the Point-
Net achieves slightly better performance as the other two models.
Hence, we decided to conduct the hyperparameter optimisation with
the PointNet.
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Figure 5: Lightweight PointNet architecture. All mlp connections are
realised by convolutions with shared weights. The stride dimensions
are always 1 × 1 besides the first mlp with a stride of 1 × D. The
padding is always set to valid and the activations are realised by ReLu
functions.

Figure 6: Training progress of the LDGCNN (blue), the voxel based
network (orange) and the PointNet (red). The vertical axis represents
the achieved reward. The horizontal axis represents the time steps.

Although a high reward of r = 0.78 was achieved by the different
networks, the segmentation result was insufficient due to the combi-
nation of a wall and at least one object in one segment. See Figure 7
on the right for an illustration of this problem. A reason for this prop-
erty is the order of the true segments after applying the bubble sort
in Line 14 of Algorithm 28. Consider the following order of objects:
w1, o1, w2, w3, w4, w5, w6, o2, o3. All models put a wall wi, i > 1
and the object o1 together in one segment. Assume the incorrectly
segmented elements are the objects o2, o3 and the wall wi that is
in one segment with the object o1. As the object o1 has the second
most points, the reward is still high as the incorrectly segmented wall
does not cause a huge error e. To prevent this behaviour, we changed
the sorting in Line 14 of Algorithm 28. First, the wall objects are
considered and after that the remaining objects are considered in the
reward calculation. Moreover, we splitted the reward function into
two parts.

Figure 7: Segmentations achieved by trained PointNets. Left: Two
objects with the dark blue colour which are highlighted by the red
ellipses were not segmented. The larger unsegmented object is a chair
and the smaller one is a cup. The reward is r = 0.94 and calculated
with Equation 3. Right: The wall in pink is put in one segment with
the objects. The reward is r = 0.78 and calculated with Equation 2.
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One part of the reward function should consider of the walls and
the other the objects as follows:

r = θw · rw + (1− θw) · ro, θw ∈ [0, 1]

rw = 1− ew + uw

|Pw| , ro = 1− eo + uo

|Po|
(3)

The reward for the segmented walls rw and the segmented objects
ro is calculated. According to the case in the middle of Equation 2,
the rewards rw and ro are calculated by summing up the number
of erroneous and unsegmented points, divide this sum through the
number of points of the wall |Pw| or of the objects |Po| and subtract
this term from 1. Lastly, the object and wall reward are weighted
and a linear interpolation with a user defined factor θw is applied.
The factor θw weights the wall reward rw in context of the whole
reward. For the further experiments, we set this wall reward factor to
θw = 0.5.

With the new reward function in Equation 3, we trained a
lightweight PointNet on the first scene of Table 2 and optimised the
PPO parameters. The lightweight transformation net (T-Net) com-
ponent of the used PointNet is described in Table 4. The complete
PointNet architecture can be seen in Figure 5. In contrast to the
default stable baselines parameters, we achieved nearly a perfect
segmentation with a reward of r = 0.94 by increasing the buffer
to 1024, the batch size to 64 and decreasing the entropy factor to
0.0001. The full list of the optimisation parameters are depicted in
Table 5. A segmentation achieved by this net is depicted in Figure 7
on the left.

Table 5: Optimised parameters of the PPO algorithm used in our train-
ing experiments.

Parameter Value

learning rate α 0.00025
clip 0.2

discount factor γ 0.9
GAE factor λ 0.95

entropy factor β 0.0001
buffer 1024

batch size 64

In the last experiment, we trained the PointNet with the parameters
of Table 5 on all four scenes. The model often learns to segment the
walls in all four scenes and, hence, achieves a reward of r = 0.5. In
our best run, we achieved a performance of r = 0.8 ± 0.1. Further-
more, we tested the trained model with two scenes that have similar
characteristics than the scenes of Table 2 that consist of unseen ob-
jects. According to Figure 8, the model has learned to estimate the
region growing parameters for the walls and some objects.

6 Conclusion

We presented the concept a DRL framework for point cloud segmen-
tation and realised a first approach. Likewise a semantic segmenta-
tion approach, the proposed DRL framework needs segmented point
cloud data such that the true segment vector s is available. In this
context, a generator to produce virtual data is presented that is able
to produce a huge number of different scenes with different objects.
The virtual scenes contain the normal information which is not given
for point clouds that originate from a scanning process. Thus, an ap-
propriate normal estimation method is necessary for such scanned
scenes if the region growing algorithm is applied. One benefit is the

Figure 8: Two unseen point cloud scenes that are segmented by our
DRL segmentation with a reward of r = 0.66 (left) and r = 0.80
(right). The blue points within the red ellipses are not segmented in
both scenes.

usage of a variety of 3D meshes which can be downloaded and used
freely for research purposes. Another benefit is that the 3D meshes
can be placed in the 3D scene arbitrarily. Therefore, a lot of different
point cloud scenes can be used for the training.

A reward function which rates a true and an assigned segment vec-
tor is defined. It is designed for the case when the segment vectors
have different segment numbers for the same object. This is realised
by the help of the mapping function m (see Section 4.4). We achieved
better segmentation results by considering the wall and the remain-
ing objects in the calculation of the reward function (see Equation 3)
separately. Furthermore, we conducted some experiments with dif-
ferent point cloud network architectures and showed promising re-
sults. However, the agent is limited as it only sees a sampled version
of the point cloud. Despite this limitation, a nearly perfect segmen-
tation with a reward of r = 0.94 could be achieved in one scene.
Lastly, the results show that an DRL agent is able to learn the seg-
mentation problem in the proposed DRL framework.

In contrast to semantic segmentation approaches, the proposed
DRL point cloud segmentation has two advantages if scenes should
only be segmented. First, the DRL segmentation is able to segment
point cloud scenes with unknown objects. Second, the DRL segmen-
tation is able to segment a whole point cloud obviously an agent sees
a sampled set of the point cloud. In most cases of applying semantic
segmentation with a neural net, the point cloud has to be sampled
for the input layer and the estimated segments are only available for
these sampled points. This property complicates the comparison with
a DNN semantic segmentation approach.

7 Future Work

Despite the promising results, the DRL framework was only tested on
a few simple virtual point cloud scenes. We wish to process complex,
real and dense point cloud scans. Therefore, we are currently working
on adding the colour and lighting information to the generated data.

Our DRL segmentation approach is as only as good as the segmen-
tation abilities of the region growing algorithm. Therefore, we want
to try different geometric segmentation algorithms. Another consi-
deration is to define an action in a hierarchical way as follows: a
DNN selects a geometric segmentation method and another DNN
estimates the parameters of the method such as in this work.
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