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Abstract. It is a common practice for pose estimation models to
output fixed-size low-resolution belief maps for the body keypoints.
The coordinates of the highest belief location are then extracted for
each of the body keypoints. When mapping this coarse-grained co-
ordinates back into the fine-grained input space, a minor deviation
from the ground-truth location will be magnified many times. So,
we can usually get more accurate estimation by using larger belief
maps. However, the problem is that we can not use too large belief
maps due to the limited computational resources. To alleviate this
problem, we propose the Belief Map Enhancement Network (En-
hanceNet) for more accurate human pose estimation. EnhanceNet
enlarges the belief maps by using the efficient sub-pixel operations,
which not only increases the belief map resolution but also corrects
some wrong predictions at the same time. Our EnhanceNet is sim-
ple yet effective. Extensive experiments are conducted on MPII and
COCO datasets to verify the effectiveness of our proposed network.
Specifically, we achieve consistently improvements on MPII dataset
and COCO human pose dataset by applying our EnhanceNet to the
state-of-the-art methods. Our EnhanceNet can be easily inserted into
existing networks.

1 Introduction

Human pose estimation refers to the task of precisely localizing im-
portant keypoints of human bodies, which serves as an essential
technique for a variety of high level tasks, such as activity recog-
nition, tracking and human-computer interaction. It is challenging to
achieve accurate localizations due to many confounding factors like
pose variation, occlusion and the simultaneous presence of multiple
interacting people.

Recently, significant progress on human pose estimation has been
made by deep convolutional neural networks (CNNs) [44, 27, 3, 26,
21, 29, 30, 11, 28, 38]. Almost all the CNN based models first down-
sample the input image I to a low-resolution input ILR very quickly
in order to leverage the deep CNN structure to extract high semantic
information. To get precise locations, most methods choose to output
a belief map MLR for each body keypoint at the end of networks. To
the best of our knowledge, there exists Size(I) > Size(ILR) ≥
Size(MLR) in all the state-of-the-art methods, where Size(·) rep-
resents the spatial resolution. Usually, we first extract intermediate
coordinates from MLR and then map this intermediate coordinates
back into input coordinate space by multiplying a factor of value
Size(I)/Size(MLR).

1 Equal contribution
2 State Key Laboratory for Novel Software Technology. Department of

Computer Science and Technology, Nanjing University, China, email:
jieliu@smail.nju.edu.cn, tangjie@nju.edu.cn. The corresponding author is
Jie Tang.

Figure 1: The effects of enhancement. Top-left: original belief maps
generated by base models. Top-right: belief maps enhanced by our
EnhanceNet. Bottom-left: pose estimation results using original be-
lief maps. Bottom-right: pose estimation results using enhanced be-
lief maps. Our EnhanceNet can make the prediction of left ankle
more accurate.

The mapping process can magnify a minor deviation of a pre-
dicted body joint many times. As a result, many methods tend to
adopt a relatively larger belief map to generate more accurate pred-
ications. However, during the deep feature extraction process, we
can not maintain a large feature map size until the end of the net-
work. It is more practical to gradually down-sample the input fea-
ture maps and then up-sample the feature maps at the tail of net-
work. Due to the high overhead and increasing difficulty of recon-
structing high-resolution feature maps from low-resolution feature
maps, state-of-the-art methods [27, 39, 26, 5, 45, 38] only continu-
ously up-sample the feature maps to have the same size as ILR, i.e.
Size(MLR) = Size(ILR) (see Fig. 2). So, there still exists a big
gap between input patch size and output belief map size.

To get larger belief maps, we propose the belief map enhancement
network (EnhanceNet) to directly super-resolve the belief maps to
a higher resolution (see Fig. 1). This idea was inspired by the suc-
cess of sub-pixel [35] upscaling in image super-resolution. We also
use the sub-pixel upscaling to enlarge belief maps at the end of En-
hanceNet. Notice that the purpose of our EnhanceNet is different
from the aforementioned feature map up-sampling process. The fea-
ture map up-sampling process aims to generate highly representative
features for the interpolated locations, where a large number of fea-
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Figure 2: Typical down-sample up-sample process for the trunk of the
network. Usually, we have Size(MLR) = Size(ILR) = 1

4
Size(I),

where I is the input image patch. ILR is down-sampled from I at the
beginning of the network. MLR is still need to be transformed to the
coordinate space of I.

ture channels are needed in order to produce accurate belief maps. In
contrast, EnhanceNet uses the belief maps as input and it can enlarge
the belief maps by using fewer feature channels without affecting the
accuracy. Experimental results show that our proposed EnhanceNet
can effectively enhance the belief maps across a wide range of meth-
ods on both MPII and COCO datasets.

In summary, our contributions are as follows:

• We propose a belief map enhancement network for highly accu-
rate human pose estimation. Our EnhanceNet can enhance the be-
lief maps with little overhead and obtains much better accuracy.

• We conduct extensive experiments to verify the effectiveness of
our EnhanceNet and give a comprehensive analysis of all the de-
tails. Our EnhanceNet can consistently improve the performance
of state-of-the-art methods on MPII dataset and COCO human
pose dataset.

2 RELATED WORK

2.1 Human Pose Estimation

Conventional works on human pose estimation mainly adopt the
techniques of pictorial structures [15, 12, 47] or loopy structures [32,
41, 13] to model the spatial relationships of articulated body parts.
All of these methods were built on hand-crafted features which are
not representative enough to handle severe deformation and occlu-
sion. Recent developments show that earlier methods have been
greatly reshaped by convolutional neural networks, which achieve
state-of-the-art performance on both single and multi person human
pose estimation.

Single Person Pose Estimation. State-of-the-art performance
on MPII dataset was mainly achieved by stacked hourglass net-
works [27] and its follow-ups [46, 8, 20, 39, 48]. Newell et al.
[27] introduce a novel hourglass module to process and fuse fea-
tures across multiple scales. They stack up several such hourglass
modules, called stacked hourglass networks, to gradually learn long
range spatial relationships associated with the body. With the success
of stacked hourglass networks, many variants have been proposed.
Chu et al. [8] incorporate the hourglass module with a multi-context
attention mechanism to make the model focus on region of interest.
Yang et al. [46] design a pyramid residual module to enhance the
invariance in scales of the hourglass module. Most recently, some
works turn to exploit human skeletally contextual information. Ke et

al. [20] use structure aware loss to explicitly learn the human skele-
tal structures. Tang et al. [39] further integrate structure supervi-
sion into a novel compositional model. Zhang et al. [48] introduce a
flexible and efficient pose graph neural network to learn a structured
representation.

Multi Person Pose Estimation. Multi person pose estimation
approaches can be divided into two categories: bottom-up ap-
proaches [19, 3, 26, 21, 29] and top-down approaches [30, 11, 16, 5,
45, 38]. Bottom-up approaches directly estimate all keypoints at first
and then assemble them into different persons. Part Affinity Field [3]
employs a VGG-19 [37] network as a feature encoder, then the out-
put features go through a multi-stage network to produce belief maps
and associations of keypoints. Associative Embedding [26] uses the
stacked hourglass network to simultaneously output keypoints and
group assignments. Top-down approaches firstly locate and crop all
persons from the image, and then solve the single person pose esti-
mation task within each patch. Chen et al. [5] develop a cascaded
pyramid network (CPN) on top of feature pyramid network [22] and
propose the online hard keypoints mining (OHKM) strategy. Xiao et
al. [45] provide a simple yet effective baseline model by appending
three stacked deconvolution layers at the end of ResNet [17]. Sun
et al. [38] propose a novel pose estimation architecture which con-
sists of parallel multi-resolution pathways with repeated information
exchange.

2.2 Pose Refinement Networks

Recently, some refinement networks are proposed to refine the es-
timated poses produced by existing human pose estimation models.
Fieraru et al. [14] proposed the PoseRefiner that takes as input both
the image and a given pose estimate and learns to directly predict a
refined pose by jointly reasoning about the input-output space. In or-
der for the network to learn to refine incorrect body keypoint predic-
tions, they employ ad-hoc rules to generate input pose for data aug-
mentation. Similarly, Moon et al. [24] proposed the PoseFix refine-
ment network that also takes the estimated pose and original image
as input. They used the error statistics as prior information to gen-
erate synthetic poses for model training. Different from these pose
refinement networks, our EnhanceNet refines the estimated poses by
super-resolving the belief maps without any dataset related statistical
priors. It takes the belief maps as input and is much more lightweight
compared with PoseRefiner and PoseFix.

2.3 Single Image Super-Resolution

Our EnhanceNet is related to single image super-resolution (SR),
the task of recovering high-resolution (HR) image from its low-
resolution (LR) counterpart. For earlier SR methods, the LR images
need to be bicubic interpolated to the desired size before entering the
networks, which inevitably increases the computational complexity
and might produce new noise. To alleviate this problems, Dong et al.
[9] exploited the deconvolution operator to upscale spatial resolution
at the network tail. Shi et al. [35] proposed a more effective sub-
pixel convolution layer to replace the deconvolution layer for upscal-
ing the final LR feature maps to HR output. The backbone network
for keypoint detection can be seen as a special degradation model
that generates LR belief maps, and our EnhanceNet can be seen as
a SR model that reconstructs HR ground-truth belief maps from LR
belief maps.
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Figure 3: Network architecture of EnhanceNet. FLR are the feature maps extracted by a pose estimation model (e.g. HRNet [38]). MLR is the
low-resolution belief maps. FLR and MLR are concatenated as the input of our EnhanceNet which consists of two regular convolution layers
and a sub-pixel convolution layer. The sub-pixel convolution layer first generates K × r2 feature maps, where K is the number of keypoints
and r is the upscaling ratio. The final high-resolution belief maps MHR are then generated by the PS operation (see Fig. 4).

Figure 4: Periodic Shuffling (PS) [35] operator in sub-pixel. In this
case, the upscaling ratio r = 2 and the number of keypoints K = 1.
The input tensor of size 4 × 4 × 22 is rearranged to a tensor of size
8× 8× 1.

3 APPROACH

The task of human pose estimation aims to locate body keypoints.
Since directly regressing positions [43] from images is a highly
non-linear mapping that is difficult to learn, state-of-the-art methods
transform this task to estimating belief maps of size H×W ×K for
K body keypoints, where each belief map is a 2D representation of
the confidence that a particular body part occurs at each pixel loca-
tion. In this section, we will describe in detail how the EnhanceNet
maps low-resolution belief maps into high-resolution space.

The estimated belief maps of existing models are referred to as
MLR and the super-resolved high-resolution belief maps are referred
to as MHR. We denote the last feature maps before generating belief
maps of backbone networks as FLR. Both MLR and MHR have
K channels. The shapes of MLR and MHR are H × W × K and
rH × rW ×K, respectively. Here, r is the upscaling ratio.

3.1 Belief Map Enhancement Network

Conventional pose estimation networks can not continuously in-
crease the feature map resolution to a large scale due to dramatically
increased computational cost. Instead, we propose the EnhanceNet to

directly enlarge the belief maps generated by pose estimation mod-
els, which introduces only a little overhead but achieving much better
detection accuracy.

Our EnhanceNet is designed to be simple and effective so that
it can be easily inserted into any existing models if applicable. As
shown in Fig. 3, we first concatenate MLR and FLR, then conduct
a sequential regular convolution of L − 1 layers, and finally apply
an efficient sub-pixel convolution (the Lth layer) that upscales the
low-resolution feature maps to high-resolution belief maps MHR.

For EnhanceNet composed of L layers, the first L − 1 layers can
be described as follows:

x = [FLR,M
LR] (1)

f1(x) = ReLU(wT
1 x) (2)

f l(x) = ReLU(wT
l f

l−1(x)) (3)

Biases are absorbed in w for simplicity. Here [·, ·] denotes concate-
nation and wl, l ∈ {1, . . . , L − 1} are learnable network weights
that extract features containing clues for inferring precise locations.
The kernel size of w1 is 1× 1 for the purpose of channel reduction,
and 3× 3 for the rest. The nonlinearity function is ReLU [25].

We adopt sub-pixel [35] convolution layer at the end of the se-
quential regular convolution layers, where the sub-pixel convolution
is an efficient implementation of stride convolution [34] by avoid-
ing convolution happening in high-resolution space. Then MHR is
generated by

M
HR = fL(x) = PS(wT

Lf
L−1(x)) (4)

Where the weight wL has K · r2 filters and PS [35] is a periodic
shuffling operator that rearranges the elements of a H ×W ×K · r2
tensor to a tensor of size rH × rW ×K without losing information.
The effects of this operation is illustrated in Fig. 4. Mathematically,
this operation can be described in the following way

PS(T)x,y,k = T�x/r�,�y/r�,K·r·mod(y,r)+K·mod(x,r)+k (5)
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Where (x, y, k) represent coordinates in MHR of size rH × rW ×
K. Notice that the kernel size of wL is 3 × 3, which is greater than
commonly used 1 × 1 since super-resolving high-resolution belief
maps needs more contextual information.

3.2 High-resolution Ground-truth and Loss

EnhanceNet is trained together with base models. We use belief maps
to represent the body keypoint locations. Denote the ground-truth
locations by z = {zk}Kk=1, where zk ∈ R

2 denotes the location of
the kth keypoint of a person in the image. Then the high-resolution
ground-truth belief map MHR∗

k is generated from a Gaussian with
mean zk and standard deviation rσ,

M
HR∗
k (p) ∼ N (zk, (rσ)

2) (6)

Where p ∈ R
2 denotes the location, and σ is the standard devia-

tion in generating the low-resolution ground-truth belief maps. No-
tice that bottom-up approaches predict keypoints of different persons
simultaneously, where multi-peak ground-truth belief maps are re-
quired. When combining multiple belief maps into a single one, we
take the maximum of individual belief maps of each person.

EnhanceNet estimates K bilief maps, i.e. MHR = {MHR
k }Kk=1,

for K body keypoints. We adopt Mean Squared Error (MSE) loss for
model training. Given N input patches, the loss is defined by

LHR =
N∑

n=1

K∑

k=1

||MHR∗
k − M

HR
k ||2 (7)

Combined with the loss LLR in base model, the total loss is

L = LLR + ηLHR (8)

Where η is the balance factor and we set η to 1 in all of our experi-
ments.

3.3 Sub-pixel vs. Deconv vs. Interpolation

We adopt sub-pixel convolution as the upscaling layer at the end of
our EnhanceNet. Sub-pixel convolution is an essential component in
the task of image super-resolution. Deconvolution is also commonly
used to increase resolution [10, 31, 34, 18]. However, deconvolution
with small kernel size may not perform well at large upscale ratio
(e.g. ×4), thus a larger kernel size (e.g. > 10) is typically used [34,
18].

In fact, as discussed in [36] the effect of a sub-pixel convolution
layer with weight shape (Cin, Cout × r2, kh, kw) is identical to that
of a deconvolution layer with weight shape (Cin, Cout, kh×r, kw×
r), where Cin, Cout, k, r represent input channels, output channels,
kernel size and upscaling ratio, respectively. In this case, the two have
the same number of parameters, represented as P . The spatial resolu-
tion H ×W is maintained after sub-pixel convolution, but expanded
to rH × rW after deconvolution. Accordingly, the GFLOPs of one
sub-pixel convolution layer is H ×W × P ; and rH × rW × P for
deconvolution, which is r2 times that of sub-pixel.

Another widely-used way to upscale low-resolution feature maps
is interpolation followed by a convolution [22, 4]. Assume that the
kernel size is the same with that of sub-pixel convolution, then the
weight shape is (Cin, Cout, kh, kw), which may be lack of rep-
resentation power because the number of parameters is only 1/r2

times that of sub-pixel. Meanwhile, the GFLOPs is same with that

of sub-pixel convolution since the convolution happens in the up-
scaled space. Moreover, the receptive field is smaller than sub-pixel
convolution and may degrade the performance when applying to our
EnhanceNet.

In a word, the sub-pixel convolution is more powerful when having
the same computational complexity in the case of our EnhanceNet,
which is consistent with our experimental results in Table 5c.

4 Experiments

We verify the effectiveness and generality of EnhanceNet on both
single and multi person pose estimation across multiple leading
methods. All the models are trained using officially published open
source code. All the reported results use the models we re-trained
from scratch. There may exist a slight difference between the orig-
inal paper and that we reported. It does not matter since we mainly
concern with the improvement. We set the number of layers L = 3,
the number of channels C = 128 and the upscaling factor r = 4 in
our EnhanceNet. For single person pose estimation the input patch
size is 256×256 and for multi person estimation the input patch size
is 256 × 192 except for Associative Embedding [26] whose patch
size is 512× 512.

4.1 Single Person Pose Estimation

Dataset. The MPII Human Pose dataset [1] consists of around 25k
images with 40k annotated samples (28k for training, 11k for test-
ing), which covers a wide range of real-world activities and a great
variety of full-body poses. We evaluate proposed EnhanceNet on the
validation set and test set, where the validation set contains 3k sam-
ples split from training set following [42, 27]. Different from the re-
cent leading method [48], we do not include any extra training data.

Evaluation Metric. Following previous work, we use the PCKh
(head-normalized Percentage of Corrected Keypoints) score as the
evaluation metric. A keypoint is correct if it falls within αl pix-
els from the ground-truth location, where l is the ground-truth head
length and α is a threshold that controls the tolerance of jitter errors.
The improvement on PCKh@0.5 (α = 0.5) score is reported. In ad-
dition, we also do comparisons at stricter thresholds (smaller α).

Methods Head Sho. Elb. Wri. Hip Knee Ank. Mean
Hourglass (2 stage) [27] 96.08 94.74 88.24 82.87 86.91 81.95 78.44 87.14

+EnhanceNet 95.70 95.14 89.13 84.00 87.35 84.12 79.38 87.96

Hourglass (4 stage) 96.49 95.50 88.99 84.46 87.43 84.65 80.21 88.34
+EnhanceNet 96.73 95.57 89.76 85.06 88.51 84.42 81.03 88.81

Hourglass (8 stage) 96.79 95.28 90.27 85.56 87.57 84.30 81.06 88.78
+EnhanceNet 96.79 95.41 90.30 85.41 88.14 84.85 81.25 89.03

DLCM [39] 96.78 96.03 90.88 86.96 89.74 86.90 82.57 90.37
+EnhanceNet 97.53 96.25 91.26 86.89 90.36 86.90 83.61 90.78

Table 1: Improvement of PCKh@0.5 when EnhanceNet is applied
to the state-of-the-art single person pose estimation methods. The
PCKh@0.5 is calculated on the MPII validation set.

Performance improvement. Table 1 shows the improvements of
PCKh@0.5 score on the MPII validation set when our EnhanceNet is
applied to state-of-the-art single person pose estimation methods, e.g.
stacked hourglass [27] and DLCM [39], where DLCM achieved 92.3
PCKh@0.5 score and ranked first on MPII leaderboard among the
methods without using extra training data. By adding EnhanceNet,
the PCKh@0.5 score of DLCM improves from 90.37 to 90.78 on the

J. Liu et al. / Belief Map Enhancement Network for Accurate Human Pose Estimation 2739



Methods Head Sho. Elb. Wri. Hip Knee Ank. Mean
Insafutdinov et al. [19] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al. [44] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat et al. [2] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. [27] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Tang et al. [40] 97.4 96.4 92.1 87.7 90.2 87.7 84.3 91.2
Chu et al. [8] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5
Chou et al. [7] 98.2 96.8 92.2 88.0 91.3 89.1 84.9 91.8
Chen et al. [6] 98.1 96.5 92.5 88.5 90.2 89.6 86.0 91.9
Yang et al. [46] 98.5 96.7 92.5 88.7 91.1 88.6 86.0 92.0
Ke et al. [20] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1
SimpleBaseline [45] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5
HRNet-W32 [38] 98.6 96.9 92.8 89.0 91.5 89.0 85.7 92.3
DLCM [39] 98.4 96.9 92.6 88.7 91.8 89.4 86.2 92.3
DLCM + EnhanceNet 98.6 97.0 92.8 88.8 91.7 89.6 86.6 92.5

Table 2: Results of PCKh@0.5 on the MPII test set.

validation set. For stacked hourglass network, we achieve consistent
improvements with different number of stages.

Table 2 shows the PCKh@0.5 score on the MPII test set. A simple
addition of EnhanceNet on DLCM establishes a new state-of–the-art
on MPII test set. Notice that HRNet [38] achieves the same perfor-
mance as DLCM by using HRNet-W32, but the performance is stag-
nant when they turn to a much bigger network (HRNet-W48) that has
double complexity of HRNet-W32 in terms of both parameters and
GFLOPs. In contrast, our EnhanceNet causes a new state-of-the-art
with only a little overhead. Qualitative results on MPII are presented
in Fig. 6a.

Challenging Threshold. It is worthy to note that our EnhanceNet
shows even better performance at a more challenging threshold i.e.
PCKh@0.1. As shown in Table 3, the top-performed DLCM obtains
significant improvements by applying our EnhanceNet: 2.55 points
gain for mean score, and even 4.1 points gain for head. Furthermore,
we compare PCKh score at all thresholds in Fig. 5. DLCM get con-
sistent improvements at all thresholds on both the most accurate (i.e.
Head) and the most challenging (i.e. Ankle) body keypoints. The
large improvements at strict thresholds indicate that our EnhanceNet
is capable of generating high-resolution belief maps, which is more
suitable for high precision keypoints detection.

Methods Head Sho. Elb. Wri. Hip Knee Ank. Mean
DLCM [39] 49.74 39.88 39.54 38.89 17.34 27.67 28.84 35.00

+EnhanceNet 53.84 42.48 43.43 40.67 18.40 29.34 31.44 37.55

Table 3: Improvement of PCKh@0.1 when EnhanceNet is applied
to DLCM. There is a significant improvement of 2.55 points at this
challenging threshold. The PCKh@0.1 is calculated on the MPII val-
idation set.

4.2 Multi Person Pose Estimation

Dataset. The MS COCO dataset [23] contains more than 200k im-
ages and 250k person instances labels with keypoints. We train all
the models on COCO train2017 set, containing 57k images and 150k
person instances. We evaluate proposed EnhanceNet on the val2017
set and test-dev2017 set, including 5k images and 20k images, re-
spectively.

Evaluation Metric. The evaluation defines the object keypoint simi-
larity (OKS) and uses the mean average precision (AP) over 10 OKS
thresholds as main competition metric [23]. The OKS plays the same
role as the IoU in object detection. It is calculated from scale of
person and the distance between predicted points and ground-truth
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Figure 5: Comparisons of PCKh curves on head and ankle when En-
hanceNet is applied to DLCM [39]. The improvement of PCKh@0.1
is remarkable: 4.1 points for head and 2.6 points for ankle, indicating
a strong localization performance improvement. The PCKh score is
calculated on the MPII validation set.

points. We report standard average precisions and recall scores: AP ,
APoks=0.50, APoks=0.75, APMedium obj , APLarge obj and AR.

Testing. Top-down methods adopt a two-stage paradigm: detect the
persons using a detector and estimate keypoints locations. For per-
son detection, we use detection results provided by SimpleBase-
line [45] with person category AP 56.4 on val2017 set, and 60.9 on
test-dev2017.

Methods AP AP.50 AP.75 APM APL AR
Associative Embedding [26] 53.3 77.0 57.7 43.3 69.1 60.7

+EnhanceNet 55.3 77.9 60.4 45.4 70.7 62.5

CPN (ResNet-50) [5] 69.1 87.7 76.2 65.7 76.0 76.5
+EnhanceNet 70.0 87.5 76.9 67.2 76.5 77.7

CPN (ResNet-101) 69.7 87.7 76.9 66.6 76.3 77.0
+EnhanceNet 70.5 87.7 77.6 67.7 76.7 78.0

SimpleBaseline (ResNet-50) [45] 70.2 88.7 77.7 67.0 76.9 76.1
+EnhanceNet 71.3 88.9 78.5 68.0 77.9 77.1

SimpleBaseline (ResNet-101) 71.4 89.2 79.1 68.1 78.2 77.2
+EnhanceNet 72.1 89.2 79.4 68.6 79.0 77.8

HRNet (HRNet-W32) [38] 74.3 89.9 81.6 70.8 81.0 79.7
+EnhanceNet 75.1 90.4 82.1 71.6 81.6 80.3

HRNet (HRNet-W48) 75.0 90.4 82.2 71.3 82.1 80.4
+EnhanceNet 75.8 90.6 82.5 72.1 82.7 81.0

Table 4: Improvement of APs when EnhanceNet is applied to the
state-of-the-art multi person pose estimation methods. The APs are
calculated on the COCO val2017 set.

Performance Improvement. Table 4 and Table 6 show the improve-
ments on val2017 and test-dev2017 sets when our EnhanceNet is
applied to state-of-the-art multi person pose estimation methods:
Associative Embedding [26], CPN [5], SimpleBaseline [45] and
HRNet [38]. For Associative Embedding, we keep the embedding
branch intact and add our EnhanceNet to the detection branch to en-
hance the belief maps for detected keypoints. By adding EnhanceNet,
the AP of associative embedding improved by around 2 points on
both val2017 and test-dev2017 sets. CPN adopts online hard key-
points mining (OHKM) that only punish the losses of hard keypoints.
We put the OHKM at the end of our EnhanceNet and achieve about 1
point improvement on both ResNet-50 and ResNet-101. SimpleBase-
line consists of a ResNet and three stacked deconvolution layers. We
directly append EnhanceNet at the end of SimpleBaseline and obtain
consistent improvements on val2017 and test-dev2017 sets. HRNet,
the top-performed method on COCO human pose leaderboard, also
gains considerable improvements: 0.8 points for HRNet-W32 and its
wider counterpart HRNet-W48.
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(a) MPII

(b) MS COCO

Figure 6: Qualitative results on the MPII validation set and the COCO val2017 set, before and after applying the proposed EnhanceNet on
top-performed methods. The white rectangles denote the areas where EnhanceNet brings significant improvement. Our enhancement method
provides better localization, it can relieve small displacement error and predict highly precise positions (Best viewed in electronic form with
4× zoom in).

AP AP.50 AP.75 AR

FLR 71.0 88.7 78.3 76.7
MLR 71.1 88.9 78.3 77.0

MLR + FLR 71.3 88.9 78.5 77.1

(a) Input of EnhanceNet: Decomposing the input of En-
hanceNet. MLR and FLR represent low-resolution belief maps
and low-resolution feature maps, respectively.

Channels #Params GFLOPs AP AP.50 AP.75 AR

C = 64 0.21M 0.65 70.8 88.7 78.2 76.7
C = 128 0.50M 1.52 71.3 88.9 78.5 77.1
C = 256 1.29M 3.95 71.4 89.0 78.5 77.2

(b) Channels C: Performance comparisons with different num-
ber of channels in our EnhanceNet.

Cin Cout kernel size #Params GFLOPs AP AP.50 AP.75 AR

bilinear + conv 128 17 3× 3 0.20M 1.52 70.9 88.9 78.2 76.8
deconv 128 17 3× 3 0.20M 1.52 70.8 88.8 78.1 76.6
deconv 128 17 12× 12 0.50M 15.96 71.2 88.7 78.5 76.9

sub-pixel 128 272 3× 3 0.50M 1.52 71.3 88.9 78.5 77.1

(c) Upscaling layer: Performance comparisons of EnhanceNet
with different upscaling layers. Cin and Cout represent the num-
ber of input channel and output channel, respectively.

#Params GFLOPs AP AP.50 AP.75 AR

base-model - - 70.2 88.7 77.7 76.1
r = 2 0.26M 0.80 70.4 88.8 78.4 76.3
r = 3 0.36M 1.10 71.0 88.6 78.5 76.7
r = 4 0.50M 1.52 71.3 88.9 78.5 77.1

r = 5 0.67M 2.06 71.2 88.8 78.6 77.0

(d) Upscaling ratio (r): The performance of EnhanceNet at var-
ious upscaling ratios.

Table 5: Ablations on COCO keypoints detection when the EnhanceNet is applied to SimpleBaseline (ResNet-50) [45]. The #Params and
GFLOPs are calculated on our EnhanceNet. The AP and AR scores are calculated on val2017 set.
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Methods AP AP.50 AP.75 APM APL AR
Associative Embedding [26] 54.6 80.4 59.1 44.9 68.3 60.3

+EnhanceNet 56.9 80.7 61.8 47.6 70.1 62.6

CPN (ResNet-50) [5] 68.7 89.5 76.6 65.7 74.2 75.7
+EnhanceNet 69.8 89.8 77.5 67.0 75.3 77.1

CPN (ResNet-101) 69.1 89.7 77.2 66.2 74.7 76.3
+EnhanceNet 70.0 90.0 77.9 67.4 75.4 77.4

SimpleBaseline (ResNet-50) [45] 69.8 90.8 77.9 66.6 75.6 75.5
+EnhanceNet 70.9 91.0 78.8 67.6 76.8 76.4

SimpleBaseline (ResNet-101) 70.7 91.1 79.2 67.8 76.3 76.5
+EnhanceNet 71.6 91.1 79.8 68.5 77.4 77.2

HRNet (HRNet-W32) [38] 73.4 92.1 81.7 70.2 79.3 78.9
+EnhanceNet 74.2 92.1 82.1 70.9 79.9 79.4

HRNet (HRNet-W48) 74.1 92.3 82.2 70.8 79.8 79.5
+EnhanceNet 74.9 92.3 82.8 71.6 80.6 80.1

Table 6: Improvement of APs when EnhanceNet is applied to the
state-of-the-art multi person pose estimation methods. The APs are
calculated on the COCO test-dev2017 set.

Figure 7: Frequency changes of each error type when the EnhanceNet
is applied to HRNet-W32 [38]. The frequency is calculated on the
COCO val2017 set.

The improvement brought by our EnhanceNet is not only because
it increases the depth of base model. To see this, we note that CPN
with ResNet-50 has 70.0 and 69.8 AP on val2017 and test-dev2017
sets when adding our EnhanceNet. However, the original CPN with
ResNet-101 has only 69.7 and 69.1 AP, respectively. Similar phe-
nomenon can also be found in SimpleBaseline and HRNet. This in-
dicates that our EnhanceNet can effectively enhance the belief maps
generated by base models and is able to predict more precise key-
point locations. Qualitative results on COCO are presented in Fig. 6b.

Error Frequency Change. To better understand the behavior of En-
hanceNet and find out how it improves the performance, we analyze
the frequency changes of each error type when it is applied to HRNet-
W32. As shown in Fig. 7, the gains mainly come from the correction
of small displacement error (i.e. jitter) [33], which further proves the
effectiveness of our EnhanceNet.

5 Ablation Study

In this section, we provide an in-depth analysis of each individual de-
sign of our EnhanceNet. All the experiments in Table 5 are conducted
on SimpleBaseline [45] with ResNet-50.
Input of EnhanceNet. In Table 5a we study the effects of differ-
ent inputs fed into EnhanceNet. A competitive result can be obtained
even if only the low-resolution belief maps (i.e. MLR) are used as
input. This indicates that our EnhanceNet can truly enhance the be-
lief maps by only super-resolving them. Interestingly, only using the

low-resolution feature maps FLR can not bring more improvement
than using MLR, this indicates that our EnhanceNet mainly gains
improvement by enhancing the belief maps. The best performance is
achieved by concatenating MLR and FLR, where the FLR contains
rich semantic information which is helpful for enhancing the belief
maps.

Number of Channels. Table 5b shows the performance comparisons
of our EnhanceNet with different number of feature channels. The
performance at C = 128 is almost as good as C = 256, which indi-
cates that our EnhanceNet can behave well with a low computational
cost.

Upscaling Layer. We compare the complexity and performance of
different upscaling layers in Table 5c. The interpolation is instanti-
ated with bilinear and the convolution has same kernel size with that
of sub-pixel. The interpolation combined with convolution has same
computational complexity with sub-pixel but achieves a lower AP.
As discussed in § 3.3, deconvolution can have the same effect as sub-
pixel convolution when using a large kernel. This is consistent with
our experiments: when the kernel size is 12, deconvolution achieves
similar AP with sub-pixel convolution; but when using a kernel size
of 3, the AP dropped by 0.4 which is unacceptable. However, when
using a kernel size of 12, the GFLOPs is much higher than that of
sub-pixel convolution. So, we can conclude that sub-pixel convolu-
tion is most suitable for our belief map enhancement network.

Upscaling Ratio. Table 5d shows the performance of EnhanceNet
at various upscaling ratios. The number of parameters and GFLOPs
are only counted for our EnhanceNet. As we can see, the best per-
formance is achieved at r = 4. When r = 5, the model complexity
increases but the detection performance has not been improved ac-
cordingly. We choose r = 4 as the upscaling ratio of EnhanceNet
since it has the best trade-off between model complexity and key-
point detection performance.

6 Conclusion

In this paper, we proposed a belief map enhancement network (En-
hanceNet) to enlarge the belief maps generated by existing human
pose models and correct some wrong predictions at the same time.
Our EnhanceNet can be easily inserted into state-of-the-art pose es-
timation models. By using EnhanceNet, we achieve consistently im-
provements on MPII dataset and COCO human pose dataset across
multiple leading methods. Extensive experiments have shown the ef-
fectiveness of our EnhanceNet.
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Hazirbas, Vladimir Golkov, Patrick van der Smagt, Daniel Cremers,
and Thomas Brox, ‘Flownet: Learning optical flow with convolutional
networks’, in ICCV, pp. 2758–2766. IEEE Computer Society, (2015).

[11] Haoshu Fang, Shuqin Xie, Yu-Wing Tai, and Cewu Lu, ‘RMPE: re-
gional multi-person pose estimation’, in ICCV, pp. 2353–2362. IEEE
Computer Society, (2017).

[12] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, ‘Pictorial struc-
tures for object recognition’, International Journal of Computer Vision,
61(1), 55–79, (2005).

[13] Vittorio Ferrari, Manuel J. Marı́n-Jiménez, and Andrew Zisserman, ‘2d
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