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Predicting Long-Term Skeletal Motions by a
Spatio-Temporal Hierarchical Recurrent Network

Junfeng Hu ' and Zhencheng Fan ? and Jun Liao® and Li Liu*

Abstract. The primary goal of skeletal motion prediction is to gen-
erate future motion by observing a sequence of 3D skeletons. A key
challenge in motion prediction is the fact that a motion can often be
performed in several different ways, with each consisting of its own
configuration of poses and their spatio-temporal dependencies, and
as a result, the predicted poses often converge to the motionless pos-
es or non-human like motions in long-term prediction. This leads us
to define a hierarchical recurrent network model that explicitly char-
acterizes these internal configurations of poses and their local and
global spatio-temporal dependencies. The model introduces a latent
vector variable from the Lie algebra to represent spatial and tempo-
ral relations simultaneously. Furthermore, a structured stack LSTM-
based decoder is devised to decode the predicted poses with a new
loss function defined to estimate the quantized weight of each body
part in a pose. Empirical evaluations on benchmark datasets suggest
our approach significantly outperforms the state-of-the-art methods
on both short-term and long-term motion prediction.

1 Introduction

Human or animals motion prediction has become an important re-
search field, given its role in facilitating a broad range of applications
in sports, healthcare, education, security, virtual and augmented real-
ity, among others. Current techniques are becoming mature to predict
short-term motions from 3D skeleton collection devices like Kinect.
For example, motions like hand posing, which contains a series of
hand poses, can be collected by depth sensors with their 3D skeleton
data recording the trajectories of human body joints. Each pose con-
sists of a fixed number of bones and joints and can be inferred from a
video frame (in other words, each frame only contains one pose). The
main focus of this paper is on long-term motions, where a motion is a
collection of spatio-temporally related poses. As illustrated in Fig 1,
given a sequence of ground truth frames, many existing models, such
as Encoder-Recurrent-Decoder network (ERD) [5], LSTM 3 layers
(LSTM-3LR) [5], Residual Gated Recurrent Unit (RES-GRU) [19]
and Hierarchical Motion Recurrent Network (HMR) [16], can gen-
erate short-term motions, which are normally regard as less than 400
milliseconds (e.g. the first four frames in this example). However,
the poses become unrecognizable or motionless on long-term pre-
diction. It is well known that modeling motions naturally requires the
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Figure 1. Visualization of motion predictions (i.e. hand posing) by differ-
ent models compared with ground truth. The first four frames are short-term
predicted poses and the rest are long-term predicted poses.

characterization of their spatio-temporal dependencies among poses.
That is to say, a long-term motion prediction model should capture
inherent structures associated with individual poses as well as their
spatio-temporal dependencies.

Despite being a very challenging problem, in recent years there
has been a rapid growth of interest in modeling and predicting ar-
ticulated object motions. Conventional approaches have gained at-
tention in recent years for addressing object motion prediction prob-
lems. They leverage expert knowledge about kinematics and utilize
latent-variable models like hidden Markov assumptions [12, 11, 29],
Gaussian process [30], Boltzmann machine [26] and implicit prob-
abilistic model [24] to characterize motion sequences. But motions
and their spatio-temporal relations in these models need to be manu-
ally encoded, which could be rather difficult to scale up and is almost
impossible for many practical scenarios where spatio-temporal rela-
tions among poses are intricate.

On the other hand, the most popular modeling paradigm might
be that of the deep neural networks, which include techniques such
as recurrent neural network (RNN), long short-term memory mod-
els (LSTM) and gated recurrent unit (GRU). While these neural
network-based approaches are capable of managing temporal con-
texts, they have difficulties in capturing long-term dependencies [16].
This is because these models rely on conventional recurrent units
where the hidden state sequentially reads a frame and updates its
value, which leads to overwhelming state estimation from the inputs
in recent time steps. In particular, they suffer from first frame dis-
continuity, that is, a prominent jump between the last ground truth
frame and the first predicted pose. In addition, current works main-
ly focus on temporal information and are unfortunately rather lim-
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ited in characterizing rich fine-grained spatial relationships among
joints. In fact, as these models mostly focus on coarse-grained (high-
level) spatial information (e.g. taking all the joints as a whole in a
pose), ignoring internal joints dependency, only spatial relations as-
sociated with entire body can be sufficiently captured. As a result,
the predicted human poses often converge to the mean (i.e. motion-
less) poses [32] or shift to unrecognizable (e.g. non-human like) mo-
tions [19] in long-term prediction, as illustrated in Fig 1 (e.g. ERD,
LSTM-3LR, RES-GRU and HMR). Moreover, most of the existing
approaches adopt walking activity, which only repeats a fixed style of
regular movements of legs, to demonstrate their superiority on long-
term prediction. However, we found these models can only perform
well on such simple activities but not others (e.g. eating and posing),
especially for the activities without any explicit discipline.

To address these issues in long-term motion prediction, we present
a spatio-temporal hierarchical recurrent neural network to explicitly
model the motion context of spatio-temporal relations and predic-
t future motions. In particular, our approach considers a principled
way of dealing with the inherit structural variability in long-term
motions. Briefly speaking, to describe an articulated object, we pro-
pose to introduce a set of latent vector variables generated from the
Lie algebra to represent several separate kinematic chains of body
part movements as shown in Fig 2. Now each resulting vector from
the Lie algebra-based representation contains its unique set of pos-
es that together with the corresponding spatial features and temporal
information. To fully characterize a certain cluster of instances that
possess similar motions and their spatio-temporal dependencies, a
hierarchical recurrent network is devised to encode the spatial re-
lationships along with the temporal relations. Specifically, in each
recurrent layer, a unit variable that represents a bone in a frame is
updated by exchanging information with other unit variables con-
sidering both spatial and temporal dependencies. Also, a global spa-
tial state and a global temporal state are incorporated into the unit
hierarchically in each layer to capture global spatio-temporal rela-
tions. Different from traditional recurrent units, such as LSTM and
GRU, all the units in our network can hierarchically read unit s-
tates from the previous step and update their values simultaneous-
ly within one current step. In this way, spatio-temporal informa-
tion can be maintained in each recurrent step, allowing our model
to capture long-term dependencies. In addition, a structured stack
LSTM-based decoder is introduced to decode the predicted poses
with a new loss function defined to estimate the importance of a
bone quantitatively concerning its kinematic location and length in
the skeleton. In this way, our neural network-based model is more
capable of characterizing the inherit structural variability in long-
term motion prediction when comparing to existing methods, which
is also verified during empirical evaluations to be detailed in later
sections. Our project’s main page with experimental videos and the
official code is available at https://github.com/pOwerHu/
articulated-objects—-motion-prediction.

2 Related work

In this section, a brief review of related topics, i.e. motion represen-
tation, modeling and prediction, are listed below.

2.1 Pose and motion representation

As the fundamental issue in motion related applications, three vision-
based approaches are commonly used to represent poses, namely,
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Figure 2. Illustration of skeletal rotation (Rn,m ) and translation (dn,m) on
Lie group. In our model human skeleton is divided into five kinematic chains,
i.e., spine (black), right arm (yellow), left arm (green), right leg (cyan) and
left leg (violet).

RGB-based representation [4, 17, 20], depth map-based represen-
tation [14] and skeleton-based representation. Here we mainly fo-
cus on the skeleton-based representation. Currently, skeleton-based
representation has attracted large attention because of its immuni-
ty to viewpoint change [7] and the geometric description of rigid
body [21]. The existing approaches are roughly divided into two cat-
egories: joint-based approaches [15, 1, 25, 3] which regard skeleton
as a set of independent points and part-based (or bone-based) ap-
proaches [6, 9, 19] which consider skeleton as a set of rigid segment
made up of two joint points [28].

Besides, motion representation is also very significant that it
should effectively capture the spatial motion characteristics of joints
or bones. Two most common methods are Euler angle representation
and unit quaternion representation. However, the Euler angle rep-
resentation suffers from non-intrinsic singularity or gimbal lock is-
sue, which leads to numerical and analytical difficulty, while the unit
quaternions approach leads to singularity-free parametrization of ro-
tation matrices, but at the cost of one additional parameter [23]. Cur-
rently, Lie group-based representation was proposed to solve these
singularity and computational issues in manifold-based skeletal mo-
tions. Vemulapalli et al. [28] first introduced a Lie group, named Spe-
cial Euclidean group SE(3), in skeletal motion representation to cal-
culate the relative geometry between various body parts. It is found
that the relative geometry provides a more sensible description com-
pared to absolute locations of one bone over SE(3) representation. On
the other hand, Special Orthogonal Group SO(3) [27, 8], another Lie
group, was utilized to represent only rotations but not translations in
motions, which obtained similar performance as SE(3). However, all
the joints in these approaches are regarded equally in a skeleton by
ignoring the anatomical restricts among chains [16]. This inspires us
to divide an articulated object into several kinematics chains to retain
these skeletal restrictions.

2.2 Motion modeling

Motion prediction requires a model having an efficient encoding ca-
pability on input motion sequences. Initiatively linear SVM were
adopted to model human motion [28, 22], with Lie group skeleton
representation to characterize the spatial and temporal features [27].
Lv et al. [18] leveraged Hidden Markov Models (HMMs) to capture
the sequential properties of poses. Recently RNNs become the most
popular model. Du et al. [3] used RNN by dividing the human skele-
ton into five parts and learning their features separately, which are
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integrated by a single layer network afterwards. Huang et al. [8] in-
corporated the Lie group into a recurrent network structure enabling
it the ability to learn more appropriate spatio-temporal features than
SVM and HMM. Similar to CNN:ss, this network defines RotMap lay-
er as convolutional layer and RotPoling layer as pooling layer. Liu
et al. [15] proposed a spatio-temporal LSTM for motion modeling
with a novel trust gate introduced to reduce noise caused by data
collection devices. However, the motivation of these models mainly
focused on designing efficient encoders, which refine high-level en-
coding features, but many significant spatio-temporal dependencies
are neglected. Consequently, these encoders cannot be transplanted
to motion prediction directly. Different from the previous work, we
design a RNN-based encoder to capture the spatio-temporal features
of input pose sequences in one single step and use hierarchical struc-
tures to retain long-term spatio-temporal information.

2.3 Motion prediction

As aforementioned in the introduction section, many conventional
approaches need to handcraft spatio-temporal relations and even their
weights from domain knowledge in motion prediction. Therefore,
deep neural networks are commonly used to predict future motions in
recent years. Fragkiadaki et al. [5] proposed the ERD model that in-
corporates nonlinear encoder and decoder networks before and after
recurrent layers and a LSTM in the recurrent layer. SRNN [9] divides
human body into three different parts (i.e. spine, arms, and legs) a-
mong which the spatial and temporal relations are learnt separately.
RES-GRU [19] is a sequence-to-sequence architecture that combines
GRU and residual connection in the decoder. HMR [16] introduces a
hierarchical motion recurrent network, which exchanges information
with neighboring frames to obtain temporal features of motions. Li
et al. [13] proposed a hierarchical structure of CNN to model human
dynamics. Tang et al. [25] proposed a modified highway unit (MHU)
and a gram matrix loss function for long-term prediction, attempt-
ing to reduce the problem of motionless. To address the problems in
these models (as mentioned in the introduction section), we present
the hierarchical recurrent network model to explicitly capture the in-
herent structural varieties of skeleton motions with spatio-temporal
dependencies.

3 Lie algebra representation for skeletal data

It is known that the relative geometry of a pair of two body parts of
one skeleton can be described by representing each of them in a lo-
cal coordinate system attached to the other [28]. Given two bones e,
and e,,, as shown in Fig 2, the local coordinate system of e, is com-
puted by rotating with minimum rotation and translating the global
coordinate system so that e,, becomes the position and orientation
of x-axis (i.e. its starting joints becomes the origin and the z-axis
is aligned with it). After this process, we can obtain the location of
ey, attached to the local system of e,,, denoted by e;,'. Then, we can
Rnym  dnm

0 1 ’
where Ry, is @ 3 X 3 rotation matrix and dj ,, is a 3D translation
vector to take e,, to the position and orientation of e,,.

Ly
e:fend — R”l,’m dn,m 0 (1)
0 0 1 0]°
1

compute a 3D rigid transformation formalized as

where e’ ., means the end joint of e," and £, means the length
of e,. Similarly, the location of e, attached to the local system of

ey, is calculated by another transformation matrix. As a result, a total
number of M x (M — 1) transformation matrices are obtained where
M 1is the number of bones. Mathematically, 3D rigid transformation
is element of the Special Euclidean group SE(3). In the end, one
skeleton is represented as a curve in SE(3) X ... x SE(3).

However, similar to the process in [28, 27, 16], we fix the bone
length by a normalized bone length, indicating that all the translation
vectors are static; and thus, only the rotation matrix is required in our
model, which is different from the unnecessary representation using
SE(3) in [28, 27, 16]. Meanwhile, given that a human body is de-
scribed by a kinematic tree consisting of five kinematic chains (i.e.
spine, two legs, and two arms), as illustrated in Fig 2, we only need
to calculate rotation matrix between two neighbouring bones shar-
ing the same joint instead of two arbitrary bones within one chain.
In this way, the structure of skeletal anatomy is maintained in terms
of the anatomical restricts among chains. In addition, the number of
rotation matrices in our model is reduced, which may potentially de-
crease computational cost compared with those containing any pair
of bones [28, 27]. In practice, we first compute the axis-angle repre-
sentation (n, 0) by

corss(en,em)

n- ——"— 2)

" ||corss(en, em)||’
0 = arccos(en - em), 3)

where cross denotes outer and - means inner products. Then, the
rotation matrix R, », is calculated by Rodriguez formula:

Rym = I +sin(6)n” + (1 — cos(9))n"?, 4)

where I € R**3 is a identity matrix and n” is the skew-symmetric
matrix of n. Note that the set of rotation matrices belong to the Spe-
cial Orthogonal Group SO(3), the skeleton is represented as a curve
in SO(3) x ... x SO(3).

Because regression in the curved space SO(3) x ... x SO(3) is
non-trivial, we map this curved space to its tangent space regarded as
Lie algebra s0(3) X ... X s0(3) using the approximate solution [8] of
logarithm map:

1 gn,m(fli 2) - gn,m(l iﬁ)

25in(0(Rnm)) RZ:::gi ?g - RZ:Z& 23 v

Trace(RQn,m) -1 ). ©)

In the end, the skeleton are mapped to a series of Lie algebra vectors:
1T 1 T cT T

W = (W e Wy e W ], where C' denotes the

number of chains (in our model C' = 5 for human motion) and K.

(c € {1,...,C}) equals the number of bones in the c-th chain minus

one.

w(Rn,m)
0(Rn,m) = arccos(

c
s WK

4 Our model

Given a sequence of observed poses P = (p1, p2, ..., pt) in a mo-
tion, the goal is to predict its future poses P = (Pt+1, Pt+2y .-, PT),
where T' is the number of frames. Our model is divided into two
parts, a spatio-temporal hierarchical RNN encoder and a structured
stack LSTM decoder, as shown in Fig 3. The encoder aims to model
the motion efficiently, which encodes all the observed poses in P si-
multaneously concerning their sptio-temporal dependencies. At each
recurrent layer, a unit on behalf of a bone in a frame exchanges infor-
mation with two neighboring units at the spatial axis and the previous
unit at the temporal axis. Meanwhile, global states on both temporal
and spatial dependencies are incorporated into the unit to help our
model maintain global information. On the other hand, the decoder
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Figure 3. The overview of our model. h; ;j Tepresents the local hidden state of bone j at frame ¢ in layer [. gtg represents global temporal state of bone j in

layer [, and gsi- represents global spatial state of a pose at frame ¢ in layer [. L is the number of recurrent layers.

is designed to predict future poses P. In the first layer, the decoder
deciphers overall information from the previously encoded features.
Next, a spine LSTM is first used to decode a spine pose in the second
layer, and then another two LSTMs are utilized (i.e. leg LSTM and
arm LSTM) to decode two arms and two legs according to the pre-
viously decoded spine, respectively. Note that the first ¢ — 1 frames
will be feeded into the encoder, and the last frame ¢ will be used in
the decoder.

4.1 Spatio-temporal hierarchical RNN encoder
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Figure 4. Illustrations of dataflows that update local and global states in our
model. (a) hé’ J is updated by exchanging information with states in spatial
axis (orange line), temporal axis (blue lines) and global axis (red lines). (b)
gtzfl and 93?1 are updated according to their previous layer’s states as well

as all hidden states in their corresponding axis.

) . c

Weusei € (1,...,T)and j € (1,..., K) (where K =3 _, K.)
to denote the index of a frame and an element in the Lie algebra vec-
tor w, respectively. Although not accurate, we call an element in w
as a bone for convenience. As shown in Fig 4 (a), a state hﬁ, ; in lay-
er [ is updated by exchanging information with its neighbors hl.:i s
hi:& o hijjl at temporal axis and hi;il at spatial axis. In this way,
the model learns the fined-grained features of current bone on both
spatial and temporal dependencies. In details, with the increase of the

recurrent steps, hé, ;j exchanges context with more bones j in differ-
ent frames and bones in the current frame 7. Besides, global spatial
state gséfl and temporal state gtéfl are used to incorporate global
features into the state hﬁ, ;- The purpose is that gsﬁfl represents glob-
al feature of bones in frame ¢ so that the model obtains the high-level
information of the current pose. gtéfl denotes global information
about bone j at each frame, which enables the model to encode the
movement of this bone within one state. At the first recurrent layer,
we initialize hidden and cell states such that h?, i = c?} ;= Wpi j+b,
Ko

i,j» Where

N

t—1
0o _ .0 _ 1 0 0 _ 0 _ 1
gt = Cgr; = =71 > hij>and gs; = cg, = 3
i=1 1

J
W and b are parameters in the network.

To update hﬁ,j, by following the design of LSTM, there are six
different forget gates to control the feature flows from six incoming
context channels separately (i.e. three flows from temporal axis, one
flow from spatial axis, and two global flows): I; ;, flm-, i, st
gsli, ;- and gtli, ;- The input gate mﬁ ; and output gate outﬁy 4 control
the information flow from input pose p; ; to update the hidden state
hﬁ’ ; of this recurrent layer. The process of obtaining the input gate
in;,; can be formulated as below:

Zni] = 0(Uinpi,j + Wm(hij’j, hi_ﬁ’j, hifjl) o
+Zinhifjl_1 + Bmgsé_l + Gmgté-_l + bin)

Moreover, formulations of obtaining forget gates for the three spatial,
two temporal, two global information flows and the output gate are
similar with the formulation above except parameters U, W, Z, B,
G, and b. As for the modulated input 6§,]-, we replace the sigmoid
activation function (i.e. o) by the tanh activation function. Then, the
process of updating memory cell ¢, ; and hidden state hi,j can be

)
formulated as:

di=inl; 08+l ;0 Cij,j +£;0 Cé,_jl
+ri od] sl odnt, ®)

+gsty j ©Ocg gt Ocg, Y,
hé,j = outaj © tanh(caj), ©)

where ® means Hadamard product. Note that for all cﬁy ;» the param-
eters in the same frame ¢ are shared within the layer [, and also the
parameters are shared among different recurrent layers.

To update temporal global state gté- and spital global state gsﬁ, as

shown in Fig 4 (b), for gté, we first design forget gates for cell cﬁ-, J
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-1
J
introduced. The process of getting forget gates for cﬁy jand cg, “Lare

J
formulated as:

of all frames ¢ € (1,...,¢t — 1) and then a forget gate for ¢y, is

foi =0(Wehij + Zegiy ' +be) i€ (1,.,t—1), (10)

t—1

1 o
Zhﬁ,]’) + Zgt gté ! + bgt) (11)
=1

fét = U(Wgt(t 1

The output gate outfqt is parallel to Equation 11 with parameters Wo,
Zo, and b,. Then, the next two equations show the procedure of ob-
taining cgté. and gtéz

t—1
l 1 ! l -1
Cors =D fLiOck+ for @cg it (12)
i=1

gté- = outlgt ® tanh(cgté), (13)

Similarly, for global state gsli, we design forget gates for all the cells
ci, ; of one frame ¢ and cgsi_l. The details of omitted formulations
are provided in our project home page due to limited pages.

4.2 Structured stack LSTM decoder

The decoder aims to decipher the motion from encoded features and
output predicted poses frame by frame. Existing methods [16, 19]
utilized LSTM or GRU to achieve this goal, which regards differ-
ent parts of the skeleton as equal important and breaks the struc-
tural principle of the skeleton. This inspires us to design a struc-
tured stack LSTM decoder with three layers. The first layer mod-
els overall information of motion from the encoder. Then, a new L-
STM is used to predict the spine in the second layer, and another
two LSTMs are utilized to obtain arms and legs in the last layer-

t—1
s. At the first layer, the cell state input is set to ¢° = t_% 21 c{j o
i=

T T . . .
where cﬁ .= [ciL,l ,...,cf K ]T and the hidden state input is

. i1
h® = 5 3" hj .. For the second layer, the cell state and input
=1

t—1 . t—1
state are ¢ = A > cf and h' = $(X hf + giF), where
i=1 i=1

T T o
g:F = [g.F 7, ..., g:% " ]T. At the rest of layers, the initial hidden

state and cell state inputs are set to 0.

4.3 Loss function

Currently there are three loss functions commonly used during net-
work training, i.e., calculating L2 loss on the Lie algebra vector di-
rectly or obtaining the locations of joints or bones by forward kine-
matics and computing their L2 loss. However, these functions ne-
glect the kinematic relations among bones in chains and regard all
the bones equally. To eliminate this problem, a new loss function [16]
is presented by computing a weight for each element in the Lie al-
gebra vector w. The fact is that the prediction on a bone is much
more important than that on its successive bones in a chain when do-
ing forward kinematics. However, this function cannot quantize the
accumulative effect of the bones in the back of the chain. Here we
redefine the function, allowing it to estimate such effect, as follows:

T K
. 1 ~
Loss(P,P)= ———— >~ > 0(2)||wi; — @ijll, (14)
T-t-1 i=t+1z=1

K

O(z) = Y (K +1-j);, (15)
)=z

where ¢; ; denotes the length of bone j at frame 4, and w; ; refers

to the predicted bone. O(z) indicates the weight of current bone z

by accumulating the lengths and locations of its successive bones.

Consequently, a bone is given more penalty coefficient if it has longer

subsequent bones.

5 Experiment
5.1 Datasets

Experiments are carried out on two benchmarks: Human3.6M [2] in-
cluding 3.6 million accurate 3D human poses, on which we choose
15 activities of 7 subjects and down sample the FPS of a pose se-
quence to 25; Mouse dataset [31], which records the motion of four
mice in nine videos under lab condition.

5.2 Parameters

In our experiments, the length of hidden state in the encoder is set
to 20 and 16 for H3.6m and muouse datasets, respectively. The re-
current step is 10 and batch size is 32. For short-term prediction,
we randomly collect data samples with 60 consecutive frames from
videos (i.e. T' = 60), which is the same as other comparative ap-
proaches [25, 16]. The first 50 frames are used to feed the encoder
and decoder, while the remaining 10 frames are left for the predic-
tion. On the other hand, 50 frames are feeded into the network to
predict 100 frames in long-term prediction. The Adam tool [10] is
utilized to the optimize the network with its parameters 8, and B2
set to 0.9 and 0.999, respectively. Our model is implemented on Py-
torch 1.0 and the model parameters are randomly initialized using
Gaussian distribution.

5.3 Baseline methods

The prediction performance of our approach is compared against
six established RNN-based methods: ERD and LSTM-3LR [5], S-
RNN [9], MHU [25], Res-GRU [19], and HMR [16]. We rely on
the code and pre-trained models of these methods to reproduce
their work. These competing models are evaluated in two aspects:
quantitative, which indicates angle errors in the short-term pre-
diction, and qualitative, which considers feasible motion (dynamic
and human like) in the long-term prediction. In particular, for quan-
titative evaluation we use the mean angle error (MAE) metric indi-
cating the angle difference of two bones between the prediction and
ground truth. Also, we take agnostic zero-velocity [19] into consid-
eration, which always regards the new predicted pose as the last ob-
served pose. This method is significant to analyze the effectiveness
of models in motion prediction as baseline.

6 Results and discussion
6.1 Results on H3.6m dataset

The quantitative results of the complex activities, e.g. Greeting,
Walking, Posing, and Purchases, are reported in Table 1 (other ac-
tivities are not shown due to page limitation, but similar results are
provided in our home page). It can be observed that our model clearly
outperforms the other models with a margin for both short-term and
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Methods Greeting Walking

80ms 160ms 320ms 400ms 560ms 640ms 720ms  1000ms ‘ 80ms 160ms 320ms 400ms 560ms 640ms 720ms  1000ms
ERD [5] 1.152 1.321 1.582 1.692 1.912 1.922 1.943 2.010 | 1.061 1.123 1.221 1.263 1.311 1.342 1.412 1.512
LSTM-3LR [5] 0.922 1.123 1.394 1.506 1.764 1.762 1.811 1912 | 0.882  0.952 1.018 1.053 1.102 1.120  1.142 1.211
SRNN [9] 0.743 1.074 1.477 1.673  2.142  2.113  2.192 2422 | 0.642  0.829 1.076 1.223 1.463 1.513 1.552 1.581
Res-GRU [19] 0.572  0.923 1.282 1.442 1.744 1.762 1.821 1.948 | 0.342 0552 0.772 0.87 1.072 1.142 1.233 1.352
Zero-velocity [19] 0.544  0.891 1.302 1.494 1.761 1.741 1.772 1.800 | 0.391 0.682 0993 1.151 1.353 1.368 1.372 1.322
MHU [25] 0.540 0.870  1.270 1.450 1.750  1.710  1.740 1.870 | 0.320  0.530  0.690 0.770 0900  0.940  0.970 1.060
HMR [16] 0.545  0.905 1.272 1.409 1.662 1.650 1.690 1.721 | 0.355  0.551 0.790 0.854 0949 0.983 1.042 1.111
Ours(Remove g:z) 0.543  0.881 1.252 1.388 1.622 1.574 1.633 1.691 | 0322 0453  0.692 0.771 0.859 0902 0971 0.992
Ours(Remove g,') 0.562  0.891 1.258 1.401 1.622 1.591 1.612 1.672 | 0353 0462 0.711 0792 0.893 0924  0.969 1.008
Ours(Replace LSTM)  0.544  0.881 1.242 1.383 1.601 1.578 1.631 1.682 | 0.321 0452  0.704 0772 0.869 0911 0.962 1.001
Ours 0543 0858 1.228 1.368 1.585 1.554  1.602 1.659 | 0.302 0420 0.681 0.760 0.851  0.892  0.944 0.984
Methods Posing ‘ Purchases

80ms 160ms 320ms 400ms 560ms 640ms 720ms  1000ms ‘ 80ms 160ms 320ms 400ms 560ms 640ms 720ms  1000ms
ERD [5] 1.353 1.413 1.691 1.863  2.064 2.115  2.183 2.568 | 1.162 1.300 1.492 1.522 1.812 1.856 1.849 2.340
LSTM-3LR [5] 1.220 1.251 1.543 1.711 1.932 2012  2.093 2.732 | 1.032 1.131 1.352 1.421 1.812 1.880  1.812 2.301
SRNN [9] 0.961 1.143 1.703  2.042 2481 2.471 2.693 3.501 | 0.692 1.091 1.481 1.672 1.923 1.991 1.911 2.481
Res-GRU [19] 0.401 0.742 1.386 1.662 1.983  2.123 2231 2.671 | 0.541 0.792  1.101 1.201 1.611 1.691 1.712 2.161
Zero-velocity [19] 0.281 0.572 1.132 1.372 1.812 2143 2227 2.780 | 0.621 0.881 1.192 1.269 1.643 1.681 1.624 2451
MHU [25] 0.330 0.640  1.220 1470 1.820  2.110  2.170 2.510 - - _ - - _ _ -
HMR [16] 0.239  0.509 1.058 1.310 1.636  1.802  1.942 2485 | 0.514  0.776 1.053 1.150 1.602 1.665 1.610 2.110
Ours(Remove gtlj) 0230 0511 1.062 1.333 1.632 1.859  2.018 2.602 | 0.529  0.790 1.071 1.122 1.541 1.569 1.521 2.121
Ours(Remove gs) 0252 0515 1.072 1.333 1.648 1.872  2.012 2611 | 0528  0.780  1.052 1.140 1.551 1.582 1.544 2.133
Ours(Replace LSTM)  0.241 0.502 1.064 1.321 1.628 1.868  2.012 2.601 | 0.524  0.801 1.054 1.124 1.523 1.558 1.511 2.131
Ours 0225 0486 1.055 1300 1.622 1.838 1.993 2581 | 0509  0.775 1.037 1105 1490 1.544 1.493 2.106

Table 1. The MAE comparisons on H3.6m dataset.

long-term prediction. This is mainly due to its abilities to take ad-
vantage of the rich spatio-temporal dependency information between
bones in chains sperately. Notably, Greeting and Purchases are more
challenging than others because they contain more hand movements
than leg and foot movements. Fortunately, our model can effectively
encode hand movement and leg movement simultaneously. In addi-
tion, it is clear that the zero-velocity performance is better than that
of ERD, LSTM-3LR and SRNN, which is consistent with the results
in [19]. This might be that some activities only change their motions
slightly. In such situation, zero-velocity can yield static poses contin-
uously, but other competing models may suffer from the first frame
discontinuity issue.

For qualitative evaluation, we evaluate these models by visualiz-
ing the motions from two primary aspects: human-like and recog-
nizable. Note that we only list 3 out of 11 activities here, and vi-
sualize 4 of the first 100 frames as short-term motion and the rest
of 12 frames as long-term motion. We refer the interested readers
to visit our project website for better visual effect. For instance, al-
1 models perform well on short-term prediction on walking, but for
long-term prediction, LSTM-3LR, Res-GRU, and ERD converge to
motionless state. It is obvious that our model and HMR yield human-
like and recognizable poses throughout the entire prediction window
where the movement speed of our model is more close to the ground
truth than HMR. This is mainly due to the global states being de-
signed to encode integrated information at both spatial and temporal
domain. Besides, we found that walking is relatively simple since it
only contains repetitive movements of legs and arms. However, for
a more complex activity eating, which contains significant motion-
s like feeding food to the mouth with hands, HMR only learns the
foot movement but the hands are motionless pose. Other comparison
models cannot obtain recognizable motion. To further complicate the
matter, in posing, which contains motion features including standing
still and doing several poses by hands, it is clear that only our model
captures these features and repeatedly yields the motional and human
like poses, as shown in Fig 1.

6.2 Results on mouse dataset

Unlike human dataset, mouse dataset is more challenging due to its s-
tochastic nature which causes difficulties to category its motion [31].
Table 2 depicts the comparison results with MAE. Our model outper-
formes other models on six out of eight frames. We also found that
zero-velocity only surpasses others at the 80ms frame and falls be-
hind with a notable margin on the remaining frames. This is because
the movement of mouse is faster and more random than the human.
As suggested in Fig 6, our model outperforms others, which verifies
the superiority and stability of our model.

Methods Mouse

80ms  160ms  320ms  400ms  560ms  640ms  720ms  1000ms
ERD [5] 0.501 0.482 0.631 0.694 0.720 0.679 0.692 0.812
LSTM-3LR [5] 0.534 0.490 0.659 0.681 0.672 0.616 0.701 0.752
Res-GRU [19] 0.410 0.471 0.622 0.693 0.701 0.638 0.700 0.700
Zero-velocity [19]  0.400 0.531 0.732 0.951 1.028 0.941 1.069 1.131
HMR [16] 0.420 0.441 0.642 0.711 0.728 0.709 0.731 0.720
Ours 0.410 0.428 0.533 0.521 0.570 0.501 0.668 0.721

Table 2. The MAE comparisons on mouse dataset.
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Figure 6. Comparisons of short-term predictions on mouse dataset.
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Figure 5. Illustrations of qualitative comparisons on long-term motion prediction of walking and eating on H3.6m dataset.

6.3 Ablation study
6.3.1 Loss function

In this section, we evaluate the effectiveness of our proposed loss
function by comparing it against L2 loss and the HMR loss [16]
functions. We use H3.6m dataset for this study with the same param-
eter settings depicted in section 5.2. Table 3 reports the comparison
results of average MAESs on all the activities. Our loss function com-
pletely outperforms L2 loss and HMR loss. This is because our loss
function considers the error accumulation effect when estimating the
root bones. It not only remains the anatomical restricts of chains, but
also provides a bone with a quantized weight in terms of its location
and length in a pose.

Loss H3.6m

80ms  160ms  320ms  400ms 560ms  640ms  720ms  1000ms
L2 loss 0.362 0.608 0.971 1.101 1.303 1.396 1.472 1.803
HMR loss [16]  0.340 0.600 0.950 1.060 1.290 1.370 1.450 1.770
Our loss 0.331 0.579 0.931 1.058 1.283 1.359 1.441 1.750

Table 3. The MAE performance of our model on different loss functions.

6.3.2 Component effectiveness

We separately evaluate the effects of different components in our
network by removing modules or replacing them with conventional
methods. They are evaluated by testing for two types of investiga-
tions that are common with neural network models: encoder compo-
nent effects (i.e. remove temporal states gté and spatial states gsﬁ,
respectively) and decoder component effects (i.e. replace our struc-
tured stack LSTM decoder with a naive LSTM of two layers). Table 1
shows that changing the components may lead to negative effects on
the performance of our model. It is clear that when removing spatial
states g, the prediction performance drops faster than that changing
other components. This might be due to the high-level encoding of
fine-garined spatial information in our model. Besides, when using
the naive LSTM decoder, the model gives worse performance than
that using our structured stack LSTM decoder, which indicates that
our model is more effective to predict spine, arms, and legs gradually
than obtaining them at the same time.

7 Conclusion

In this paper, we present a spatio-temporal hierarchical recurrent net-
work, where the hierarchical model is incorporated to simultaneous-
ly capture the inherit spatial and temporal varieties of motions. It is
more efficient and flexible than existing methods on both short-term
and long-term motion predictions. As for future work, we will ex-
plore the applications of our model on raw image videos, and we
will consider predicting multiple motions with probabilities and will
instead learn a network generating future motions under uncertainty.
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