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Abstract. Falling can have fatal consequences for elderly people
especially if the fallen person is unable to call for help due to loss
of consciousness or any injury. Automatic fall detection systems
can assist through prompt fall alarms and by minimizing the fear of
falling when living independently at home. Existing vision-based fall
detection systems lack generalization to unseen environments due
to challenges such as variations in physical appearances, different
camera viewpoints, occlusions, and background clutter. In this paper,
we explore ways to overcome the above challenges and present
Single Shot Human Fall Detector (SSHFD), a deep learning based
framework for automatic fall detection from a single image. This is
achieved through two key innovations. First, we present a human
pose based fall representation which is invariant to appearance
characteristics. Second, we present neural network models for 3d
pose estimation and fall recognition which are resilient to missing
joints due to occluded body parts. Experiments on public fall datasets
show that our framework successfully transfers knowledge of 3d
pose estimation and fall recognition learnt purely from synthetic data
to unseen real-world data, showcasing its generalization capability
for accurate fall detection in real-world scenarios.

1 Introduction

Falling on the ground is considered to be one of the most critical
dangers for elderly people living alone at home which can cause
serious injuries and restricts normal activities because of the fear
of falling again [4]. Automated fall detection systems can produce
prompt alerts in hazardous situations. They also allow automatic
collection and reporting of fall incidents which can be used to
analyse the causes of falls, thus improving the quality of life for
people with mobility constraints and limited supervision. Vision-
based systems provide a low cost solution to fall detection. They do
not cause sensory side effects on the human health and do not affect
the normal routines of elderly people as observed in systems using
wearable devices [19]. In a typical fall detection approach, human
regions are detected from the visual data and used to learn features to
distinguish fall from other activities. Existing methods such as [15]
learn fall representations using physical appearance based features
extracted from video data. However, appearance based features suffer
from poor generalization in real-world environments due to large
variations in appearance characteristics, different camera viewpoints,
and background clutter. Furthermore, due to the unavailability of
large-scale public fall datasets, most of the existing fall detectors
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are trained and evaluated using simulated environments or using
restricted datasets (which cannot be shared publicly due to privacy
concerns). Therefore, these methods do not exhibit generalization
capabilities for fall detection in unseen real-world environments. In
this paper, we explore ways to overcome the above challenges and
present a deep learning framework termed “Single Shot Human Fall
Detector (SSHFD)” for accurate fall detection in unseen real-world
environments. The main contributions of this paper are as follows:

1. We present a human pose based fall representation which is
invariant to appearance characteristics, backgrounds, lighting
conditions, and spatial locations of people in the scene.
Experiments show that neural network models trained on our
2d-pose and 3d-pose based fall representations successfully
generalize to unseen real-world environments for fall recognition.

2. We present neural network models for 3d pose estimation and fall
recognition which are robust to partial occlusions. Experiments
show that our models successfully recover joints information from
occluded body parts, and accurately recognize fall poses from
incomplete input data.

3. We evaluate our framework on real-world public fall datasets,
where we show that our framework when trained using only
synthetic data, shows excellent generalization capabilities of fall
recognition on unseen real-world data.

2 Related Work

Existing vision-based fall detection approaches detect human regions
in the scene and use visual information from the detected regions
to learn features for fall recognition. For instance, the method
of [14] generated human bounding boxes through background-
foreground subtraction and compared the visual content of the boxes
in consecutive frames of the videos of the MultiCam fall dataset [2]
to detect fall events. The method of [18] compared multiple bounding
boxes to distinguish between different events (e.g., standing, sitting,
and fall). The work of [10] used a fuzzy neural network classifier for
fall detection. The methods of [15] and [8] used motion segmentation
to detect human regions in the scene and combined visual appearance
and shape information from the detected regions to learn features
for fall recognition. However, errors in background-foreground
subtraction or motion segmentation (e.g., due to small or no change
in the visual content between subsequent image frames) degrade
the accuracy of these methods. To overcome this challenge, the
method of [9] used cues from multiple cameras and produced fall
decisions through voting among different viewpoints. However, this
approach requires accurate synchronization between the individual
cameras. Other methods such as [5, 13] used Kinect depth maps to
learn 3d features for fall recognition. However, these methods are
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Figure 1: Overview of our Single Shot Human Fall Detector (SSHFD). Given a single RGB image of the scene (A), SSHFD generates human
proposals (B) which are fed into a Stacked Hourglass network (C) for 2d pose prediction. Next, the predicted 2d pose (D) is fed into a neural
network (E) for 3d pose prediction (F). Finally, the 2d pose and the 3d pose information are fed into a neural network (G) for fall recognition
(H). Our models integrate Occluded Joints Resilience (OJR) modules which make the models robust to missing information in the pose data.

restricted in real-world deployment due to hardware limitations (e.g.
limited depth sensing range). Compared to existing methods, our
work differs in several ways. First, our framework learns pose based
fall representations which are invariant to appearance characteristics.
This enables our framework to successfully transfer fall recognition
knowledge learned from pure synthetic data to real-world data with
unknown backgrounds and different human actors. Second, our
framework integrates a 3d pose estimator which predicts 3d pose
information from 2d pose. The combined 2d and 3d pose knowledge
enables our framework to successfully handle ambiguities in the 2d
pose (under different camera viewpoints), without requiring multiple
camera setups or depth sensor technologies. Finally, our neural
network models for 3d pose estimation and fall recognition are
resilient to missing information in the pose data. This enables our
framework to accurately discriminate between fall and no-fall cases
from human poses under occlusions.

3 The Proposed Framework (SSHFD)

Fig. 1 shows the overall architecture of our framework which has
three main modules. i) 2d pose estimation, which takes an RGB
image of the scene as input and produces body joints locations in
2d image space, ii) 3d pose estimation, which takes 2d pose as
input and predicts joints locations in 3d Cartesian space, and ii) Fall
recognition, which combines 2d pose and 3d pose data and predicts
probabilities with respect to the target classes. In the following, we
describe in detail the individual components of our framework.

3.1 The Proposed Fall Representation

Our fall representation is based on joints locations in 2d image space
and 3d Cartesian space. We normalize the 2d pose by transforming
the joints estimates (predicted in the scene image) to a fixed reference
image of 224×224 dimensions as shown in Fig. 1-D. The normalized
2d pose is then used to predict joints locations in a Cartesian space
of size 1000 × 1000 × 1000mm3 as shown in Fig. 1-F. The 3d
predictions are normalized with respect to the hip joint.

3.2 The Proposed 2d Pose Estimation (Fig. 1)

Our 2d pose estimator is composed of two main modules: i) a human
detector [6], which produces human bounding box proposals from
the input image, and ii) a Stacked Hourglass (SH) network [16],
which predicts body joints 2d locations and their corresponding
confidence scores. The SH network is trained using ground truth
labelled in terms of W ×H×K−dimensional heatmaps (H), where
W and H represent the width and height of the heatmap and K
represents the number of joints. We used K = 17 joint types as per
the format used in [6]. The heatmap (Hk) for a joint k ∈ {1, ...,K}
is generated by centering a Gaussian kernel around the joint’s pixel
position (xk, yk). It is given by:

Hk(x, y) =
1

2πσ2
exp(

−[(x− xk)
2 + (y − yk)

2]

2σ2
), (1)

where σ is a hyper-parameter for spatial variance. We set σ = 4 in
our experiments. The training objective function of the SH network
is defined by:

L2d =
1

K

K∑

k=1

||Hk − Ĥk||22, (2)
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where Ĥk represents the predicted confidence map for the kth joint.

3.3 The Proposed 3D Pose Estimation (Fig. 1-E)

Here, the goal is to estimate K body joints in 3d Cartesian space
Q ∈ R

3K given a 2d input P ∈ R
2K . For this, we learn an objective

function F∗ : R2K → R
3K which minimizes the prediction error

over a dataset with N poses:

F∗ = min
f

1

N

N∑

i=1

L3d(f(pi)− qi), (3)

where L3d represents an MSE loss. Fig. 1-E shows the structure of
our 3d pose estimation model “3d PoseNet” based on the architecture
of [12]. It starts with a linear layer fc2D which transforms the
2K−dimensional pose to 1024 dimensional features. Next, there are
five linear layers f1 − f5, each with 4096 dimensions followed by
Batch normalization, a Rectified Linear Unit and a dropout module.
The final layer fc3D produces 3K dimensional ouptut. There are
two residual connections defined in the network which combine
information from lower layers to higher layers and improve model
generalization performance.

3.4 The Proposed Fall Recognition (Fig. 1-G)

We present a neural network (FallNet) which consists of two sub-
networks: a modality-specific network Fφ, φ ∈ {P ,Q}, and an
embedding network G as shown in Fig. 1-G. The sub-network Fφ

has a structure similar to [12] but with fewer linear layers. It produces
1024−dimensional features each from the two input modalities (P
and Q). The output features are summed and fed into the embedding
sub-network G which uses two linear layers and learns probabilistic
distributions with respect to the target classes. Let ρi denote the
outputs of the last layer (fccls) for the ith input sample. The training
objective function is defined over N poses as:

Lfall =
∑

i∈N

Lcls(ρi, ρ
∗
i ), (4)

where ρ∗i represent the ground-truth labels. The term Lcls is a Cross
Entropy Loss, given by:

Lcls(x, C) = −
NC∑

C=1

Yx,C log(px,C), (5)

where Y is a binary indicator if class label C is the correct
classification for observation x, and p is the predicted probability of
observation x of class C.

3.5 The Proposed Occluded Joints Resilience
(OJR)

Pose estimators trained on RGB images inevitably make errors in
joint predictions due to factors such as: image imperfections,
occlusions, background clutter, and incorrect ground truth
annotations. Since, our 3d PoseNet and FallNet models rely
on the output of the SH network, errors in 2d pose predictions affect
the quality of 3d pose estimation and fall recognition. To overcome
this challenge, we present a method termed “Occluded Joints
Resilience (OJR)” which increases the robustness of our models to
incomplete information in the pose data. To achieve this, the OJR

Figure 2: Sample frames from our Synthetic Human Fall dataset
showing different poses.

method creates an occlusion patternMi and uses it to transform the
original pose data into occluded pose data. The occlusion pattern
Mi is defined as:

Mi = [v1J1, ..., vkJk], v ∈ {0, 1}, (6)

where Ji = (xi, yi) represents a body joint and v is a binary variable,
indicating the visibility of the kth joint. During training, the OJR
method generates a rich library of unique occlusion patterns {M}
which vary across training samples, thereby increasing the network’s
adaptivity to various occluded situations.

4 Experiments

4.1 Training and Implementation Details

We trainined the SH network for 2d pose estimation using the MS
COCO Keypoints dataset [11], which contains 64K images and 150K
instances with 2d pose ground truth. To train our models for 3d pose
estimation and fall recognition, we used the synthetic human fall
dataset of [1], which provides 767K samples of human poses with 2d
and 3d pose annotations categorized into fall and no-fall body poses.
Fig. 2 shows some samples from the synthetic dataset. For training
the 3d PoseNet and FallNet models, we initialized the weights of
the fully connected layers with zero-mean Gaussian distributions
(standard deviations were set to 0.01 and biases were set to 0),
and trained each network for 300 epochs. The starting learning rate
was set to 0.01 and divided by 10 at 50% and 75% of the total
number of epochs. The parameter decay was set to 0.0005 on the
weights and biases. The probability of dropout was set to 0.5. Our
implementation is based on the framework of Torch library [17].
Training was performed using ADAM optimizer and four Nvidia
Tesla K80 GPUs.

4.2 Test Datasets

To evaluate the generalization capability of our SSHFD for fall
detection in unseen real-world environments, we trained our models
using only synthetic data and tested the models on the public
MultiCam fall dataset [2] and the Le2i fall dataset [3]. The
MultiCam dataset consists of 24 different scenarios where each
scenario is comprised of a video sequence of a person performing
a number of activities (such as falling on a mattress, walking,
carrying objects). Each scenario is recorded using 8 cameras from 8
different locations. The dataset is challenging for single-shot single
camera fall detection because, different camera viewpoints produce
occlusions and significant variations in the spatial locations, scale,
and orientations of the falls [1]. The Le2i dataset contains 221
videos of different actors performing fall actions and various other
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Table 1: Fall recognition results of the proposed SSHFD in terms of its different variants termed Human Fall Detection Models (HDF) on the
MultiCam fall dataset and the Le2i fall dataset. The models for 3d pose estimation and fall recognition were trained only on the synthetic data
and evaluated on real-world test datasets.

Human Fall Detection (HFD) Models
MultiCam fall dataset Le2i fall detection database

F1Score Precision Recall F1Score Precision Recall

SSHFD-A: SH + FallNet2d3d 0.8453 0.8487 0.8431 0.8991 0.9008 0.8992
SSHFD-B: SH + FallNet2d 0.8388 0.8437 0.8358 0.8885 0.8907 0.8887
SSHFD-C: SH + ResNet (RGB) 0.8638 0.8628 0.8658 0.6595 0.7985 0.6912

3D human pose outputFall ground truth (green) and 
predictions (yellow) 3D human pose outputFall ground truth (green) and 

predictions (yellow) 3D human pose outputFall ground truth (green) and 
predictions (yellow)

1

2

3

4

5

6

7

8

Figure 3: Qualitative results of our framework on the MultiCam fall dataset (rows 1-6) and the Le2i fall dataset (rows 7-8). Ground truth labels
and model predictions are shown by text in green and yellow, respectively. Fall and no-fall cases are represented by bounding boxes in red and
yellow, respectively.
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Figure 4: Qualitative comparison of the predictions of our 3d PosNet with and without the proposed OJR using inputs with missing joints on
our synthetic dataset. Our OJR-based 3d PoseNet enables the model to successfully recover missing joints in the input pose data.

normal activities in different environmets. The dataset is challenging
due to variable lighting conditions and occlusions [1]. To quantify
the recognition performance of our SSHFD, we extracted image
frames from the target videos at 25 fps resolution and generated
2d poses using the SH network. Next, we computed weighted F1
scores, precision (PRE) and recall (RE) scores per image frame with
atleast one pose detected and averaged the scores over all image
frames of the targets datasets. We used the weighted measures as they
are not biased by imbalanced class distributions which make them
suitable for the target datasets where the number of fall samples are
considerably small compared to the number of non-fall samples.

5 Results

Table 1 shows fall recognition results on the test datasets, for
different variants of our framework termed “Human Fall Detection
Models”. The variants “A” and “B” use neural networks with linear
structures which were trained on pose data as shown in Fig. 1 and

described in Sec. 3.4. The variant “C” shown in Table 1 uses a
ResNet18 [7] based CNN architecture which was trained on RGB
appearance information of synthetic human proposals. The results
reported in Table 1 show that although the RGB-based fall detector
produced higher f1scores compared to the pose-based fall detectors
on the MultiCam dataset, it produced the lowest f1scores on the
Le2i dataset. This is because, the RGB-based fall detector trained on
color information of synthetic human proposals failed to generalize
to the scenes of Le2i dataset with high variations in the appearance
characteristics and different backgrounds. Compared to the RGB-
based detector, our pose-based fall detector (SSHFD-A) produced
competitive f1scores on the MultiCam dataset and superior f1scores
on the Le2i dataset as shown in Table 1. Fig. 3 shows qualitative
results of our pose-based fall detector on sample images from the test
datasets. The results show that our fall detection framework is robust
to partial occlusions, and variations in the spatial locations, scale, and
orientations of fall poses in real-world scenes. These improvements
are attributed to our pose-based fall representation which is invariant
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Figure 5: F1scores of our SSHFD on the MultiCam fall dataset and the Le2i fall detection database under different noise levels. The subplots
A-F show that the proposed OJR-based models produce considerable higher f1scores for fall recognition under missing joints information
compared to the models which were trained without the proposed OJR method. The subplots G, H, J, and K, show comparison between
our 2d-pose based model “FallNet2d” and “FallNet2d3d” which uses both 2d and 3d pose for fall recognition. The subplots I and L show a
comparison between f1scores of our method and the visual skeleton representation based method of [1] under different noise levels.
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2d pose overlaid on input image Normalized 2d pose Predicted 3d pose

Fall 
event

Fall 
event

No-Fall 
event

No-Fall 
event

Figure 6: Variations in camera viewpoints cause ambiguities in 2d
pose based fall representations (fall and no-fall 2d poses resemble
each other as shown in the middle column). In contrast, our 3d
PoseNet predictions (as shown in the right column) are more
discriminative and reduce inter-class similarities for fall recognition.
Fall and no-fall cases are represented by bounding boxes in red and
yellow, respectively.

to appearance characteristics and makes our framework robust
to different human actors and background clutter in real-world
scenes. These results demonstrate the generalization capability of our
framework in successfully transferring fall recognition knowledge
learnt purely from synthetic data to unseen real-world data. Table 1
also shows that our FallNet2d3d model using combined 2d- and 3d-
pose information performed better than the FallNet2d model which
used only 2d pose information. This is attributed to the proposed
FallNet architecture which uses low-level modality-specific layers to
learn discriminative information from the individual pose modalities,
and uses high-level fusion layers to learn the complimentary
information in the multi-modal input pose data, thereby producing
features which are robust to pose ambiguities in the 2d image space
under different camera viewpoints as shown in Fig. 6.

5.1 Robustness to Missing Joints

5.1.1 Fall Recognition

Fig. 5 shows comparison of f1scores produced by our models with
and without the proposed OJR on the MultiCam dataset and the
Le2i fall dataset under different noise levels. The results show that
our OJR-based models produced significantly higher f1scores for all
the noise levels compared to the models which were trained without
using OJR. For instance, using input pose data with 8 missing joints,
our OJR-based models improved f1scores by upto 35% and 40%
compared to the models without using OJR on the MultiCam and
Le2i datasets, respectively (see Fig. 5-C and Fig. 5-F). We also

2d pose overlaid on input image Normalized 2d pose Predicted 3d pose

Without 
OJR

With 
OJR

Without 
OJR

With 
OJR

Figure 7: Our OJR-enabled FallNet model produces correct fall
predictions in the presence of missing data in 2d pose and 3d pose
compared to the model which was trained without the OJR method.
Ground truth labels and model predictions are shown by text in green
and yellow, respectively. Fall and no-fall cases are represented by
bounding boxes in red and yellow, respectively.

2d pose overlaid on input image Normalized 2d pose Predicted 3d pose

Figure 8: Our 3d PoseNet using the proposed OJR method
successfully recovers missing data in the input 2d pose and enables
the framework to produce correct fall predictions. Ground truth
labels and model predictions are shown by text in green and yellow,
respectively.

conducted experiments to compare the performance of our FallNet
with the method of [1] which uses visual representations of 2d
skeletons and segmentation information for fall recognition. Fig. 5-
I and Fig. 5-L show the results of these experiments. The results
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show that our 2d- and 3d-pose based fall representation produces
superior fall recognition performance especially under missing joints
data compared to the skeleton-based visual representation of [1].
Fig. 5-I and Fig. 5-L also show that the proposed OJR improved
the performance of the method of [1] under different noise levels,
demonstrating the significance of the proposed OJR for improving
the robustness of models under scenarios with occluded joints. Fig.
7 shows qualitative results of our models on the MultiCam dataset
using incomplete 2d- and 3d-pose data. The results show that the
proposed OJR method makes our FallNet model robust to missing
information in the pose data, and enables the model to make correct
fall predictions under 2d or 3d pose errors.

5.1.2 3d Pose Estimation

Table 2: Comparison of the performance of our 3d PoseNet with
and without the proposed Occluded Joints Resilience (OJR) on our
synthetic dataset under different noise levels.

No. of missing mean pose error (mm)
joints with OJR without OJR

1 17.11 197.73
3 21.13 351.19
5 26.25 420.52
7 34.21 464.16

Here, we tested our 3d PoseNet under different levels of noise
(missing joints) on the synthetic data. For this, we randomly split
the data into 70% train and 30% test data subsets. Table 2 shows
the mean joints position errors in millimeters which is the mean
Euclidean distance between predicted joint positions and ground-
truth joint positions averaged over all the joints, produced by our
models on the test dataset. Table 2 shows that our OJR-based 3d
PoseNet consistently produced lower pose errors compared to the
model without OJR for all levels of noise on the test dataset. Fig.
4 shows qualitative results of our 3d PoseNet with and without the
proposed OJR on our synthetic dataset. The results show that the
proposed OJR enables our 3d PoseNet to successfully recover 3d
joints information from incomplete 2d pose inputs. This enables our
framework to make correct fall predictions under 2d pose errors as
shown in Fig. 8.

6 Conclusion and Future Work

In this paper we present Single Shot Human Fall Detector (SSHFD),
a deep learning framework for human fall detection from a single
image. SSHFD learns fall representations based on human joint
locations in 2d image space and 3d Cartesian space. Our fall
representation is invariant to physical appearance, background, and
enables our framework to successfully transfer fall recognition
knowledge from pure synthetic data to unseen real-world data. We
also present neural network models for 3d pose estimation and fall
recognition which are resilient to occluded body parts. Experiments
on real-world datasets demonstrate that our framework successfully
handles challenging scenes with occlusions. These capabilities open
new possibilities for advancing human pose based fall detection
purely from synthetic data. In future, we plan to expand our
framework for the recognition of other activities to enhance its
potential for general human activity recognition.
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