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Abstract. Activity recognition systems detect temporal combina-
tions of ‘low-level’ or ‘short-term’ activities on sensor data. These
systems exhibit various types of uncertainty, often leading to erro-
neous detection. We present an extension of an interval-based ac-
tivity recognition system which operates on top of a probabilistic
Event Calculus implementation. Our proposed system performs on-
line recognition, as opposed to batch processing, thus supporting data
streams. The empirical analysis demonstrates the efficacy of our sys-
tem, comparing it to interval-based batch recognition, point-based
recognition, as well as structure and weight learning models.

1 Introduction

Activity recognition systems consume streams of sensor data from
multiple sources, such as cameras and microphones, to identify var-
ious types of human behaviour. The input data include short-term
activities (STAs), e.g. detected on video frames, such as ‘walking’,
‘running’, ‘active’, and ‘inactive’, indicating that a person is walking,
running, moving his arms while in the same position, etc. The out-
put is a set of long-term activities (LTAs), which are spatio-temporal
combinations of STAs. Examples of LTAs are ‘meeting’, ‘leaving
unattended object’, ‘fighting’, and so on.

Uncertainty is inherent in activity recognition applications. STAs
are typically detected by visual information processing tools oper-
ating on video feeds, and often have probabilities attached to them,
serving as confidence estimates. Various approaches have been pro-
posed for handling uncertainty in activity recognition—see [3] for
a recent survey. Prob-EC [35] is a system based on a probabilistic
logic programming implementation of the Event Calculus [21, 20],
designed to handle data uncertainty and compute the probability of
an LTA at each time-point. The Probabilistic Interval-Based Event
Calculus (PIEC) is an extension of Prob-EC that computes, in linear-
time, all maximal intervals during which an LTA is said to take
place, with a probability above a given threshold [7]. By support-
ing interval-based recognition, PIEC has proven robust to noisy in-
stantaneous LTA probability fluctuations, and performs better in the
common case of non-abrupt probability change.

We present an extension of PIEC, called oPIECb, which is capable
of online recognition, as opposed to the batch processing of PIEC.
This way, oPIECb may handle data streams. More precisely, the con-
tributions of this paper are the following. First, we propose a tech-
nique for identifying the minimal set of data points that need to be
cached in memory, in order to guarantee correct LTA recognition in
a streaming setting. Second, we present a way to further reduce the
cached data points, supporting highly efficient recognition, while at
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the same time minimising the effects on correctness. Third, we evalu-
ate our algorithm on a benchmark dataset for human activity recogni-
tion, and compare it to interval-based batch recognition, point-based
recognition, as well as structure and weight learning models.

The remainder of the paper is structured as follows. Section 2 pro-
vides an overview of related research, while Section 3 presents PIEC.
Then, Sections 4 and 5 introduce our extension of PIEC. The empir-
ical analysis is presented in Section 6, while in Section 7 we sum-
marise our work and outline further work directions.

2 Related Work

Activity recognition is a type of ‘complex event recognition’ (CER)
[23, 10, 15]. Systems for CER accept as input a stream of time-
stamped sensor events and identify composite events of interest—
combinations of events that satisfy some pattern. See [12, 9, 6, 5, 29]
for a few CER applications. The event streams that provide the input
data to a CER system exhibit various types of uncertainty [3, 14].
For instance, evidence may be incomplete, as in the case of occluded
objects in activity recognition. Other factors contributing to the cor-
ruption of the input stream are the limited accuracy of sensors and
distortion along a communication channel. Consequently, the input
events are often accompanied by a probability value.

A recent survey [3] identified the following classes of methods
for handling uncertainty in CER: automata-based methods, proba-
bilistic graphical models, probabilistic/stochastic Petri Nets, and ap-
proaches based on stochastic (context-free) grammars. In automata-
based methods (e.g. [1, 38]), the representation of time is implicit,
and hierarchical knowledge, i.e., defining an LTA in terms of some
other LTA, is not typically supported. The approaches that use Petri
Nets and stochastic grammars do not support relations between at-
tributes of STAs and LTAs [3].

Regarding probabilistic graphical models, Markov Logic Net-
works (MLNs) [30] have been used for CER. As an example,
Morariu and Davis [26] employed Allen’s Interval Algebra [4] to
determine the most consistent sequence of LTAs, based on the ob-
servations of low-level classifiers. A bottom-up process discards the
unlikely event hypotheses, thus avoiding the combinatorial explosion
of all possible intervals. This elimination process, however, can only
be applied to domain-dependent axioms, as it is guided by the ob-
servations. Sadilek and Kautz [31] employed hybrid-MLNs [37] in
order to detect human interactions using location data from GPS
devices. ‘Hybrid formulas’, i.e., formulas with weights associated
with a real-valued function, such as the distance between two per-
sons, de-noise the location data. In contrast to the above, a domain-
independent probabilistic activity recognition framework via MLNs
was presented in [36]. This framework is based on the Event Calcu-
lus [21, 27, 28] and handles LTA definition uncertainty by modelling
imperfect rules expressing LTAs.
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There are also logic-based approaches to activity recognition that
do not (directly) employ graphical models. The Probabilistic Event
Logic [9, 32] has been used to define a log-linear model from a set of
weighted formulas expressing LTAs [34]. Recognition is performed
using ‘spanning intervals’ that allow for a compact representation of
event occurrences satisfying a formula. In [2], LTAs are defined in
a first-order logic, the input STAs may be deterministic or proba-
bilistic, while their dependencies are modelled by triangular norms
[13]. Shet et al. [33] handled uncertainty by expressing the Bilattice
framework in logic programming [16]. Each LTA and STA is associ-
ated with two uncertainty values, indicating, respectively, a degree of
information and confidence. The more confident information is pro-
vided, the stronger the belief about the corresponding LTA becomes.

Skarlatidis et al. [35] presented an activity recognition system
based on Prob-EC, a probabilistic logic programming implementa-
tion of the Event Calculus [21, 20]. Similar to [36], Prob-EC com-
putes the probability of an LTA at each time-point. Unlike [36],
Prob-EC is designed to handle data uncertainty. The use of the
Event Calculus, as in, e.g., [11], allows the development of domain-
independent, expressive activity recognition frameworks, supporting
the succinct, intuitive specification of complex LTAs, by taking ad-
vantage of the built-in representation of inertia. Consequently, the
interaction between activity definition developer and domain expert
is facilitated, and code maintenance is supported.

Recently, Artikis et al. [7] proposed the Probabilistic Interval-
based Event Calculus (PIEC), a method for computing in linear-time
all maximal intervals during which an LTA is said to take place, with
a probability above a given threshold. PIEC was proposed as an ex-
tension of Prob-EC, but may operate on top of any Event Calculus
dialect for point-based probability calculation (such as [36, 11]). By
supporting interval-based recognition, PIEC is robust to noisy instan-
taneous LTA probability fluctuations, and outperforms point-based
recognition in the common case of non-abrupt probability change.

Note that various Event Calculus dialects allow for durative LTAs
by means of durative events or by explicitly representing ‘fluent’ in-
tervals. These dialects, however, cannot handle uncertainty.

PIEC was designed to operate in a batch mode, requiring all avail-
able data for correct interval computation. We present an extension of
PIEC for online recognition where data arrive in a streaming fashion.

An area related to CER is that of ‘Run-time Verification’, i.e., the
online monitoring of a system’s correctness with regard to a set of
desired behaviours (specifications). For instance, in [17], the run-
time monitoring of IoT systems is performed by means of an event-
oriented temporal logic. The methods of run-time verification need
to handle uncertainty, originating, e.g., from network issues or event
sampling [18, 8]. As an example, [8] handles lossy traces via mon-
itors robust to a transient loss of events (short intervals of missing
indications). Similarly, PIEC features robustness to transient noise in
the input LTA probabilities, i.e., brief probability fluctuations.

3 Background

The Event Calculus is a formalism for representing and reasoning
about events and their effects [21]. Since its original proposal, many
dialects have been put forward, including formulations in (variants
of) first-order logic and as logic programs. As an example, in Prob-
EC [35] a simple version of the Event Calculus was presented, with
a linear time model including integer time-points. The ontology of
most such dialects comprises time-points, events and ‘fluents’, i.e.
properties that are allowed to have different values at different points
in time. Event occurrences may change the value of fluents. Hence,

the Event Calculus represents the effects of events via fluents. Given
a fluent F , the term F =V denotes that F has value V . A key feature
of the Event Calculus is the built-in representation of the common-
sense law of inertia, according to which F =V holds at a particular
time-point, if F =V has been ‘initiated’ by an event at some earlier
time-point, and not ‘terminated’ by another event in the meantime. A
set of LTA definitions may be expressed as an Event Calculus event
description, i.e., axioms expressing the STA occurrences as events,
the values of fluents expressing LTAs, and the effects of STAs, i.e.,
the way STAs define LTAs.

The Event Calculus has been expressed in frameworks handling
uncertainty, such as ProbLog [20], in the case of Prob-EC [35], and
Markov Logic Networks in [36], in order to perform probabilistic,
time-point-based LTA recognition. The Probabilistic Interval-based
Event Calculus (PIEC) [7] consumes the output of such a point-based
recognition, in order to compute the ‘probabilistic maximal intervals’
of LTAs, i.e., the maximal intervals during which an LTA is said to
take place, with a probability above a given threshold. Below, we
define ‘probabilistic maximal intervals’; then, we present the way
PIEC detects such intervals in linear time.

Definition 1 The probability of interval ILTA =[i , j ] of LTA with
length(ILTA)= j−i+1 time-points, is defined as

P(ILTA)=

∑j
k= i P(holdsAt(LTA, k))

length(ILTA)
,

where holdsAt(LTA, k) is an Event Calculus predicate which signi-
fies the occurrence of LTA at time-point k.

In other words, the probability of an interval of some LTA is equal
to the average of the LTA probabilities at the time-points that it con-
tains. A key concept of PIEC is that of probabilistic maximal interval:

Definition 2 A probabilistic maximal interval ILTA =[i , j ] of LTA
is an interval such that, given some threshold T ∈ [0, 1],
P(ILTA) ≥ T , and there is no other interval I ′

LTA such that
P(I ′

LTA) ≥ T and ILTA is a sub-interval of I ′
LTA.

Probabilistic maximal intervals (PMIs) may be overlapping. To
choose an interval among overlapping PMIs of the same LTA, PIEC
computes the ‘credibility’ of each such interval—see [7].

Given a dataset of n instantaneous LTA probabilities In[1 ..n] and
a threshold T , PIEC infers all PMIs of that LTA in linear-time. To
achieve this, PIEC constructs:
• The L[1 ..n] list containing each element of In subtracted by the

given threshold T , i.e., ∀ i ∈ [1 ,n], L[i ] = In[i ]−T . Note that an
interval ILTA satisfies the condition P(ILTA) ≥ T iff the sum of
the corresponding elements of list L is non-negative.

• The prefix [1 ..n] list containing the cumulative or prefix sums of
list L, i.e., ∀ i ∈ [1 ,n], prefix [i ] =

∑i
j = 1 L[j ].

• The dp[1 ..n] list, where ∀ i ∈ [1 ,n] we have that
dp[i ] =maxi≤j≤n(prefix [j ]). The elements of the dp list
are calculated by traversing the prefix list in reverse order.
Table 1 presents an example dataset In[1 ..10 ], along with the

lists calculated by PIEC for T =0.5. In this example, there are three
PMIs: [1 , 5 ], [2 , 6 ] and [8 , 10 ].

PIEC processes a dataset sequentially using two pointers, s and
e , indicating, respectively, the starting point and ending point of a
potential PMI. Furthermore, PIEC uses the following variable:

(1)dprange[s, e] =

{
dp[e]−prefix [s−1 ] if s > 1
dp[e] if s = 1

Substituting in the above formulation prefix and dp with their re-
spective definitions, we derive that dprange[s, e] expresses the max-
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Table 1: PIEC with threshold T =0.5.

Time 1 2 3 4 5 6 7 8 9 10

In 0 0.5 0.7 0.9 0.4 0.1 0 0 0.5 1
L -0.5 0 0.2 0.4 -0.1 -0.4 -0.5 -0.5 0 0.5
prefix -0.5 -0.5 -0.3 0.1 0 -0.4 -0.9 -1.4 -1.4 -0.9
dp 0.1 0.1 0.1 0.1 0 -0.4 -0.9 -0.9 -0.9 -0.9

imum sum that may be achieved by adding the elements of list L
from s to some e∗ ≥ e , i.e.:

dprange[s, e] = max
e≤e∗≤n

(L[s] + · · ·+ L[e∗]). (2)

The following entailment is a corollary of equation (2):

dprange[s, e] ≥ 0 ⇒ ∃e∗ : e∗ ≥ e and
∑

s≤i≤e∗
L[i ] ≥ 0 . (3)

Consequently, [s, e∗] is a potential PMI. In this case, PIEC incre-
ments the e pointer until dprange becomes negative. When dprange
becomes negative, PIEC produces the following PMI: [s, e−1 ].
Once a PMI is computed, PIEC increments the s pointer and re-
calculates dprange . By repeating this process, PIEC computes all
PMIs of a given dataset.

Example 1 Consider the dataset presented in Table 1 and a
threshold T = 0 .5 . Initially, s = e = 1 and PIEC calculates that
dprange[1 , 1 ] = 0 .1 ≥ 0 . Then, PIEC increments e as long as
dprange remains non-negative. This holds until e = 6 when
dprange[1 , 6 ] =−0 .4 . At that point, PIEC produces the PMI
[1 , 5 ] and increments s . Subsequently, PIEC calculates that
dprange[2 , 6 ] = 0 .1 and thus increments e , i.e., e becomes 7
while s remains equal to 2 . dprange[2 , 7 ] =−0 .4 < 0 and, ac-
cordingly, PIEC produces the PMI [2 , 6 ] and increments s , i.e.,
s = 3 . dprange[s, 7 ] < 0 holds ∀s ∈ [3 , 7 ]. Hence, PIEC incre-
ments s until s = 8 when dprange[8 , 7 ] = 0 . Note that for all
time-points t we have dprange[t+1 , t ] = dp[t ]− prefix [t ] ≥ 0
— see the definition of dp. Hence, PIEC avoids such erroneous
pointer values, i.e., s > e , by incrementing e . Here, e increases as
long as dprange[8 , e] ≥ 0 . This holds for every subsequent time-
point of the dataset. Finally, PIEC produces the PMI [8 , 10 ] as
P([8 , 10 ]) ≥ T and there is no subsequent time-point to add. Sum-
marising, PIEC computes all PMIs of In[1 ..10 ]. �

By computing PMIs, PIEC improves upon point-based recognition
in the presence of noisy instantaneous LTA probability fluctuations,
and in the common case of non-abrupt probability change. See [7]
for an empirical analysis supporting these claims. On the other hand,
PIEC was designed to operate in a batch mode, as opposed to an on-
line setting where data stream into the recognition system. Consider
the example below.

Table 2: PIEC operating on data batches.

Time 1 2 3 4 5 6 7 8 9 10

prefix -0.5 -0.5 -0.3 0.1 -0.1 -0.5 -1 -1.5 0 0.5
dp 0.1 0.1 0.1 0.1 -0.1 -0.5 -1 -1.5 0.5 0.5

Example 2 Assume that the dataset shown in Table 1 arrives in three
batches: In[1 ..4 ], In[5 ..8 ] and In[9 , 10 ]. Table 2 shows the ele-
ments of the prefix and dp lists in this case. prefix [5 ] e.g. is now
equal to L[5 ] =−0 .1 , since the values of the L[1 ..4 ] list are not
available at the second data batch. Note that the elements of list L
do not change (and are presented in Table 1). Given the first data

batch In[1 ..4 ], PIEC, starting from time-point 1 , increments pointer
e as long as dprange[1 , e] ≥ 0 . This condition holds for every time-
point in the first batch. Hence, PIEC computes the interval [1 , 4 ].
Considering the second data batch In[5 ..8 ], PIEC does not compute
any interval, as every probability in In[5 ..8 ] is lower than T . For
the third batch In[9 , 10 ], PIEC initiates with s = e = 9 and subse-
quently computes the interval [9 , 10 ], as dprange[9 , 10 ] ≥ 0 . �

Neither of the intervals [1 , 4 ] and [9 , 10 ] computed in the above
example is a PMI. The former could have been extended to the right
by one time-point, if the next data batch was foreseen. The latter
could have started from time-point 8 , if that time-point had been
stored for future use. Additionally, the PMI [2 , 6 ] was ignored en-
tirely. One way to address these issues would be to re-iterate over
all data received so far upon the receipt of each new data batch. The
computational cost of such a strategy, however, is not acceptable in
streaming environments (as will be shown in our empirical analysis).

4 Online PIEC

We present an extension of PIEC, called online Probabilistic
Interval-based Event Calculus (oPIEC), which operates on data
batches In[i ..j ], with i ≤ j, i.e., oPIEC processes each incoming
data batch and then discards it. oPIEC identifies the minimal set of
time-points that need to be cached in memory in order to guarantee
correct LTA recognition. These time-points are cached in the ‘sup-
port set’ and express the starting points of potential PMIs, i.e., PMIs
that may end in the future. For instance, after processing the first data
batch In[1 ..4 ] in Example 2, oPIEC would have cached time-points
t = 1 and t = 2 in the support set, thus allowing for the computa-
tion of PMIs [1 , 5 ] and [2 , 6 ] in the future. On the contrary, oPIEC
would not have cached time-points t = 3 and t = 4 , because, given
that T =0.5, a PMI cannot start from any of these points, irrespec-
tive of the data that may arrive after the first batch.

Upon the arrival of a data batch In[i ..j ], oPIEC computes the val-
ues of the L[i..j], prefix [i ..j ], and dp[i ..j ] lists. To allow for correct
reasoning, the last prefix value of a batch is transferred to the next
one. Consequently, the prefix value of the first time-point of a batch,
prefix [i ], is set to prefix [i−1 ]+L[i ]. (For the first batch, we have, as
in PIEC, prefix [1 ] =L[1 ].) This way, the computation of the values
of prefix [i ..j ] and dp[i ..j ] is not affected by the absence of the data
prior to i. Subsequently, oPIEC performs the following steps:
1. It computes intervals starting from a time-point in the support set.
2. It computes intervals starting from a time-point in the current

batch.
3. It identifies the elements of the current batch that should be cached

in the support set.
Step 2 is performed by means of PIEC (see Section 3). In what fol-
lows, we present first Step 3 and then move to Step 1.

4.1 Support Set

The support set comprises a set of tuples of the form
(t , prev prefix [t ]), where t is a time-point and prev prefix [t] ex-
presses t’s previous prefix value, which is defined as follows:

prev prefix [t ] =

{
prefix [t−1 ] if t > 1
0 if t = 1

(4)

With the use of prev prefix [t], oPIEC is able to compute
dprange[t, t′] for any future time-point t′, and thus determine
whether t is the starting point of a PMI. For example, the arrival of
a time-point t ′ > t for which dp[t ′] ≥ prev prefix [t ] implies that
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dprange[t , t ′] ≥ 0 (see equations (1) and (4)), and hence indicates
that t is the starting point of a PMI that may end either at t′ or at a
later time-point (see corollary (3)).

Algorithm 1 support set update(ignore value, support set)

1: for t ∈ In[i..j] do

2: if prev prefix [t ] < ignore value then

3: support set
add⇐== (t , prev prefix [t ])

4: ignore value ← prev prefix [t ]
5: end if

6: end for

7: return (ignore value, support set)

Algorithm 1 identifies the time-points of a data batch In[i ..j ] that
should be cached in the support set. For each time-point t ∈ In[i ..j ],
we check whether prev prefix [t] is less than the ignore value—
this variable expresses the lowest prev prefix value found so far.
If prev prefix [t] is less than the ignore value , then we append
(t , prev prefix [t ]) to the support set, and set the ignore value to
prev prefix [t]. A formal justification for this behaviour is given af-
ter the following example.

Example 3 Consider the dataset of the previous examples, arriv-
ing in three batches, In[1 ..4 ], In[5 ..8 ], and In[9 , 10 ], as in Ex-
ample 2. The values of the prefix list are shown in Table 1—recall
that operating on data batches, as opposed to all data received so
far, does not affect oPIEC’s computation of the prefix list. Al-
gorithm 1 processes every time-point of each batch sequentially.
For t=1, we have prev prefix [1 ] = 0 < ignore value , since, ini-
tially, ignore value =+∞. Thus, the tuple (1 , prev prefix [1 ] = 0 )
is added to the support set and the ignore value is set to 0. Next,
t = 2 and prev prefix [2 ] =−0 .5 < ignore value . Therefore, Al-
gorithm 1 caches the tuple (2 ,−0 .5 ) and updates the ignore value .
The remaining time-points of the first batch are not added to the
support set as their prev prefix value does not satisfy the condi-
tion prev prefix [t ] < ignore value . By processing the remaining
batches in a similar way, we get the following support sets:
• [(1 , 0 ), (2 ,−0 .5 )]; computed after processing batch In[1 ..4 ].
• [(1 , 0 ), (2 ,−0 .5 ), (8 ,−0 .9 )]; computed after processing batch

In[5 ..8 ].
• [(1 , 0 ), (2 ,−0 .5 ), (8 ,−0 .9 ), (9 ,−1 .4 )]; computed after pro-

cessing batch In[9 ..10 ].
�

This example illustrates that oPIEC caches the time-points with
the currently minimal prev prefix value, and no other time-points.
A time-point t may be the starting point of a PMI iff:

∀tprev ∈ [1 , t), prev prefix [tprev ] > prev prefix [t ] (5)

Theorem 1 If [ts , te ] is a PMI, then ts satisfies condition (5).

Proof. Suppose that ts does not satisfy condition (5). Then,
∃t ′s : t ′s < ts and prev prefix [t ′s ] ≤ prev prefix [ts ] (6)

We have that:
dprange[t ′s , te ] = dp[te ]−prefix [t ′s−1 ]

= dp[te ]−prev prefix [t ′s ]

from ineq. (6)
≥ dp[te ]−prev prefix [ts ]

= dprange[ts , te ] ≥ 0

Note that dprange[ts , te ] ≥ 0 because [ts , te ] is a PMI.
The fact that dprange[t ′s , te ] ≥ 0 , as shown above, indicates that

∃t ′e : t ′e ≥ te and [t ′s , t
′
e ] is a PMI — see corollary (3). Addition-

ally, [ts , te ] is a sub-interval of [t ′s , t ′e ] since t ′s < ts . Therefore, by
Definition 2, [ts , te ] is not a PMI. By contradiction, ts must satisfy
condition (5). �

Note that a time-point t may satisfy condition (5) and not be the
starting point of a PMI in a given dataset. See e.g. time-point 9 in
Example 3. These time-points must also be cached in the support set
because they may become the starting point of a PMI in the future.
Consider again Example 3 and assume that a fourth batch arrives
with In[11 ] = 0 . In this case, we have a new PMI: [9 , 11 ].

Theorem 2 oPIEC adds a time-point t to the support set iff t satis-
fies condition (5).

Proof. oPIEC adds a time-point t to the support set iff the condi-
tion of the if statement shown in line 2 of Algorithm 1 is satis-
fied. When this condition, prev prefix [t ] < ignore value , is satis-
fied, the ignore value is set to prev prefix [t]. Since Algorithm 1
handles every time-point in chronological order, in its i th iteration,
ignore value will be equal to the minimum prev prefix value of the
first i time-points. So, a time-point’s prev prefix value is less than
the ignore value iff it satisfies condition (5). �

According to Theorem 2, therefore, oPIEC caches in the support
set the minimal set of time-points that guarantees correct LTA recog-
nition, irrespective of the data that may arrive in the future.

Algorithm 2 interval computation(dp, support set , intervals)

1: s ← 1 , e ← 1 , flag ← false
2: while s ≤ support set .length and e ≤ dp.length do

3: if dp[e] ≥ support set [s].prev prefix then

4: flag ← true
5: e += 1
6: else

7: if flag == true then

8: intervals
add⇐== (support set [s].timepoint , e−1 )

9: end if

10: flag ← false
11: s += 1
12: end if

13: end while

14: if flag == true then

15: intervals
add⇐== (support set [s].timepoint , e−1 )

16: end if

17: return intervals

4.2 Interval Computation

We now describe how oPIEC computes PMIs using the elements
of the support set. Algorithm 2 shows this process. oPIEC uses a
pointer s to traverse the support set, and a pointer e to traverse
the dp list of the current data batch; the elements of the support
set and all lists maintained by oPIEC are temporally sorted. Algo-
rithm 2 starts from the first element s of the support set and the
first time-point e of the current data batch, and checks if the inter-
val [support set [s].timepoint , e] is or may be extended to a PMI.
The condition in line 3 of Algorithm 2 essentially checks whether

dprange[support set [s].timepoint , e] (7)
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is non-negative. If it is non-negative, then a PMI starts at
support set[s].timepoint. The Boolean variable flag is set to true
and, subsequently, e is incremented as an attempt to find the ending
point of the PMI starting at support set [s].timepoint .

If the value of expression (7) is negative, then the interval
[support set [s].timepoint , e] is not a PMI, and there is no point
extending it to the right. Consequently, oPIEC checks whether the
s, e pointers were pointing to a PMI in the previous iteration. If
they were, oPIEC adds the interval of the previous iteration, i.e.,
[support set [s].timepoint , e−1 ], to the list of PMIs (lines 7-8).
Then, it sets flag to false , and increments s , as no other PMI may be
found that starts at the current element of the support set.

Table 3: oPIEC operating on data batches.

Time 1 2 3 4 5 6 7 8 9 10

prev prefix 0 -0.5 -0.5 -0.3 0.1 0 -0.4 -0.9 -1.4 -1.4
dp 0.1 0.1 0.1 0.1 0 -0.4 -0.9 -1.4 -0.9 -0.9

Example 4 We complete Example 3 by presenting the interval com-
putation process for the same dataset arriving in batches In[1 ..4 ],
In[5 ..8 ], and In[9 ..10 ]. Table 3 displays the values of the dp list
as computed by oPIEC, as well as the prev prefix values, aid-
ing the presentation of the example. Upon the arrival of the first
batch In[1 ..4 ], the support set is empty, and thus Algorithm 2
does not compute any interval. When the second batch In[5 ..8 ] ar-
rives, the support set is [(1 , 0 ), (2 ,−0 .5 )] (see Example 3). Hence,
Algorithm 2 initializes pointer s to 1 and pointer e to 5 . Since
dp[5 ] ≥ prev prefix [1 ], the flag becomes true and e is incre-
mented (see lines 4–5 of Algorithm 2). In the following iteration,
dp[6 ] < prev prefix [1 ] and thus Algorithm 2 produces the PMI
[1 , 5 ]. Next, s is set to 2 . Because dp[6 ] > prev prefix [2 ], Al-
gorithm 2 decides that there is a PMI starting from t = 2 . How-
ever, it fails to extend it in the following iteration. Therefore, Al-
gorithm 2 produces the PMI [2 , 6 ] and terminates for this data
batch. When the third batch In[9 ..10 ] arrives, the support set is
[(1 , 0 ), (2 ,−0 .5 ), (8 ,−0 .9 )]. Since dp[9 ] =−0 .9 is less than the
prev prefix values of the first two elements of the support set, Al-
gorithm 2 skips these elements, and sets s to the third element, i.e.,
support set [s].timepoint = 8 . Following similar reasoning, Algo-
rithm 2 increments e and eventually produces the PMI [8, 10]. �

In this example dataset, oPIEC computes all PMIs. This is in contrast
to PIEC that does not compute any of the PMIs, given the partitioned
stream of Example 2.

5 Bounded Support Set

The key difference between the complexity of oPIEC and PIEC is
that the former takes into consideration the support set in interval
computation. The size of the support set depends on the data stream
of instantaneous probabilities and the value of the threshold T . In
brief, high threshold values increase the size of the support set, and
vice versa. In any case, to allow for efficient reasoning in stream-
ing environments, the support set needs to be bound. To address
this issue, we present oPIECb, which introduces an algorithm to de-
cide which elements of the support set should be deleted, in order to
make room for new ones. Consequently, when compared to PIEC and
oPIEC, oPIECb may detect shorter intervals and/or fewer intervals.

When a time-point t satisfying condition (5) arrives, i.e., t may
be the starting point of a PMI, oPIECb will attempt to cache it in

the support set, provided that the designated support set limit is not
exceeded. If it is exceeded, then oPIECb decides whether to cache t,
replacing some older time-point in the support set, by computing the
‘score range’, an interval of real numbers defined as:

score range[t ] =[prev prefix [t ], prev prefix [prevs [t ]]) (8)
The score range is computed for the time-points in set S, i.e., the
time-points already in the support set, and the time-points that are
candidates for the support set. All the time-points in S satisfy condi-
tion (5) and thus are in descending prev prefix order. prevs [t ] is the
time-point before t in S.

With the use of score range[t ], oPIECb computes the like-
lihood that a time-point t, satisfying condition (5), will indeed
become the starting point of a PMI. Suppose, e.g., that a time-point
te > t arrives later in the stream, with dp[te ] ∈ score range[t ],
i.e., prev prefix [t ] ≤ dp[te ] < prev prefix [prevs [t ]] (see
eq. (8)). In this case, we have dprange[t , te ] ≥ 0 and
dprange[prevs [t ], te ] < 0 (see eq. (1) and (4)). Hence, a PMI
will start from t. The longer the score range[t ], i.e., the longer
the distance between prev prefix [t ] and prev prefix [prevs [t ]], the
more likely it is, intuitively, that a future time-point te will arrive
with dp[te ] ∈ score range[t ], and thus that t will be the starting
point of a PMI. Consequently, oPIECb stores in the support set the
elements with the longer score range.

Algorithm 3 support set maintenance(support set , new tuples)

1: m ← support set .length , k ← new tuples.length

2: S ← ∅, S
add⇐== support set , S

add⇐== new tuples
3: counter ← 1 , temp array ← ∅
4: for (t , prev prefix [t ]) ∈ S do

5: score range size ← prev prefix [prevs [t ]]−prev prefix [t ]
6: if counter ≤ k then

7: temp array
add⇐== (t , prev prefix [t ], score range size)

8: if counter == k then

9: longest elem ← find longest range(temp array)
10: end if

11: else

12: if score range size < longest elem.score range then

13: temp array .delete(longest elem)

14: temp array
add⇐== (t , prev prefix [t ], score range size)

15: longest elem ← find longest range(temp array)
16: end if

17: end if

18: counter += 1
19: end for

20: for elem ∈ temp array do

21: S .delete(elem)
22: end for

23: support set ← S
24: return support set

Algorithm 3 presents the support set maintenance algorithm for a
support set of size m and k candidate elements. oPIECb gathers every
element of the support set and the candidate tuples in set S . The goal
is to compute the elements of S with the shortest score ranges, in
order to cache the remaining elements in the new support set.

Example 5 Consider the dataset In[1 ..5 ] presented in Table 4. With
a threshold value T of 0.5, this dataset has a single PMI: [2 , 5 ]. As-
sume that the data arrive in two batches: In[1 ..4 ] and In[5 ]. There-
fore, given an unbounded support set, oPIEC would have cached
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Table 4: oPIECb in action.

Time 1 2 3 4 5

In 0 0.3 0.3 0.6 0.9
L -0.5 -0.2 -0.2 0.1 0.4
prefix -0.5 -0.7 -0.9 -0.8 -0.4
prev prefix 0 -0.5 -0.7 -0.9 -0.8
dp -0.5 -0.7 -0.8 -0.8 -0.4

time-points 1 , 2 , 3 and 4 into the support set.
Assume now that the limit of the support set is set to two elements.

oPIECb processes In[1 ..4 ] to detect the time-points that may be used
as starting points of PMIs, i.e., those satisfying condition (5). These
are time-points 1 , 2 , 3 and 4 . In order to respect the support set
limit, oPIECb has to compute the score ranges:

• score range[1 ] is set to [0 ,+∞) since t = 1 has no predecessor
in the support set.

• score range[2 ] =[prev prefix [2 ], prev prefix [1 ]) =[−0 .5 , 0 ).
• score range[3 ] = [prev prefix [3 ], prev prefix [2 ]) =

= [−0 .7 ,−0 .5 ).
• score range[4 ] =[prev prefix [4 ], prev prefix [3 ]) =

=[−0 .9 ,−0 .7 ).

Given these score range values, oPIECb caches the tuples (1 , 0 )
and (2 ,−0 .5 ) in the support set, since these are the elements with
the longest score range. oPIECb chooses time-point t = 2 , e.g., over
time-points t = 3 and t = 4 for the support set, because it is more
likely that a future time-point t′ will have a dp[t ′] value within
score range[2 ] than within score range[3 ] or score range[4 ].

With such a support set, oPIECb is able to perform correct LTA
recognition, i.e., compute PMI [2 , 5 ], upon the arrival of the second
data batch In[5 ]. Note that dprange[2 , 5 ] = 0 .1 ≥ 0 and t = 5 is
the last time-point of the data stream so far. Also, for the other time-
point of the support set, t = 1 , we have dprange[1 , 5 ] =−0 .4 < 0 ,
and hence a PMI cannot start from t = 1 .

Following a somewhat naive maintenance strategy, i.e., deleting
the oldest element of the support set to make room for a new one,
as opposed to the strategy of oPIECb based on score range , would
have generated, after processing In[1 ..4 ], the following support set:
[(3 ,−0 .7 ), (4 ,−0 .9 )]. Consequently, upon the arrival of In[5 ], the
interval [3 , 5 ] would have been computed, which is not a PMI. �

6 Experimental Evaluation

6.1 Datasets

To evaluate oPIECb we used CAVIAR4, a benchmark activity recog-
nition dataset. CAVIAR includes 28 videos with 26,419 video frames
in total. The videos are staged, i.e., actors walk around, sit down,
meet one another, fight, etc. Each video has been manually anno-
tated by the CAVIAR team in order to provide the ground truth for
both short-term activities (STAs), taking place on individual video
frames, as well as long-term activities (LTAs). The input to the activ-
ity recognition system consists of the STAs ‘inactive’, i.e., standing
still, ‘active’, i.e., non-abrupt body movement in the same position,
‘walking’, and ‘running’, together with their time-stamps, i.e., the
video frame in which the STA took place. The dataset also includes
the coordinates of the tracked people and objects as pixel positions
at each time-point, as well as their orientation. Given such an input,

4 Section “Clips From INRIA” of http://groups.inf.ed.ac.uk/
vision/CAVIAR/CAVIARDATA1/

the task is to recognise LTAs such as two people having a meeting or
fighting.

The CAVIAR dataset includes inconsistencies, as the members of
the CAVIAR team that provided the annotation did not always agree
with each other [22, 35]. To allow for a more demanding evaluation
of activity recognition systems, Skarlatidis et al. [35] injected addi-
tional types of noise into CAVIAR, producing the following datasets:
• Smooth noise: a subset of the STAs have probabilities attached,

generated by a Gamma distribution with a varying mean. All other
STAs have no probabilities attached, as in the original dataset.

• Strong noise: probabilities have been additionally attached to con-
textual information (coordinates and orientation) using the same
Gamma distribution, and spurious STAs that do not belong to the
original dataset have been added using a uniform distribution.
In the analysis that follows, we use the original CAVIAR dataset

as well as the ‘smooth noise’ and ‘strong noise’ versions. The target
LTAs are ‘meeting together’ and ‘fighting’. All versions of CAVIAR,
along with the definitions of these LTAs in the Event Calculus, are
publicly available5.

6.2 Predictive Accuracy

The aim of the first set of experiments was to compare the predictive
accuracy of oPIECb against that of PIEC. We focused our compari-
son on four cases in which PIEC has a noticeably better performance
than the underlying system performing point-based LTA recognition.
In these experiments, we use two such systems, Prob-EC [35] and
OSLα [25, 24]. Prob-EC is an implementation of the Event Calcu-
lus in ProbLog [20], designed to handle data uncertainty. OSLα is
a supervised learning framework employing the Event Calculus in
Markov Logic [36], to guide the search for weighted LTA definitions.
Our comparison concerns the following cases:
• Prob-EC recognising the ‘meeting’ LTA when operating on the

‘strong noise’ dataset.
• Prob-EC recognising the ‘fighting’ LTA when operating on the

‘smooth noise’ and the ‘strong noise’ datasets. The LTA defini-
tions used by Prob-EC were manually constructed and do not have
weights attached [35].

• OSLα recognising the ‘meeting’ LTA when operating on the orig-
inal CAVIAR dataset. Prior to recognition, OSLα was trained to
construct the LTA definition in the form of weighted Event Calcu-
lus rules, given the annotation provided by the CAVIAR team (see
[25] for the setup of the training process).

In each case, PIEC and oPIECb consumed the output of point-based
LTA recognition.

Figure 1 shows the experimental results in terms of the f1-score,
which was calculated using the ground truth of CAVIAR. Each of
the diagrams of Figure 1 shows the performance of point-based LTA
recognition (Prob-EC in Figures 1(a)–(c) and OSLα in Figure 1(d)),
PIEC, oPIECb operating on data batches of 1 time-point, i.e., per-
forming reasoning at each time-point and then discarding it, un-
less cached in the support set (see ‘batch size=1’ in Figure 1), and
oPIECb operating on batches of 10 time-points. We used the thresh-
old value leading to the best performance for each system. For recog-
nising ‘meeting’ and ‘fighting’ under ‘strong noise’, we set T =0.5,
while in the recognition of ‘meeting’ with the weighted definitions
of OSLα, we set T =0.7. In these cases, where the same threshold
value is used for point-based and interval-based recognition, the per-
formance of oPIECb, when operating on batches of 1 time-point with

5 https://anskarl.github.io/publications/TPLP15/
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(a) ‘Meeting’ LTA; ‘strong noise’.

0 50 100 150
0.6

0.7

0.8

0.9

support set size

f1
-s
co
re

oPIECb with batch size = 1

oPIECb with batch size = 10

PIEC

Prob-EC

(b) ‘Fighting’ LTA; ‘smooth noise’.
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(c) ‘Fighting’ LTA; ‘strong noise’.
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(d) ‘Meeting’ LTA; weighted pattern.
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Figure 1: Predictive accuracy.

an empty support set, amounts to the performance of point-based
recognition. See Figures 1(a), (c) and (d). In the case of ‘fighting’
under ‘smooth noise’, the best performance for Prob-EC is achieved
for a different threshold value than that leading to the best perfor-
mance for PIEC. Thus, Prob-EC operated with T =0.5, while PIEC
and oPIECb operated with T =0.9.

Figure 1 shows that oPIECb reaches the performance of PIEC,
even with a small support set (≤ 50 ), and with the common option
for streaming applications of the smallest batch size (= 1 ). In other
words, oPIECb outperforms point-based recognition, requiring only
a small subset of the data.

(a) ‘Meeting’ LTA; ‘strong noise’.
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(b) ‘Fighting’ LTA; ‘strong noise’.
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Figure 2: Precision and recall. For oPIECb, batch size = 1.

Figure 2 shows the precision and recall scores of oPIECb (operat-
ing on batches of 1 time-point) and PIEC, in the task of recognising
the ‘meeting’ and ‘fighting’ LTAs in the ‘strong’ noise dataset. In
both cases, Prob-EC provides the instantaneous probabilities. In the
case of ‘fighting’, both precision and recall increase for oPIECb as
the support set increases, eventually reaching the precision and recall
of PIEC. In the case of ‘meeting’, the precision of oPIECb is initially
higher than that of PIEC, and drops, as the support set increases, ap-
proaching the precision of PIEC. Recall that, due to the bounded sup-
port set, oPIECb may detect shorter intervals and/or fewer intervals
than PIEC. In this particular case, the limit on the size of the support

set leads, also, to correcting some of PIEC’s errors, i.e. reducing its
false positives.

(a) ‘Meeting’ LTA; ‘strong noise’.
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(b) ‘Fighting’ LTA; ‘strong noise’.
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Figure 3: Support set maintenance. Batch size = 1.

The aim of the next set of experiments was to evaluate the effects
of the support set maintenance strategy of oPIECb. Figure 3 com-
pares the performance of oPIECb against that of a naive maintenance
strategy, according to which the oldest element of the support set is
deleted to make room for a new one. In these experiments, the ground
truth was the output of PIEC. As shown in Figure 3, in most cases
the strategy of oPIECb, based on the score range , leads to a better
approximation of the performance of PIEC.
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(b) ‘Strong noise’.
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Figure 4: Recognition times for ‘fighting’: PIEC vs oPIECb with a
support set limit of 60 elements.

6.3 Recognition Times

In these experiments, the aim was to compare the recognition times
of oPIECb and PIEC in a streaming setting, i.e., when the recogni-
tion system must respond as soon as a data batch arrives. To achieve
this, we instructed Prob-EC to recognise the ‘fighting’ LTA in the
videos of the ‘smooth’ and ‘strong noise’ datasets with instances of
this LTA. Then, we provided the output of Prob-EC in batches of 1
time-point to oPIECb and PIEC, for interval-based recognition. Upon
the arrival of a data batch, PIEC was instructed to reason over all data
collected so far, as this is the only way to guarantee correct PMI com-
putation. oPIECb was instructed to operate on a support set limited to
60 elements, as this is sufficient for reaching the accuracy of PIEC.
Figure 4 shows the experimental results. Note that the ‘strong noise’
dataset is larger due to the injection of spurious STAs (see Section
6.1). As shown in Figure 4, oPIECb has a constant (low) cost, in
contrast to the cost of PIEC, which increases as data stream into the
recognition system. The comparison of recognition times under dif-
ferent configurations (LTAs, datasets, underlying point-based recog-
nition system) yields similar results, and is not shown here to save
space.

P. Mantenoglou et al. / Online Probabilistic Interval-Based Event Calculus2630



7 Summary and Further Research

We presented oPIECb, an algorithm for online activity recognition
under uncertainty. oPIECb identifies the minimal set of data points
that need to be cached in memory, in order to guarantee correct ac-
tivity recognition in a streaming setting. Moreover, oPIECb adopts
a method for further reducing the cached data points, according to
memory limits. This leads to highly efficient recognition, while at
the same time minimising any effect on correctness. Our empiri-
cal evaluation on a benchmark activity recognition dataset showed
that oPIECb achieves a higher predictive accuracy than point-based
recognition models that have been manually constructed (Prob-EC)
or optimised by means of relational learning (OSLα). Moreover,
oPIECb reaches the predictive accuracy of batch interval-based ac-
tivity recognition (PIEC), with a small support set, thus supporting
streaming applications.

For future work, we aim at developing new support set mainte-
nance techniques that reduce further the errors of PIEC. Moreover,
we plan to compare oPIECb with additional machine learning frame-
works, such as [19].
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