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Abstract. Latent variables (LVs) represent the origin of many sci-
entific, social, and medical phenomena. While models with only
observed variables (OVs) have been well studied, learning a latent
variable model (LVM) allowing both types of variables is difficult.
Therefore, the assumption of no LVs is usually made, but modeling
by ignoring LVs leads to learning a partial/wrong and misleading
model that misses the true realm. In recent years, progress has been
made in learning LVMs from data, but most algorithms have strong as-
sumptions limiting their scope. Moreover, LVs by nature often change
temporally, adding to the challenge and complexity of learning, but
current LVM learning algorithms do not account for this. We propose
learning locally a causal model in each time slot, and then local to
global learning over time slices based on probabilistic scoring and
temporal reasoning to transfer the local graphs into a latent dynamic
Bayesian network with intra- and inter-slice edges showing causal
interrelationships among LVs and between LVs and OVs. Examined
using data generated synthetically and of ALS and Alzheimer pa-
tients, our algorithm demonstrates high accuracy regarding structure
learning, classification, and imputation, and less complexity.

1 Introduction

Our complex world comprises observed and latent variables [17].
While the term latent variables (LVs) is mainly used in neural net-
works, clustering, and factor analysis for dimensionality reduction,
where there is no semantic or physical meaning to the result, we
focus on latent causal structure learning, where LVs are medically,
psychologically, or sociologically important, e.g., stress, mood, and
satisfaction. LVs and their interrelations can explain root causes for
values measured by observed variables (OVs). We consider observed
variables as proxies of LVs, and employ them to discover causal
pathways connecting LVs to themselves and to OVs. The multiple
indicator model (MIM) [4] presents such pathways, but learning an
MIM usually requires knowing the correct causal relations between
LVs and OVs (i.e., the measurement model) [19], and if this is miss-
ing, algorithms, e.g., MIMBuilt [27], which learn the causal relations
between LVs (i.e., the structural model) based on a given (assumed
correct) measurement model, may be misleading. We are interested in
learning a latent variable model (LVM) from data without knowing in
advance the number of LVs, nor their cardinality (number of states),
interrelations, or relations to the OVs that measure them. Finding
causal relations manifested in an LVM is difficult because the joint
distribution can be generated by an infinite number of different LVMs.

Several algorithms have been proposed to learn a static LVM, such
as structural expectation maximization (SEM) [10], FindHidden [8],
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fast causal inference (FCI) [29], a family of algorithms to learn LV
trees [13, 35], BuildPureClusters (BPC) [27], find one factor clusters
[18], find two factor clusters [19], and learning pairwise cluster com-
parison (LPCC) [2]. These algorithms usually need information about
the number of LVs and their cardinality [2], and only find evidence
for the existence of LVs, but do not necessarily learn an LVM [27], or
provide only a partial causal explanation due to limiting assumptions.

Learning a dynamic (temporal) LVM, where LVs and their interre-
lations may change in time, is more challenging. A common dynamic
graphical model is the hidden Markov model (HMM) [25] and its
extensions, the factorial HMM [12] and dynamic Bayesian network
(DBN) [24], that generalize it under the stationarity assumption, rep-
resenting multi-variable models. However, DBN learning is NP-hard
[24, 30], requiring a greedy search. Also, learning with data missing,
which is the essence behind learning an LVM, requires an EM or
a gradient method, which are computationally expensive. Last, like
for the (static) LVM learned using search and score algorithms (e.g.,
SEM, FindHidden), the learned DBN may fit the data well, but miss
causal relations. tsFCI [9] learns a dynamic model from time-series
data using a causal structure learning method, but it neither explicitly
identifies LVs, nor their values, nor the relationships among them.

In this paper, we replace the common expensive (EM) greedy
search for a locally optimized DBN with inexpensive (a single EM
call) global temporal learning based on local causal MIM structures
learned by LPCC. Our contribution is: 1) an algorithm that learns
local static causal structures for each time slice of a sequence, each
of which is asymptotically a pattern of the true static graph, and
combines the local structures into a dynamic model by probabilistic
scoring and temporal-causal reasoning, forming a stationary temporal
MIM-based LVM; 2) performance measures of structural correctness
for a static LVM and their extension to a temporal LVM; and 3)
in showing theoretical correctness of our algorithm and providing
empirical evidence for its usefulness and accuracy in: a) learning
synthetic temporal graphs, b) inducing dynamic latent-state prediction
models, c) performing data imputation in missingness scenarios, and
d) representing latent medical knowledge for better understanding of
neurodegenerative diseases. Following, we briefly describe the LPCC
(Sec. 2), which is our local structure learning algorithm, how we turn
local LVM structure learning into temporal LVM learning (Sec. 3),
and our empirical evaluation (Sec. 4), before summarizing (Sec. 5).

2 Learning pairwise cluster comparison

First are two definitions related to LVM. Capital/small letters denote
variable/value, and bold is used for vectors.

Definition. Measurement model—A directed acyclic graph (DAG)
over sets of OVs O, LVs L, and edges is a measurement model if a
variable in L is a parent of at least one variable in O, a variable in O
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is a child of at least one variable in L, and none of the variables in O

is a parent of any variable in L [27].
Definition. Pure measurement model—A measurement model is

called a pure measurement model (PMM) iff each variable in O has a
single parent and that parent is in L.

Second, we present the learning pairwise cluster comparison
(LPCC) algorithm used to locally learn a PMM for each time slice
(Sec. 3.1). The LPCC algorithm [2] links learning a causal graphical
model and cluster analysis such that the structure of the model is
learned based on the analysis of the clusters. The main idea is that a
change in the value of an exogenous LV is reflected in the values taken
by its OV descendants, and thus, if we want to identify an exogenous
LV, we should check for value changes in its OVs. To do that, we first
define: 1) exogenous variable as zero in-degree (i.e., a variable that
has no parents in the graph) 2) a major effect as that maximizing the
conditional probability of an OV value given a specific configuration
of all its exogenous ancestors, 3) a major value as the value OV takes
when the effect is major, and 4) a major cluster as the data cluster that
corresponds to the OV’s major value, and thus, represents the major
effect of the specific exogenous configuration on this OV. Note that the
set of all major clusters (each corresponds to a major value of an OV
due to its exogenous configuration) reflects the effect of all possible
exogenous value configurations, and thus the number of major clusters
equals the number of all configurations of all exogenous variables.
Thus, major cluster identification is fundamental to the discovery of
exogenous variables and (later) their causal interrelations.

The LPCC algorithm performs pairwise cluster comparison (PCC)
between any two major clusters; these are represented by their cen-
troids of dimension |O| (the number of OVs). The result of a PCC is a
binary vector of size |O|, in which each element is 1 or 0 depending,
respectively, on whether or not there is a difference between the corre-
sponding elements in the compared major cluster centroids. Note that
it is only the PCC result that is binary, not the data or the centroids.
Thus, a PCC element of 1 identifies an OV that has changed its value
between the compared clusters due to a change in its ancestor LVs,
which is an evidence of causal relationships between the two (see
proof in [2]). Therefore, each PCC reveals a value configuration of
the exogenous LVs and, together, all PCCs reveal the LVs themselves.
Similarly, the relationships among the LVs can be learned.

To demonstrate a PCC, Table 1 shows centroids of four major
clusters and the corresponding PCCs. The centroids are of clusters
found for six-dimensional records sampled from the graph in Fig. 1(a)
having two binary LVs and six binary OVs (binary for the example,
as LPCC is not restricted by variable cardinality). To reveal each
exogenous LV, we have to check which elements in a PCC change
always together, as this reflects a real change in the exogenous LV.

Definition. A maximal set of observed (MSO) variables is the
maximal set of OVs that always change values together in all PCCs.

Identification of MSOs is based on the PCC matrix. Table 1b shows
that X1, X2, and X3 always change values together, as do X4, X5,
and X6, forming two MSOs that each include descendants of the
same LV, introducing, in this example, two exogenous LVs, as shown
in Fig. 1(a) from which the data were sampled. Since every OV
belongs to a single MSO, i.e., MSOs corresponding to different LVs
are disjoint, LPCC learns a PMM [2].

The LPCC algorithm learns an LVM in two stages. In the first,
it identifies exogenous latents and latent colliders, along with their
descendants. In a collider (V-structure) [e.g., L2 in Fig 1(b)], two
LVs have a mutual child LV, and they are conditionally dependent
given this child [14]. An LV Li is a latent collider iff 1) its indicators
(MSO) change value together sometimes with latent Lj indicators and

sometimes with Lk indicators, and 2) its MSO never changes value
alone in any PCC (i.e., its indicators are never the only ”1”s in any
PCC) [2]. The intuition is that a latent collider would change value iff
at least one of its parents changed value.

Table 2a shows four major cluster centroids of six-dimensional
clustered data sampled from the six binary (binary only for the ex-
ample) OVs of the graph in Fig. 1(b). Table 2b demonstrates the
corresponding PCCs in which X1 and X2, X3 and X4, and X5 and
X6 always change values together as part of the first, second, and
third MSOs, respectively. Note that the second MSO changes value
sometimes only with the first MSO (row 4), sometimes only with the
third MSO (row 2), and sometimes with both (row 6), but never alone.
Thus, the LPCC learns that L2 (with OVs X3 and X4) is a latent
collider, and the causal graph is Fig. 1(b), from which indeed the data
was generated.

In the LPCC second stage, non-collider LVs are split from previ-
ously learned exogenous latent ones (for more details see [2]).

3 Combining local graphs

Local to global learning (LGL) of a Bayesian network (BN) was
introduced in [21] and later expanded, e.g., in [1], suggesting to learn
locally (separately) the Markov blanket of each variable in the BN
and to combine all local graphs into the global graph.

LGL can be implemented using simple edge scoring, Ei,j =∑
m Em

i,j/|M |, where Em
i,j ∈ {0, 1} is the edge between nodes i

and j in the m ∈ M learned graph (all M graphs can be learned in
parallel), contributing 1 if it exists in graph m and 0 otherwise. Once
all edges are scored and ranked, an algorithm can add edges to the
initial graph starting from a high to a low score, as long as the added
edge does not violate the directed acyclic graph property and the score
increases.

However, LGL may work only with a BN and fully observed data,
but in the presence of LVs, it will lead to a wrong Markov blanket
(an LV d-connects OVs for which it is a common cause [29]). Also,
edge scoring is not applicable since the number of LVs and their
identities may change across local graphs. Graphs (a) and (b) in Fig. 1
(say locally learned for two time slices) have different numbers of
LVs and represent different concepts for each LV, and thus, e.g., edge
L2 → X4 in both graphs refers to different concepts, and combining
scores for this edge across the two graphs has no meaning.

Next, we introduce a new algorithm to dynamically learn local
graphs in the presence of LVs and to merge them into a global LVM.
A local MIM is learned by the LPCC sequentially for each time
slice, and then local MIM-based LVMs are combined by probabilistic
scoring and temporal-causal reasoning to make the global latent DBN.

3.1 The LGL-based LPCC algorithm

Our proposed LGL algorithm assumes three assumptions:
Assumption 1. Stationary model—Data (and the process/model that
has generated them) are stationary and discrete.

Learning time-varying models usually assumes no LVs [22, 28, 26]
because an LV d-connects OVs of subsequent slices (these OVs may
be the same OV in the two slices), undermining parameter learning
and inference. Thus, to learn a temporal LVM, we require stationarity.

Assumption 2. DBN model—The model is a DBN, i.e., a pair
(BN1, BN→), where BN1 defines the BN in t = 1 and BN→ is a
two-slice temporal BN (2-TBN) with LVs.

Assumption 3. PMM—Each slice in the 2-TBN is a PMM (this is
needed only if local graphs are learned by LPCC).
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(a) LVM with two exogenous LVs

(b) LVM with two exogenous LVs
and a latent collider

Figure 1: (a) and (b) LVMs that are
learned using the PCCs in Tables 1
and 2, respectively.

Table 1: a) Centroids of four major clusters for data sampled from Fig. 1(a). b) The corresponding PCCs.

Centroid X1 X2 X3 X4 X5 X6
C1 0 0 0 1 1 1
C2 1 1 1 1 1 1
C3 0 0 0 0 0 0
C4 1 1 1 0 0 0

PCC δX1 δX2 δX3 δX4 δX5 δX6
1-2 1 1 1 0 0 0
1-3 0 0 0 1 1 1
1-4 1 1 1 1 1 1
2-3 1 1 1 1 1 1
2-4 0 0 0 1 1 1
3-4 1 1 1 0 0 0

(a) (b)

Table 2: a) Centroids of four major clusters for data sampled from Fig. 1(b). b) The corresponding PCCs.

Centroid X1 X2 X3 X4 X5 X6
C1 0 0 1 1 0 0
C2 1 1 1 1 1 1
C3 0 0 0 0 1 1
C4 1 1 1 1 0 0

PCC δX1 δX2 δX3 δX4 δX5 δX6
1-2 1 1 0 0 1 1
1-3 0 0 1 1 1 1
1-4 1 1 0 0 0 0
2-3 1 1 1 1 0 0
2-4 0 0 0 0 1 1
3-4 1 1 1 1 1 1

(a) (b)

The PMM assumption is justified in many real-world applications
in which concepts have their own indicators, such as: 1) a topic model,
where each key phrase (e.g., soccer) is an indicator of a single topic
(e.g., sport) [23]; 2) audio-visual speech recognition, where ”mouth”
and ”silence” detectors and ”skin” and ”texture” detectors are the
measures of ”audio” and ”visual” LVs, respectively, and both are
children of a third latent, ”speaker” [11]; 3) psychology, especially
for data obtained by questionnaires designed to target specific latent
factors (e.g., stress, satisfaction) [27]; 4) diagnosis of diseases, each
based on its own symptoms; 5) marketing [36]; and 6) explaining
the involvement of young drivers in road accidents [3]. A practical
motivation to learning PMMs is that their equivalence class is much
smaller than that of MIMs, which are indistinguishable [27]. When
the PMM assumption is violated, our algorithm will learn a pure
sub-model of the true model.

We propose LGL of local 2-TBN models, one learned for each time
slice, to compose a global stationary LVM. Each 2-TBN is of two
consecutive time slices to allow learning both inter (between-slice)
and intra (within-slice) edges. The parameters of each local graph are
estimated using the backward/forward algorithm (parameters must
be tied across time slices since LVs d-connect the entire observed
sequence [24]). Since local learning is based on the LPCC algorithm,
we call our algorithm an LGL-based LPCC.

To accommodate the temporal setting and be able to evaluate learn-
ing a temporal LVM, we score an edge by the support it gets by all
local 2-TBNs, Ei,j =

∑
t E

t
i,j/(T − 1), where Et

i,j in an indicator
variable for the existence of an edge between nodes i and j (the former
represents an LV and the second either an LV or an OV) in the local
graph learned in time slice t of T slices. This score probabilistically
accounts for co-occurrence of variables connected by an edge across
local graphs, implying co-existence of these variables. In its first and
second stages, the LGL-based LPCC algorithm globally learns the
most probable connections (over all local graphs) between latent par-
ents and their observed children (i.e., the measurement model) and
among the LVs (i.e., the structural model), respectively.

In the first stage, we introduce a matrix S, holding the number of
times any two OVs, Oi and Oj , share the same latent parent (are in
the same MSO) in all local graphs,

S(i, j) =

T−1∑

t=1

I(L(OGt
i ) == L(OGt

j )),

where I(·) is the indicator function, and L(OGt
i ) is the latent parent

of Oi in Gt (under the PMM assumption, an OV has only a single

parent that is latent). The most probable members in Oi’s MSO over
all local graphs

LPi = find{S(i, :) == argmax
j

S(i, :) : ∀j},

create Oi’s list of local partners (LP s), composing LPi. Those OVs
co-existing in each other’s LP list make up the list of global partners,
GP s, with its corresponding latent parent. Thereby, the first stage
transforms MSOs of local graphs, each MSO with its corresponding
local latent parent, to MSOs of the global graph, each such MSO with
its corresponding global latent parent.

In the second stage of the LGL-based LPCC, we introduce a co-
occurrence matrix, CO, that holds the probabilities for edges between
any two LVs in the local graphs. Since any such edge can be oriented
in either direction in different local graphs, its most probable direction
over the local graphs is learned. Estimation of all CO’s probabilities
yields a 2-TBN reflecting all global LV—LV connections.

(a) (b)

(c) (d)

Figure 2: Local graphs with one LV and 3 OVs over 5 slices.

Fig. 2 demonstrates learning an example temporal model with a
single LV and three OVs using four local graphs over five slices
(t ∪ t + 1), (t + 1 ∪ t + 2), (t + 2 ∪ t + 3), and (t + 3 ∪ t + 4).
The algorithm converts these local graphs into a global 2-TBN in two
stages (numbers in brackets are lines in Algorithm 1):

1. In the first stage, matrix S counts the number of times each two
OVs share a latent parent across all local graphs (2–7). Table 3a
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Input: (T-1) local graphs learned by LPCC, O
Output: 2-TBN

1 S = zeros(|O|,|O|);
2 foreach local graph do
3 foreach LV do
4 foreach two OVs in LV’s MSO do
5 i = index of the first OV;
6 j = index of the second OV;
7 S(i, j) = +1;
8 LP = empty list(|O|,1);
9 foreach OVi in O do

10 LP (i) = empty list;
11 LP (i) = find(S(i, :) == max[S(i, :)]);
12 GP = empty list of global MSOs;
13 foreach OVi in O do
14 if i ∈ GP then
15 j = index in GP where i exists;
16 foreach variable k in LP (i) do
17 if k /∈ GP (j) then
18 Add k to GP (j);
19 else
20 GP (end) = [i LP (i)];
21 2-TBN = zeros(|O|+ |GP|,|O|+ |GP|);
22 Add an edge in the 2-TBN between each latent and its global

MSO of observed children in GP;
23 CO = zeros(|GP|,|GP|);
24 foreach local graph do
25 foreach edge between head and tail LVs do
26 i = index of the global MSO in GP that its intersection

with the local MSO of the tail latent is the largest;
27 j = index of the global MSO in GP that its intersection

with the local MSO of the head latent is the largest;
28 CO(i, j) = +1;
29 Rank all edges by their counts in CO;
30 foreach ranked edge in CO from high to low do
31 if edge does not violate the DAG property then
32 Add the edge to 2-TBN;

Algorithm 1: Conversion of local LVMs to a global 2-TBN.

shows that X3 and X4 in Fig. 2 share an LV in two graphs
[Figs. 2(b) and 2(d)], and thus, S(3, 4) = S(4, 3) = 2.

2. List LPi for OVi is created (10) to hold those most probable
OVs that share with OVi the same latent parent (11). Lists due to
Table 3a are:

1) LP1: X1 ⇒ X2, X3 4) LP4: X4 ⇒ X5, X6
2) LP2: X2 ⇒ X1, X3 5) LP5: X5 ⇒ X6
3) LP3: X3 ⇒ X1, X2 6) LP6: X6 ⇒ X5.

3. After the global MSO list, GP , is initialized (12), it is filled (13–
20) with LVs and their corresponding global MSOs, which are
taken from the corresponding local MSO lists’ LP s. In our exam-
ple, X1, X2, and X3 in LP1 are added first in GP . The next two
lists (LP2, LP3) have no effect on GP . X5 and X6 are fed next
(LP5), before being merged with X4 (LP4) (due to transitivity).
Finally, GP is: {{X1, X2, X3}, {X4, X5, X6}}, with each of
the two global MSOs connected to its latent parent to form the
(measurement model of the) 2-TBN (22).

4. In the second stage (23–32), the co-occurrence matrix between
LVs, CO, is determined based on the local graphs. According
to the first locally learned graph (Fig. 2a), L1 → L2; thus, the
(1, 2) entry in Table 3b increases by 1 (28). Note that according
to GP , L1 and L2 are associated with {X1, X2, X3} and {X4,
X5, X6}, respectively. The second local graph (Fig. 2b) adds no
information about the relation between L1 and L2. The third local

graph (Fig. 2c) also shows L2 ← L1, but since the connections of
the OVs to the LVs are opposite to those in GP , there is no support
for L1 → L2, but for L2 → L1, and thus, entry (2, 1) in Table 3b
increases by 1. The fourth local graph (Fig. 2d) increases the (1, 2)
entry in Table 3b by 1 (28) because three of the four variables
in L1’s local MSO, {X1, X2, X3, X4}, are part of L1’s global
MSO in GP , {X1, X2, X3}, providing stronger evidence than
when only one variable, {X4}, in L1’s local MSO, {X1, X2,
X3, X4}, is part of L2’s global MSO in GP , {X4, X5, X6}.
Because entry (1, 2) is larger than entry (2, 1), the algorithm (29)
learns L1 → L2 in the final graph (in case of a tie, the edge
remains undirected). Note that if the first and third local graphs
were examined in the opposite order, we would have obtained the
symmetric matrix to Table 3b, but learned the same resulting graph
(′′L1′′ and ′′L2′′ are arbitrary, indicated by LPCC).

Table 3: Regarding Fig. 2: a) Matrix S counts local graphs in which
a pair of OVs shares the same LV parent. b) Matrix CO holds the
co-occurrence counts of edges between LVs.

X1 X2 X3 X4 X5 X6
X1 - 4 4 2 1 1
X2 4 - 4 2 1 1
X3 4 4 - 2 1 1
X4 2 2 2 - 3 3
X5 1 1 1 3 - 4
X6 1 1 1 3 4 -

L1 L2
L1 - 2
L2 1 -

(a) (b)

To ensure causal reasoning by the global temporal LVM, a prepro-
cessing stage precedes the algorithm in which two orientation rules
are applied to local graphs. First, a learned inter-slice edge is oriented
from t to t + 1 because an event can only causally affect a future
event [20]. Second, if a latent collider is discovered in a local graph
in time t+ 1, then undirected edges in this graph in time t (recall that
the local graph is a pattern of the true graph) are oriented along the
directed edges of that collider due to its strong causal evidence [29].
Nevertheless, based on the co-occurrence matrix, CO, the LGL-based
algorithm may learn a partial directed acyclic graph because if matrix
entry (i, j) between two LVs i and j equals entry (j, i), then the edge
is left undirected. Lemma 1 proves that our algorithm learns a PMM.

Lemma 1. The global 2-TBN learned by the LGL-based LPCC algo-
rithm is a PMM.

Proof. By elimination. Assume the global 2-TBN is not pure, i.e.,
there is an Oi that has more than one parent (say two). Since the LGL
algorithm only learns edges that are directed from LVs, these two
parents must be latent, say Lj and Lk. If Oi is a child of Lj , it has to
be in at least one of Lj’s children LP s. Similarly, Oi has to be in at
least one of Lk’s children LP s. If Oi appears in two (or more) lists,
the algorithm joins the lists, and only a single LV is introduced.

3.2 Algorithm correctness and complexity

Asymptotically, LPCC assures that the LGL-based LPCC algorithm
learns a pattern of the true local MIM-based LVM [2], and assuming
stationarity, this pattern is of the true temporal LVM even by using
only a single time slice for learning. Lemma 2 shows that the algorithm
is asymptotically correct, learning a pattern of the true temporal LVM
regardless of the sequence size.

Lemma 2. Assuming stationarity, the LGL-based LPCC algorithm is
asymptotically correct, learning a pattern of the true temporal LVM.
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Proof. For each local graph, the LPCC algorithm learns a pattern of
the true graph [2] if the data are infinite, and due to stationarity, all
these local graphs are identical. Since the algorithm learns the most
probable model (by a majority vote), then the global graph is identical
to all local graphs that are a pattern of the true graph.

With finite data, stationarity cannot guarantee correctness, and the
algorithm learns the structure maximizing the a-posteriori probability
of edges over local graphs under causal reasoning inferred using two
orientation rules due to temporality (Sec. 3.1). Practically, probabilis-
tic learning is implemented by a majority vote [16] for an edge, as
described above, but can also be otherwise. Asymptotically, a major-
ity vote is unnecessary (Lemma 2), but for the finite sample (leading
to noise in the probabilistic connections among nodes), it improves
performance as the number of voters (slices) increases [33] until the
learned graph becomes probabilistically correct.

Voting over local graphs learned across time can also be represented
as bagging [6]; in both cases, the samples are not independent (in our
case, due to the overlap between the two-slice samples). This overlap
between samples allows capturing significant temporal (and thus also
causal) patterns in the data, e.g., in medical knowledge representation
of chronic disease progression using longitudinal patient data. Our
algorithm uses majority voting when transferring local graphs to the
global one, and more specifically, when transferring local MSOs to
global ones. Each OV is associated with the MSO maximizing the
a-posteriori probability over all MSOs in the local graphs, and thereby
with the most probable latent parent. For example, three of the local
graphs [Figs. 2(a)–2(c)] vote to group variable X4 with variables X5

and X6, while only one local graph votes for grouping it with X1, X2,
and X3. That is, each local graph Gt∀t is a weak learner to assign
Ok to Li. As the number of weak learners (sequence size) increases,
the error margin [6]

mg(Ok, Li) = avtI(L(O
Gt
k ) = Li)−max

j �=i
avtI(L(O

Gt
k ) = Lj),

converges (the probability that the margin is negative decreases), I(·)
is the indicator function, and avt is the average over local graphs.

The LPCC’s first stage complexity is bounded by O(|O|2 ·K2 · I),
K and I are the numbers of clusters and iterations until convergence,
respectively. LGL-based LPCC run-time is dictated by the LPCC’s
second stage, which estimates graph parameters in a single EM call
(SEM-DBN, our algorithm counterpart, introduced in Sec. 4, needs
many such calls). Since LGL-based LPCC is based on local learning
that can run in parallel, combining local graphs adds only a minor
contribution to the complexity, bounded by O(|O|2 · (T − 1)2), T is
the maximal sequence size. Run-time for our synthetic problems was
minutes, while that of SEM-DBM was almost a day.

4 Empirical evaluation

We compared the LGL-based LPCC algorithm with two other algo-
rithms that learn a latent DBN. First is SEM (this well-known algo-
rithm [10, 24] is denoted here as SEM-DBN), which uses a search
and score procedure to find the best fitted model from data, although
not necessarily a causal one. Note that SEM-DBN requires the user to
specify beforehand the number of LVs and their cardinalities. For fair-
ness, we limited it: 1) to search over the (smaller) space of PMMs (we
even initialized SEM-DBN with a random PMM), and 2) not to direct
an edge from t to t−1. Second is tsFCI [9], which expands the FCI to
time series and learns a causal temporal model that includes evidence
for the existence of LVs (i.e., OVs connected by bi-directional edges

imply on their parent LV), although it does not explicitly find them.
To alleviate learning, we provided tsFCI with the values of the true
LVs (as if they were observed), together with those of its OV children,
which gives it a tremendous advantage (Table 4).

Table 4: Input fed to competitive algorithms.

Number of LVs and their cardinality LV values
tsFCI Provided by the user Provided by the user

SEM-DBN Provided by the user Learned from data
LGL-based LPCC Learned from data Learned from data

The algorithms were compared based on the structural Hamming
distance (SHD) [32], which is the most common score for BN struc-
ture learning, counting structural differences (missing, reversed, and
extra edges) between the true and learned graphs. Since the SHD
cannot be applied directly to an LVM because the latent indices are
arbitrary, we propose a new scoring method (Algorithm 2) which
calculates the SHD for each combination of latent indices and adopts
the minimal value as the score. Also, because SHD is a measure used
to evaluate a directed acyclic graph, and tsFCI does not identify an
LV directly but only implies on it by identifying a bi-directional edge
between two of its OV children, tsFCI SHD-based error is huge, and
to alleviate it, we provided tsFCI with the values of the true LVs,
together with those of its OV children (Table 4). An additional new
measure we suggest in Algorithm 2, observed only SHD (O-SHD),
accounts only for latent to OV connections, and thereby evaluates
the measurement model of the global LVM. The difference between
the SHD and O-SHD measures is the error in learning the structural
model, i.e., LV to LV relationships.

Input: Learned PDAG H , True PDAG G, |O|, |L|
Output: Score (SHD), O-Score (O-SHD)

1 C =all possible permutation of the vector: [|O|+ 1 : |O|+ |L|];
2 Score=inf ;
3 foreach permutation in C do
4 i =The current LVs combination;
5 H ′ = H([1 : |O|, i], [1 : |O|, i]);
6 CurrentScore = call SHD procedure (H ′, G);
7 if CurrentScore ¡ Score then
8 Score = CurrentScore;
9 O-Score = 0;

10 foreach edge E directed into an OV that is different
between H ′ and G do

11 if (E is missing in H ′) or (E is extra in H ′) then
12 O-Score = O-Score + 1;

Algorithm 2: Performance measures of LVM learning.

Using three artificial datasets, we first evaluated the three algo-
rithms in structure learning (Sec. 4.1). The parameters of the models
we synthesized represent temporal models. The datasets were sampled
from three artificial BNs (G1 − G3 in Fig. 3) of varying sequence
sizes, 4 ≤ T ≤ 15, i.e., a record is (|O|×T )-dimensional. The sample
size was D = {2, 000, 3, 000, 4, 000, 5, 000, 10, 000}. The cardinal-
ity of all variables was set to four, where P (Xi = v|Lj = v) = 0.8
and P (Xi 	= v|Lj = v) = 0.2/3 (i.e., a 0.2 ”noise” level was evenly
distributed among the non-v values). These probabilities are the same
for all T values to guarantee stationarity. Reported results are the
modified SHD, O-SHD, and log-likelihood [14] averaged over ten
data permutations for each value combination of G, T , and D.

The motivation to evaluate the LGL-based LPCC in classification
(Sec. 4.2) and data imputation (Sec. 4.3) is twofold. First, these tasks
allow us to appreciate the contribution of learning latent mechanisms,
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(a) G1 (b) G2 (c) G3

Figure 3: Artificial temporal graphs with three OVs per LV and (a) a single LV, (b) two LVs, and (c) two LVs also making a collider per slice.

(a) G1 (b) G2 (c) G3 (d)

Figure 4: (a–c) SHD (dashed line) and O-SHD (solid line) in learning G1–G3 for different sequence sizes using SEM-DBN (blue), tsFCI (green),
and LGL-based LPCC (red). Lower (error) values are better. (d) Log-likelihood in learning G1–G3 by the algorithms. Higher values are better.

which are at the heart of these tasks, and follow the improvement in
the classification and data-imputation accuracies when introducing
LVs compared to when ignoring them. Second, compared to experi-
mentation with synthetic problems for which the true graph is known
and scores of structural correctness (e.g., SHD) can easily be com-
puted, in real-world (classification/imputation) problems, the true
model is unknown; thus, the classification/imputation accuracy may
provide a natural performance score of the LVM learning algorithm.

In Sec. 4.4, we compare the algorithms using real-world datasets
of two neurodegenerative diseases and the imputation accuracy score.

4.1 Structure learning

Figs. 4(a)–4(c) show the average SHD and O-SHD, and Fig. 4(d)
shows the log-likelihood for the three algorithms, 10,000 samples,
and increasing sequence sizes. Since SHD measures errors in both
learning the measurement and structural models, whereas O-SHD
measures only the former, it is expected that the SHD scores will be
higher than those of O-SHD. This is not the case for tsFCI (especially
for G1 and G2 and less for G3, which is a more complex graph)
where the algorithm identifies the structural model (latent to latent
connections), but this is not surprising since it was fed with the LVs
and only needed to find their relationships (Table 4). Although the
LGL-based LPCC did not get this information, it did not fall behind
tsFCI and was even superior in most cases. Fig. 4 reveals that the
LGL-based LPCC and tsFCI are superior to the SEM-DBN regardless
of the true graph, sequence size, and score. This superiority is statis-
tically significant according to the non-parametric Wilcoxon signed
ranks test [7] with a 0.05 confidence level regardless of G and the
score. Fig. 4(a) shows that the LGL-based LPCC and tsFCI learn
the true G1 graph accurately very quickly for a few sequences (with
advantage to LGL-based LPCC), and even perfectly for T ≥ 6 (LGL)
or T ≥ 7 (tsFCI). For G2 [Fig. 4(b)], the LGL-based LPCC learns
the measurement model better and faster than both algorithms, but
tsFCI learns the structural model better and faster (again, since it was
provided with the LVs but not with their connections) and reaches
a zero error a bit sooner. Although very small, the SHD error of the
LGL-based LPCC for G2 and G3 is not zero because few latent–latent
relationships are missed. This happens when the counts in matrix CO
for an edge for both directions are equal, and thus, this edge is left
undirected, contributing to the error. All performance measures of the

SEM-DBN are inferior to the other algorithms, and this even includes
the log-likelihood score [Fig. 4(d)], albeit the SEM-DBN is optimized
by the log-likelihood [10, 24], and the other two are not. Finally, note
that the LGL-based LPCC correctly learned the number of LVs for G1
and G3 for all sequence sizes, and for G2 for T > 8. This evaluation
is irrelevant to the SEM-DBN and tsFCI that are already fed with the
correct number of LVs.

4.2 Data classification

To demonstrate the contribution of learning a temporal LVM using the
LGL-based LPCC algorithm to a classification task, we learned G3
[Fig. 3(c)], which represents a medical domain in which there is a (la-
tent) cause to a disease, and we wish to predict the current disease state
based on that cause and the previous disease state, where the cause
and disease state each have three indicators (symptoms). We trained a
random forest classifier for each of the six OVs of G3 in the T th (last)
slice (acting as the classification node, where all the remaining OVs in
all slices are predictors), and averaged the classification accuracy over
the six random forests to avoid any preference. We repeated this for
each combination of sequence size, sample size, and data permutation.
We compared this classification approach when LVs and their values
were first identified using the LGL-based LPCC, were first identified
using SEM-DBN, and when no latent variables exist (this model is
denoted as non-LVM). In total, we trained 5 × 8 × 10 × 6 × 3 =
7, 200 classifiers for five sample sizes, eight sequence sizes, ten data
permutations, six classifiers (classification nodes), and three models
(LGL/SEM-DBN/no-LVM). We used 70% of the samples of each
dataset for training and 30% for testing. Fig. 5(a) shows the average
(over all data permutations, sequence sizes, and OVs) random-forest
accuracy and F-measure for G3 and different sample sizes. It shows
that the LGL-based LPCC achieves the best classification performance
(significantly superior to the others), and that ignoring the existence
of the LVs in the classification task results in poor performance. The
LGL-based LPCC reaches the highest possible accuracy of 80% since
the noise was originally set at 20%, i.e., even if the algorithm learns
the true classification rule, in 20% of the cases, it will be wrong.
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(a) Classification–G3 (b) Imputation–Synthetic (c) Imputation–ALS (d) Imputation–Alzheimer

Figure 5: a) Classification accuracy (solid line) and F-measure (dashed line) for increasing sample sizes, b–d) Imputation accuracy for increasing
missing values for synthetic, ALS, and Alzheimer datasets, respectively.

4.3 Data imputation

We sampled ten data permutations of 1,000 records each from G3 for
each 4 ≤ T ≤ 15 to make test sets to check the already learned LVMs.
We randomly deleted 5–25% of the values in each test set (missing
completely at random) and tried to complete the missing data based
on: 1) an LGL-based LPCC; 2) an SEM-DBN, which is equivalent to
an EM imputation [34]; 3) a weighted K-nearest neighbor [31]; and 4)
a naı̈ve method [5] in which a missing value is imputed based on the
same variable in the previous slice (if not missing), the same variable
in the next slice (if the previous one is missing and the next is not),
or based on the variable’s mean over all samples (if the variable in
both the previous and next slices is missing). Fig. 5(b) shows that the
LGL-based LPCC has the best imputation accuracy regardless of the
missing value rate. The naı̈ve approach performs better than random,
but it is ranked last among the methods except for when the missing
ratio is 25% and in which the weighted K-nearest neighbor is inferior.
The SEM-DBN is more sensitive than the LGL-based LPCC to the
missing value ratio because, as the ratio increases, the chance of two
(or more) missing values occurring in a single latent’s children within
a sequence increases, which increases the importance of the parent
latent (for which we have shown that the LGL-based LPCC is more
accurate).

4.4 Real-world problems

Our amyotrophic lateral sclerosis (ALS) database consists of 3,171
patients with 22,089 clinic visits, from which we derived a subset of
2,590 patients having at least four visits, each two up to six months
apart. A visit consists of lab test results and ten OVs measuring patient
functionality in walking, writing, etc., each taking five values between
0 (a complete loss of function) and 4 (normal ability). The LGL-based
LPCC learned a graph [Fig. 6(a)] that resembles medical categoriza-
tion of patient functionality: bulbar functionality indicated mainly by
speech, salivation, and swallowing; gross-motor functionality indi-
cated by walking and climbing stairs; full body functionality indicated
by respiratory ability, turning in bed, and three lab tests—chloride,
FVC, and CK (also found correlated by [15]); and fine-motor func-
tionality indicated by writing, cutting food, and dressing; (each group
of functionalities is an MSO of a different latent: L1, L2, L3, and L4,
respectively). The three intra-slice edges represent the natural connec-
tions between the bulbar and gross-motor, fine-motor and full body,
and gross-motor and full body functionalities. The inter-slice edges
between bulbar and full body to themselves complete the temporal-
causal reasoning. Since the true graph was unknown, we could not
report the SHD score, and instead, we evaluated the accuracy of the
learned graph in data imputation (similar to Sec. 4.3).

Following the deletion of ALS data, Fig. 5(c) shows that the LGL-
based LPCC outperforms the SEM-DBM with respect to imputation
accuracy, regardless of the missing value ratio. The naı̈ve method

performs the best for small ratios of missingness, but as this ratio
increases, the probability of a missing value in the previous/next
observation increases and, thus, the method loses accuracy rapidly. Fi-
nally, the weighted K-nearest neighbor and LGL-based LPCC perform
similarly, neither showing a significant advantage. This is encouraging
since the former is a state-of-the-art imputation method, and the latter
is a temporal LVM learning algorithm that we decided to check in an
imputation task.

The Alzheimer’s data mainly contain variables derived from pro-
cessed radiological images of 1,737 patients with 12,741 clinic visits.
Fig. 6(b) shows the resultant graph with a connection between L1 and
L2 that represent cognitive ability, as is measured by different cogni-
tive tests (e.g., ADAS13, RAVLT, MMSE, FAQ), and a connection
between L3 to itself (inter-slice edge) that may represent deterioration
in patient physiological ability, as indicated by normalized ventricles
and radiological features. Similar to the ALS, in the absence of the
true graph, we report on data imputation accuracies. Fig. 5(d) shows
that the dedicated imputation methods (naı̈ve and weighted K-nearest
neighbor) outperform the (non-dedicated to imputation) LGL-based
LPCC and SEM-DBN algorithms in the presence of missing data.

(a)

(b)

Figure 6: Temporal LVMs learned by the LGL-based LPCC for a) the
ALS database and b) the Alzheimer database.
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This is because the LVs in the learned graph [Fig. 6(b)] are not all
connected; thus, missing values of L3 indicators, for example, cannot
be estimated using the indicators of L1 and L2. Nevertheless, the
LGL-based LPCC still outperforms the SEM-DBM with respect to
imputation accuracy, regardless of the missing value ratio.

5 Summary

Causal discovery in the presence of LVs is a difficult problem, be-
coming even more challenging when it is temporal. Models by most
learning algorithms of a latent DBN may fit the data well and even
demonstrate evidence of latent mechanisms, but without showing
causal relations. The LGL-based LPCC algorithm is a causal discov-
ery mechanism to learn a latent DBN based on PMMs learned locally
for each 2-TBN. This algorithm showed clear superiority over the
state-of-the-art SEM-DBN and tsFCI algorithms with respect to struc-
tural correctness, fitting the data, accuracy in classification and impu-
tation, and run-time even though we provided the SEM-DBN with the
correct number of LVs and their cardinalities and the tsFCI with the
LVs themselves. Although the PMM assumption on which LGL-based
LPCC is based upon is commonly used (to limit the structure space
and enable practical learning) and justified [27, 23], it is restrictive,
and we are exploring ways to expand the LPCC theory to learn a
non-PMM or to apply post-processing to modify the learned graph
into a non-PMM. Finally, the code for the algorithm and the datasets
used in this work are available at http://www.ee.bgu.ac.il/ boaz.
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