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Abstract. Evidence often grounds temporal probabilistic relational
models over time, which makes reasoning infeasible. To counteract
groundings over time and to keep reasoning polynomial by restor-
ing a lifted representation, we present temporal approximate merg-
ing (TAMe), which incorporates (i) clustering for grouping submod-
els without having to ground or compute marginals as well as (ii) sta-
tistical significance checks to test the fitness of the clustering out-
come. In exchange for faster runtimes, TAMe introduces a bounded
error that becomes negligible over time. Empirical results show that
TAMe significantly improves the runtime performance of inference,
while keeping errors small.

1 Introduction

Temporal probabilistic relational models express relations between
objects, modelling uncertainty as well as temporal aspects. Within
one time step, a temporal model is considered static. When time ad-
vances, the current model state transitions to a new state. Performing
inference on such models requires algorithms to efficiently handle
the temporal aspect to be able to efficiently answer queries.

Reasoning in lifted representations has a complexity polynomial in
domain sizes. But, models dissolve into ground instances through ev-
idence, which no longer permits reasoning in polynomial time, mak-
ing query answering infeasible for any reasoning algorithm, exact
or approximate. Thus, a key challenge during inference in tempo-
ral models is to restore a lifted, i.e., non-grounded, representation.
Therefore, we formulate and study the problem of keeping reasoning
polynomial (KRP) in temporal models to tame the effect of evidence.

First-order probabilistic inference leverages the relational aspect
of a static model, using representatives for groups of indistinguish-
able, known objects, also known as lifting [16]. Poole [16] presents
parametric factor graphs as relational models and proposes lifted
variable elimination (LVE) as an exact inference algorithm on re-
lational models. Taghipour et al. [20] extend LVE to its current form.
To benefit from the ideas of the junction tree algorithm [11] and LVE,
Braun and Möller [4] present the lifted junction tree algorithm (LJT)
for exact inference given a set of queries. To answer multiple tem-
poral queries, we [8] present the lifted dynamic junction tree algo-
rithm (LDJT), which combines the advantages of the interface algo-
rithm [13] and LJT. Other approaches for temporal relational models
perform approximate inference. Ahmadi et al. [1] propose a colour
passing scheme to obtain a lifted representation of a dynamic Markov
logic network (DMLN) using exact symmetries and extend lifted be-
lief propagation [18] for temporal approximate inference. Further in-
ference algorithms for DMLNs exist [10, 15]. However, to the best of
our knowledge, none of these approaches tackle the KRP problem.
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For static relational models, approaches exist to approximate sym-
metries as evidence may ground even a static model [22]. Van
den Broeck and Darwiche [21] approximate lifted binary evidence.
Singla, Nath, and Domingos [19] propose approximate lifting tech-
niques, which group together distinguishable objects and treat them
identically. Venugopal and Gogate [24] form clusters of objects and
project the marginal distribution of one object to all objects of a clus-
ter. Van den Broeck and Niepert [23] present an unbiased approach
for approximating symmetries. However, these approaches do not ac-
count for temporal aspects.

Thus, we present temporal approximate merging (TAMe) as an ap-
proach to solve the KRP problem in temporal models. Specifically,
TAMe incorporates (i) clustering to group submodels and (ii) sta-
tistical significance checks to test the groups to be merged. Model
structure and behaviour are captured in a set of functions that define
local distributions for the random variables (randvars) in the model.
Clustering forms groups of functions based on the similarity between
local distributions. The significance checks allow for determining the
fitness of the clustering outcome. If the clustering is deemed fit, each
group is merged, yielding an unbiased approximation. In exchange
for faster runtime, TAMe introduces an indefinitely bounded error.

Boyen and Koller [3] show that for stationary processes, evidence
can lead to conditional dependences in temporal probabilistic propo-
sitional models, making inference infeasible. They propose to intro-
duce additional randvars to achieve conditional independences be-
tween subprocesses even under evidence. Further, Boyen and Koller
show that, for any approximation scheme of belief state representa-
tions, the error decreases exponentially as the process evolves, mak-
ing the introduced error bounded indefinitely [3]. Their approach and
TAMe are related as in both cases evidence can make inference infea-
sible. However, TAMe aims at automatically restoring a lifted repre-
sentation. In summary, the cause, namely evidence, is the same for
both problems, but the problems are different and the means to make
inference possible again differ highly.

TAMe is applicable to different formalisms and algorithms. How-
ever, we discuss TAMe as part of LDJT for two reasons: First, when
advancing in time, LDJT computes a minimal message that is the
source of the most splits of the next time step. Applying TAMe on
this message tackles the KRP problem at its root. Second, using
TAMe with an exact algorithm allows for attributing errors to merg-
ing rather than imprecisions during reasoning. Additionally, TAMe is
deterministic in its approximation, thereby, avoiding problems with
sampling rates or ergodicity. Empirical results show that TAMe sig-
nificantly improves the performance of LDJT in general, while keep-
ing errors small and attributable to merging.

In the following, we recap parameterised probabilistic dynamic
models (PDMs) as a formalism for specifying temporal relational

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200395

2592



R(X)

g0
Pub(X, J)

A(X)

g1
D(X)

Figure 1. Parfactor graph for Gex

Rt−1(X)

g0t−1

Pubt−1(X, J)

At−1(X)

g1t−1

Dt−1(X)

Rt(X)

g0t

Pubt(X, J)

At(X)

g1t

Dt(X)

gR

Figure 2. Gex→ the two-slice temporal parfactor graph for model Gex

models and LDJT for efficient query answering in PDMs. Then, we
present TAMe, which includes clustering, significance checks, and
merging. Lastly, we evaluate TAMe theoretically and empirically.

2 Preliminaries

We shortly present parameterised probabilistic models (PMs) [5],
then extend PMs to the temporal case, resulting in PDMs, and re-
capitulate LDJT [8, 9], an efficient inference algorithm for PDMs,
answering hindsight, filtering, and prediction queries.

2.1 Parameterised Probabilistic Models

PMs combine first-order logic with probabilistic models, using log-
ical variables (logvars) as parameters to represent sets of indistin-
guishable constructs. As an example, we set up a PM to model the
reputation of researchers, inspired by the competing workshop exam-
ple [12], with a logvar representing researchers. A reputation is in-
fluenced by activities such as publishing, doing active research, and
attending conferences. A randvar parameterised with logvars forms
a parameterised randvars (PRVs).

Definition 1. Let R be a set of randvar names, L a set of log-
var names, Φ a set of factor names, and D a set of constants (uni-
verse). All sets are finite. Each logvar L has a domain D(L) ⊆ D.
A constraint is a tuple (X , CX) of a sequence of logvars X =
(X1, . . . , Xn) and a set CX ⊆ ×n

i=1D(Xi). The symbol � for C
marks that no restrictions apply, i.e., CX = ×n

i=1D(Xi). A PRV
R(L1, . . . , Ln), n ≥ 0 is a syntactical construct of a randvar R ∈ R
possibly combined with logvars L1, . . . , Ln ∈ L. If n = 0, the PRV
is parameterless and forms a propositional randvar. A PRV A or log-
var L under constraint C is given by A|C or L|C , respectively. We
may omit |� in A|� or L|�. The term R(A) denotes the possible
values (range) of a PRV A. An event A = a denotes the occurrence
of PRV A with range value a ∈ R(A).

We use the randvar names A, D, R, and Pub for attends con-
ference, does research, reputation, and publishes in journals, respec-
tively, and L = {X, J} with D(X) = {x1, x2, x3} (people) and
D(J) = {j1, j2} (journals). We build boolean PRVs A(X), D(X),
R(X), and Pub(X, J). A parametric factor (parfactor) describes a
function, mapping argument values to real values (potentials).

Definition 2. We denote a parfactor g by φ(A)|C with A =
(A1, . . . , An) a sequence of PRVs, φ : ×n

i=1R(Ai) �→ R
+ a func-

tion with name φ ∈ Φ, and C a constraint on the logvars of A.
We may omit |� in φ(A)|�. The term lv(Y ) refers to the logvars in
some element Y , a PRV, a parfactor or sets thereof. The term gr(Y|C)
denotes the set of all instances of Y w.r.t. constraint C. A set of par-
factors forms a model G := {gi}ni=1. The semantics of G is given
by grounding and building a full joint distribution. With Z as the
normalisation constant, G represents PG = 1

Z

∏
f∈gr(G) f .

Let us build the PM Gex={gi}1i=0, shown in Fig. 1, with
g0 = φ0(R(X), A(X), Pub(X, J))|� and g1 = φ1(R(X),
A(X), D(X))|�, each with eight input-output pairs (omitted). Next,
we present a temporal extension of a PM.

2.2 Parameterised Probabilistic Dynamic Models

We define PDMs based on the first-order Markov assumption. Fur-
ther, the underlying process is stationary.

Definition 3. A PDM G is a pair of PMs (G0, G→) where G0 is a
PM representing the first time step and G→ is a two-slice temporal
parameterised model representing At−1 and At where Aπ a set of
PRVs from time slice π. The semantics of G is to instantiate G for a
given number of time steps, resulting in a PM as defined above.

Figure 2 shows Gex
→ consisting of Gex for time slice t − 1 and t

with inter-slice parfactors for the behaviour over time. The parfactor
gR is the inter-slice parfactor. For example, we can observe ECAI
attendance, which changes over time as, unfortunately, getting papers
accepted at consecutive conferences is difficult. Nonetheless, people
with high attendance usually have a good reputation.

In general, a query asks for a probability distribution of a randvar
given fixed events as evidence.

Definition 4. Given a PDM G, a query term Q (ground PRV), and
events E0:t = {Ei

t = eit}i,t, the expression P (Qt|E0:t) denotes a
query w.r.t. PG.

The problem of answering a query P (Ai
π|E0:t) w.r.t. the model

is called hindsight for π < t, filtering for π = t ,and prediction for
π > t. In this paper, we focus on filtering and prediction queries.

2.3 Query Answering Algorithm: LDJT

The important property of LDJT [8] for this paper is that LDJT con-
structs FO jtrees to efficiently answer multiple queries using LVE.
The FO jtrees in LDJT contain a minimal set of PRVs to m-separate
time steps, which means that state descriptions about these PRVs
renders FO jtrees independent from each other. Let us now define
an FO jtree, with parameterised clusters (parclusters) as nodes, and
present how LDJT proceeds in time.

Definition 5. Let X be a set of logvars, A a set of PRVs with
lv(A) ⊆ X, and C a constraint on X. Then, ∀X:A|C denotes a
parcluster. We omit (∀X:) if X = lv(A) and |C if C = �. An
FO jtree for a model G is a cycle-free graph J = (V,E), where V
is the set of nodes, i.e., parclusters, and E the set of edges. J must
satisfy three properties: (i) A parcluster Ci is a set of PRVs from G.
(ii) For each parfactor φ(A)|C in G, A must appear in some parclus-
ter Ci. (iii) If a PRV from G appears in two parclusters Ci and Cj ,
it must also appear in every parcluster Ck on the path connecting
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Figure 3. first-order junction tree (FO jtree) J3 without C3
3 and FO jtree J4 connected with m3

nodes i and j in J . The parameterised set Sij , called separator of
edge {i, j} ∈ E, is defined by Ci ∩ Cj . Each Ci ∈ V has a local
model Gi and ∀g ∈ Gi: rv(g) ⊆ Ci. The Gi’s partition G.

To obtain the minimal set of PRVs, which combine all necessary
state descriptions to m-separate time steps, LDJT uses the interface
PRVs It−1 of G→.

Definition 6. The forward interface is defined as

It−1 = {Ai
t | ∃φ(A)|C ∈ G : Ai

t−1 ∈ A ∧ ∃Aj
t ∈ A}.

PRVs Rt−1(X) and At−1(X) from Gex
→ , shown in Fig. 2, make

up It−1. While constructing FO jtree structures, LDJT ensures that
the structure Jt has a parcluster containing It−1, which is called in-
cluster, and a parcluster containing It, which is called out-cluster.
The in- and out-clusters allow for reusing the FO jtree structures.

To proceed in time, LDJT calculates a forward message mt over It
using the out-cluster of Jt. Hence, mt contains exactly the necessary
state descriptions, as a set of parfactors, to be able to answer queries
in the next time step. Afterwards, LDJT adds mt to the local model
of the in-cluster of Jt+1.

Figure 3 depicts how LDJT proceeds in time. To capture the state
at t = 3, LDJT sums out the non-interface PRV D3(X) from the lo-
cal model and received messages of C2

3 and saves the result in mes-
sage m3. Increasing t by one, LDJT adds m3 to C1

4’s local model.

3 Temporal Approximate Merging

In a temporal relational model, evidence can slowly ground the
model over time by introducing splits. We propose to name the prob-
lem of finding how to undo splits to retain a lifted solution over time,
while keeping any error unbiased and acceptable, as the KRP prob-
lem. Retaining a lifted solution over time means that lifted algorithms
run in polynomial time w.r.t. the domain size if a lifted solution exists
[14]. To solve the KRP problem, an approach is required to identify
any number of clusters based on how similar φ’s of parfactors are and
combine them. To keep the error unbiased and acceptable, ground-
ings need to be accounted for and the identified cluster means have
to discriminate the clusters. Unfortunately, to combine similar φ’s,
we cannot use the colouring algorithm [1] as it uses exact symme-
tries. Before presenting TAMe, we formulate the problem for PDMs.

Even though LDJT instantiates vanilla FO jtrees for each new time
step t, i.e., Jt without splits in local models, mt−1 carries over splits
caused by evidence. Formally, the problem is that in a model Gt =
{git}ni=1 at time step t, many parfactors are split. Whenever evidence
leads to a split of a parfactor, the split carries over to subsequent time
steps. Thus, Gt has the following form:

{gi,1t , . . . , gi,ot }ni=1, o ∈ N
+. (1)

For each i, the different gi,jt = φi,j
t (Ai)|Ci,j , 1 ≤ j ≤ o, have the

same arguments Ai but different constraints Ci,j and varying func-
tions φi,j

t as a result of evidence. The assumption is that some gi,jt

have similar φ’s as differences introduced by evidence are minimal
or otherwise are overcome by model behaviour over time, i.e., poten-
tials align again. Then, one can combine similar φ’s while introduc-
ing only a small and bounded error in exchange for faster reasoning.
In the theoretical analysis, we show that the assumption holds, by
showing that φ’s converge, allowing them to be merged, and that the
error TAMe introduces is bounded.

Assume that we observe x1 doing research in time step 3. Then,
LDJT enters an evidence parfactor encoding D(X ′) = true for
D(X ′) = {x1} in J3. In J3, the parcluster C2

3 contains the PRV
D(X). Entering the evidence parfactor in C2

3 leads to splits in the lo-
cal model of C2

3. The parfactor g13 is split into a parfactor for x1 and
into another parfactor with a constraint encoding that the parfactor
holds for all instances but x1. During message passing, the splits
carry over. Thus, the parfactors g03 and gR are also split into two
parts. One part for x1 and another part for all other instances. There-
fore, all parfactors about the logvar X are split in the same way
into the same amount of groups, i.e., in the local modes of J3 are
parfactors g0,13 , g1,13 gR,1 about x1 and parfactors g0,23 , g1,23 gR,2

about all other instances.
The idea for restoring a lifted representation is to merge those gi,jt

with similar φ’s into one parfactor

gi,kt = φi,k
t (Ai)|Ci,k (2)

where φi,k
t represents a merged version of the combined φi,j

t and
Ci,k is a union of the combined Ci,j . Merging all parfactors that
behave similarly for each i leads to a G′t of the following form with
parfactors as in Eq. (2) and l < o:

{gi,1t , . . . , gi,lt }ni=1 (3)

With TAMe, we present a merging scheme that takes a model G
as given in Eq. (1) and computes a model G′ as given in Eq. (3). It
is reasonable to apply TAMe to G when transitioning from time step
t to t + 1 as the transition transfers any splits as well. In general, G
may be any parfactor model and one may also transfer the idea to a
DMLN model [1]. However, models may be very large, e.g., consist
of the union of all local models of an FO jtree Jt, such that find-
ing groups for each i is too costly. Therefore, we propose to make
TAMe a subroutine of LDJT. Transitioning from t to t + 1 requires
computing message mt, which provides a state description of t that
is relevant to t+ 1. Applying TAMe to mt prepares a message with
fewer groups, leading to fewer splits in Jt+1. Additionally, mt nor-
mally has considerably fewer parfactors than Gt. Next, we explain
in detail how to get from Eq. (1) to Eq. (3) with TAMe.

3.1 Keeping Reasoning Polynomial with TAMe

Algorithm 1 outlines TAMe to solve the KRP problem. Inputs are a
model G, possibly mt, as well as two additional parameters, radius ε
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Algorithm 1 Temporal Approximate Merging
procedure TAME(Model G, Radius ε, Significance τ )

P ← partitioning of G based on logvars � Eq. (4)
for each partition P ∈ P do

P ← multiply overlapping parfactors � Eq. (5)
K ← DBSCAN(P , ε, 2, rsim)
if ANOVA(K, rsim′, τ ) rejects H0 then

G ← G \ P
for each cluster K ∈ K do

G ← G ∪ {K merged} � Eq. (7)

and significance level τ , which become important later on. The first
step is to preprocess G for easier handling in subsequent steps. The
main loop describes how a clustering algorithm identifies groups for
merging and how groups are merged if TAMe deems the clusters to
fit. The upcoming paragraphs discuss the individual steps of Alg. 1.

3.1.1 Model Partitioning

Preprocessing of G is a consequence of the following considera-
tions. A challenge that arises from a model as given in Eq. (1) is
that merging parfactors for each i independently of each other may
lead to different groups that cause splits again, undoing any merging
efforts. Basically, i stands for one parfactor that is split into multiple
parfactors with different constraints and φ’s by evidence. Using an i
at random and transferring the grouping of the i parfactors to all other
parfactors may lead to unreasonable groups for the other i’s. A safe
option is to multiply parfactors with overlapping constraints into one
parfactor which in a worst case leads to a single cluster and very large
parfactors that no longer explicitly represent independencies, which
may complicate calculations for messages and queries. Within LDJT,
one could trace back if a set of parfactors in mt originates from the
message that has come from the direction of the in-cluster to the out-
cluster as this message contains information about the past and is the
origin of the most splits in mt. Therefore, it may be possible to iden-
tify a unique i in mt as a reasonable source for merging. However,
there are no guarantees to find such an i. Instead, we opt to partition
the parfactors in G based on the logvars appearing in G into a set P
of sets of parfactors. Each partition P ∈ P has a set of logvars Xp

that has been affected in the same way by splitting due to evidence.
Formally, P has the form

P = {gi,1t , . . . , gi,ot }np

i=1 (4)

with lv(gi,jt ) ⊆ Xp.
In our example, mt contains the state descriptions of the PRVs

Rt(X) and At(X). Both PRVs are parameterised with logvar X .
Observing evidence, e.g., for Dt(X) influences X and thereby also
Rt(X) and At(X) in the same way, i.e., the same splits occur.
Hence, for mt we only have one partition. Even by looking at the
complete model instead of only the forward messages, we only have
one partition. Observing evidence for X causes splits in all parfactors
in the same way. Further, observing evidence for Pubt(X, J), causes
splits in X and J . Thus, here the logvars X and J would be effected
in the same way by splitting due to evidence, leading again to one
partition as all parfactors are effected by same way by splits due
to evidence. In case we would have another logvar Y , which does
not occur with X or J in a parfactor, then we would have a second
partition. However, in case Y would occur with either X or J in a
parfactor, we again would only have one partition.

The next step is to identify groups of parfactors in each partition
that behave similarly.

3.1.2 Parfactor Clustering

After partitioning G, each partition P ∈ P of the form in Eq. (4) has
parfactors whose constraints overlap between all i for each j. There-
fore, TAMe multiplies all parfactors with overlapping constraints
into one parfactor before starting with identifying groups. If there
exists a gi,jt ) s.t. lv(gi,jt ) = Xp, then each i refers to m parfactors
with the same constraint over all i’s for each j, i.e, the constraints
are the same at position j for all i’s. Then, multiplication in P to
combine PRVs with the same constraints boils down to

P =

{ np∏
i=1

gi,1t , . . . ,

np∏
i=1

gi,ot

}
= {gp,1t , . . . , gp,ot } (5)

where multiplying parfactors corresponds to the LVE operation of
multiply, c.f. [20].

To identify groups of parfactors with similar behaviour, one needs
to specify (i) what “similar behaviour” means and (ii) how to find
such groups automatically. We first consider the second item, which
influences specifying the first item.

TAMe needs to identify an unknown number of groups based
on how similar φ’s are. Density-based clustering groups similar
points into an unknown number of groups. Therefore, TAMe uses
density-based clustering. For the evaluation, we instantiate TAMe
with density-based spatial clustering of applications with noise (DB-
SCAN) [6, 17] as the clustering approach. In the following, we il-
lustrate how density-based clustering fits into the overall scheme
of TAMe using DBSCAN. DBSCAN identifies data points as core
points if in their neighbourhoods, determined by a radius ε around a
point, lie a certain number minPts of other data points. A core data
point makes up a cluster along with all the data points in its neigh-
bourhood, which recursively proceeds with the next core data point
in the neighbourhood. To determine data points in a neighbourhood,
DBSCAN requires a distance function as an input. DBSCAN is able
to detect outliers, i.e., points which do not occur in any neighbour-
hood. For the purpose of clustering parfactors, we set minPts to 2 to
be able to cluster even two parfactors. The distance measure should
assess how similarly parfactors behave, with 0 meaning identical be-
haviour and larger values meaning less similar behaviour.

To determine the similarity of the behaviour of two parfactors, one
could calculate marginal distributions for a PRV that occurs with split
constraints and compare if the marginals are in a certain Δ area.
However, marginal distributions could result from different poten-
tials and be similar by chance. The potentials of a parfactor on the
other hand specify the current weight for each possible assignment.
Thus, in case the ratio of the potentials of two parfactors are similar,
they also have similar marginal distributions and behave similarly.
Overall, by comparing potentials, TAMe does not need to ground
parfactors or compute marginals, which can be costly.

For example, a parfactor mapping to 4 and 2 and another parfactor
mapping to 8.1 and 3.9 behave similarly. Both parfactors weight the
first assignment about twice as much as the second. Assuming both
parfactors are independent from the rest and only have one grounding
each, the marginals for true would be 0.667 and 0.675 respectively,
i.e., less than 0.01 apart from each other. The same case arises for
two parfactors mapping to 〈4, 2〉 and 〈4.1, 1.9〉 respectively.

Such potentials, when thought of as vectors, have a small angle
between them, i.e., a high cosine similarity, which we use to specify
“similar behaviour”. For the setup of the similarity of two parfactors
gi,j1t = φi,j1

t (Ai)|Ci,j1 and gi,j2t = φi,j2
t (Ai)|Ci,j2 , we use a func-

tion rsim : (×n
i=1range(A

i) �→ R
+,×n

i=1range(A
i) �→ R

+) �→
R

+ that is defined as follows:
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rsim(φi,j1
t , φi,j2

t ) =

1−

∑
a∈range(Ai)

φi,j1
t (a) · φi,j2

t (a)

√ ∑
a∈range(Ai)

φi,j1
t (a)2 ·

√ ∑
a∈range(Ai)

φi,j2
t (a)2

(6)

The result of Eq. (6) lies in the interval [0, 1]. The fraction is the
definition of the cosine similarity. We calculate 1 minus the fraction
to get a “distance” measure, in which a lower value means closer.

As a consequence of rsim with its codomain [0, 1] as the distance
function for DBSCAN, ε needs to be ≤ 1. Overall, the inputs of
DBSCAN are a partition P of parfactors, ε, minPts = 2, and rsim.
The radius ε trades off cluster sizes with accuracy. With a density
based clustering, TAMe does not have to ground parfactors as the
grounded factors would have identical φ’s leading to the same result.
The output is a clustering of P , i.e., a set K of sets in which each
K ∈ K is a set of parfactors that are assumed to behave similarly.

3.1.3 Fitness of Clustering

The question that remains after clustering is: How good is the clus-
tering? The clustering is highly influenced by the choice of the radius
ε, which leads to large clusters if set to a high value but may also blur
the potentials in the merged parfactor to a higher degree.

One could calculate the error introduced by the clustering w.r.t. a
given PRV B by comparing marginal distributions of B before and
after merging. However, if a model already is highly shattered, the
computational effort can be very high to compute marginal distribu-
tions before merging.

DBSCAN clusters together parfactors with a small angle between
them. So a clustering fits if the variance of angles within clusters is
low and the variance of angles between clusters is high. Analysis of
variance (ANOVA) [7] is a statistical method to test for significance
of a clustering. In our setup, ANOVA computes the variance of each
parfactor in a cluster K ∈ K w.r.t. the mean parfactor of K as well
as the variance of the mean parfactor of K w.r.t. the mean parfactor
of all points in K. Hence, it provides an indication of how good the
clustering separates parfactors.

ANOVA is used to accept or reject hypotheses. The default hy-
pothesis is that the means of all clusters are equal. For our problem,
the default hypothesis H0 is that the mean parfactors of the clusters
are equal, i.e., are not statistically significant to discriminate clusters.
The goal is to be able to reject H0, that is to say there is more differ-
ence between than within clusters. In case TAMe can reject H0, at
least one cluster is significantly different from the others.

To compute a mean parfactor of a cluster K, TAMe calculates
the average of all potentials while accounting for groundings. For-
mally, given a set of parfactors {φi,j

t (Ai)|Ci,j}oj=1, a mean parfactor
gi,kt = φi,k

t (Ai)|Ci,k is determined by

φi,k
t (a) =

∑o
j=1 |gr(φi,j

t (a)|Ci,j )|φi,j
t (a)|Ci,j

|gr(φi,k
t (a)|Ci,k )|

(7)

for each a ∈ range(Ai) and Ci,k is a union of the different Ci,j .
TAMe goes through all potentials and for each assignment, adds
the current potential, which is multiplied by the number of ground-
ings of the current parfactor. After all potentials for one assignment
are added up, TAMe divides the potential by the number of overall
groundings to obtain a mean potential.

To illustrate Eq. (7), consider a cluster with 3 parfactors. The first
parfactor maps to the potentials 2 and 1 with 2 groundings, the sec-
ond maps to 3.9 and 1.9 with 5 groundings, and the third maps to
8.1 and 4 with 1 grounding. To calculate the mean potential, TAMe
calculates for the first mapping (2 · 2 + 5 · 3.9 + 1 · 8.1)/8 = 3.95
and for the second mapping (2 ·1+5 ·1.9+1 ·4)/8 = 1.9375. Thus,
the mean parfactor maps to 3.95 and 1.9375 with 8 groundings.

To calculate variances of parfactors, TAMe uses rsim as the clus-
ters have been built based on rsim. The intuition behind the choice
is that if two parfactors have a very small angle between their po-
tentials, then the variance of the potentials would be close to 0. The
variance increases with the angle between potentials. As the num-
ber of groundings influences the new potentials, we also include the
number of groundings while calculating variances. A parfactor that
represents more groundings has a greater weight than one parfactor
with one grounding. As we have a grounding semantics, grounding
a parfactor with more instances leads to more factors contributing to
the full joint distribution.

After computing a mean parfactor gi,kt for each cluster K ∈ K
and an overall mean parfactor gi,mt based on all parfactors in K,
ANOVA proceeds to compute the variation between groups, i.e.,
MSG, and the variation within groups, i.e., MSE, using Eq. (6)
and the groundings of parfactors:

MSGK =
1

l − 1

∑
K∈K

|gr(gi,kt )| · (rsim(gi,kt , gi,mt ))2

MSEK =
1

m− l

∑
K∈K

∑
g
i,j
t ∈K

|gr(gi,jt )| · (rsim(gi,jt , gi,kt ))2

where l = |K|, i.e., number of clusters, and m = |gr(K)|, i.e., num-
ber of overall groundings. Computing F = MSG

MSE
, ANOVA com-

pares F against a critical value Fcrit, which depends on τ , l−1, and
m − l and can be looked up in a pre-computed table. If F ≤ Fcrit,
TAMe accepts H0 and discards the clustering. In case TAMe rejects
H0, i.e., F > Fcrit, there is more difference between clusters than
within clusters and TAMe proceeds to merging parfactors in clusters.

3.1.4 Merging Parfactors

The new parfactor for each cluster K ∈ K is the mean parfactor gi,kt ,
which is already computed by ANOVA. TAMe replaces P in G with
the merged parfactors. Then, TAMe proceeds with the next partition,
identifying and checking a clustering for the new partition, until all
partitions are processed. The result is a model whose parfactors are
merged versions of the input model, partially restoring a lifted rep-
resentation. Given a forward message mt, the output is a message
that possibly contains fewer groups within logvars and thus, prevents
ongoing splitting over time.

3.1.5 Application Cycle

As ANOVA may reject a clustering, TAMe may incur overhead if
TAMe cannot merge groups. Therefore, TAMe does not need to be
applied at every time step. Normally, the model is slowly grounded
over time with evidence, but if the groups behave similarly, which is
the case due to the impact of the model, the reoccurring application
of the model behaviour results in the potentials being similar enough
for TAMe to merge them. Thus, based on how much evidence splits
up the model, the interval of how often TAMe should be used as a
subroutine needs to be determined.

Next, we look at theoretical implications of TAMe.
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4 Theoretical Analysis

We show that TAMe introduces an acceptable, unbiased, and
bounded error as well as that TAMe keeps reasoning polynomial.

Proposition 1. TAMe errors are acceptable and unbiased.

Due to a density-based clustering, TAMe clusters parfactors with
similar φ’s. ANOVA determines the fitness of clusterings to prevent
unacceptable errors. By accounting for groundings during merging,
the error is unbiased.

Knowing that TAMe produces acceptable and unbiased errors, let
us have a look at theoretical bounds of the approximation error TAMe
introduces as well as whether groups with only slightly different ev-
idence do converge, allowing TAMe to keep reasoning polynomial.

Theorem 1. TAMe introduces a bounded error.

Proof sketch. A PDM is a Markov process and G→ describes a tem-
poral transitions model. Given the semantics of a PM, G→ forms a
stochastic transition model Q, which has a so-called minimal mix-
ing rate γQ ∈ ]0, 1] [3]. The mixing rate γQ is the minimal extent
to which the model behaviour causes an approximation to converge
to the true belief state while transitioning from one time step to the
next. TAMe approximates the belief state of the interface It and
LDJT computes the transition from t to t + 1. Thus, the approxi-
mation error δ is reduced by the factor (1 − γQ) with each tran-
sition. Assuming, that TAMe introduces an error of at most δ for
each time step, the expected error up to time step t accumulates to
δ + (1− γQ) · δ + ...+ (1− γQ)

t−1 · δ =
∑t

i=0 δ · (1− γQ)
i ≤∑∞

i=0 δ ·(1−γQ)
i = δ/γQ. For the last step, we apply the geometric

series, i.e.,
∑∞

i=0 δ · (1−γQ)
i = δ/1− (1−γQ) = δ/γQ [3]. Thus,

the error is indefinitely bounded by δ/γQ.

For TAMe also the significance check influences the approxima-
tion error δ. Before TAMe merges parfactors and thereby, approxi-
mates a belief state, TAMe uses a significance check to determine
the fitness of a proposed clustering. Therefore, one can use the sig-
nificance check to obtain a small δ. Now, we prove that TAMe keeps
reasoning polynomial.

Theorem 2. TAMe keeps reasoning polynomial.

Proof. Without loss of generality, assume we observe evidence for
one unary and boolean PRV B(Y ). Observing events for multiple in-
stances of logvar Y can split Y into at most three parts, i.e. the true,
the false, and the unknown part. Hence, for each time step, LDJT can
only assign true, false, or unknown to each grounded PRV of B(Y ).
For a huge n, where |D(Y )| = n, there always is a large number
of ground PRVs with the same subsequence of events. In case these
ground PRVs have been split by evidence, the minimal mixing rate
γQ ensures that the distributions of the ground PRVs converge again.
With a subsequence of length l say, the distance between the split
distributions of these ground PRVs is reduced by (1 − γQ)

l. There-
fore, the split distributions converge again and TAMe merges the split
distributions at some point in time. Merging parfactors ensures that
LDJT calculates a solution in polynomial time w.r.t. domains.

Now, we use Thm. 2 and the minimal mixing rate to restore the
original fully lifted representation.

Corollary 1. Without new evidence, TAMe obtains a fully lifted rep-
resentation with the true belief state.

Proof. During each transition from t to t + 1, γQ ensures that ap-
proximated distributions converge to the true distribution as the dis-
tributions converge at least by the factor (1− γQ). Thus, the approx-
imated distributions converge to the true belief state without new ev-
idence provided. Further, all groups have the same origin. Therefore,
all groups converge to the same true belief state. Hence, TAMe can
merge all groups and thereby, again obtain a fully lifted representa-
tion at some point in time.

Overall we have shown that, TAMe solves the KRP problem with
an indefinitely bounded error. Since the underlying distributions of
φ’s converge, TAMe is able to merge φ’s, allowing TAMe to keep
reasoning polynomial. Further, we have shown that TAMe introduces
an indefinitely bounded error that is unbiased and acceptable.

5 Evaluation

For the evaluation, we compare runtimes of LDJT with and without
TAMe and have a look at the introduced error. We use the model Gex

with |D(X)| = 100 and divide these 100 persons equally into sym-
metry groups, where members of each group behave identically over
time. For one time step, each symmetry group has the same evidence,
but the evidence can change from one time step to the next. To break
symmetries within a group, evidence may be missing with a proba-
bility of 0.1 for each person. We split D(X) into 2 to 10 symmetry
groups and generate evidence for 20 time steps. For each symmetry
group i, LDJT answers At+π(xi) for π = {0, 5, 10}, i.e., a filtering
and two prediction queries, in each time step t for all 20 time steps.
A technical note: The implementations of LVE and thereby, LDJT
do not exploit disconnected ground groups to speed up inference, but
eliminate all other PRVs to answer queries. Hence, from a runtime
perspective we can use Gex for this evaluation.

We vary ε and the interval I of how often LDJT applies TAMe.
The parameter τ is fixed to 0.005. Based on the problem at hand,
an appropriate τ needs to be determined in advance [2]. The three
options we evaluate are, from conservative to aggressive: 1) I = 5,
ε = 5 · 10−14, 2) I = 5, ε = 5 · 10−2, and 3) I = 2, ε = 5 · 10−2.
TAMe with Option 1 mostly merges parfactors that only differ in
a scaling factor. TAMe with Options 2 and 3 also merges parfactors
that slightly differ in their ratio. With I = 2, LDJT calls TAMe every
other time step, and with I = 5 every fifth time step.

Figure 4 shows runtimes of LDJT without TAMe and with TAMe
for the three options. The number of symmetry groups is plotted on
the x-axis. With more symmetry groups, evidence can ground the
model faster over time. Thus, the runtimes correlate to the number
of groups. For 5 symmetry groups, LDJT without TAMe takes about

2 4 6 8 10
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00 LDJT
I = 5, ε = 10−14

I = 5, ε = 10−2

I = 2, ε = 10−2

Figure 4. Runtimes [seconds], x-axis: #symmetry groups
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twice as long as LDJT with TAMe using the conservative option (1),
answering 300 queries for the 20 time steps. However, for 8 sym-
metry groups, LDJT without TAMe is slightly faster. As merging
depends on evidence, which here is randomly generated, TAMe may
not always be able to trade off its overhead. TAMe with Option 2
merges more parfactors. Hence, every fifth time step, LDJT answers
queries on fewer groups, which are then again split up by evidence.
With the most aggressive option (3), LDJT applies TAMe every other
time step and thus, answers queries on highly lifted models.

Sampling evidence once can produce an overhead as we have
shown above. However, by sampling evidence often as an input for
LDJT and then averaging the corresponding runtimes for our differ-
ent options, we expect smoothed lines w.r.t. symmetry groups and
significantly reduced runtimes with TAMe.

In summary, even by only merging parfactors that hardly dif-
fer, TAMe merges enough parfactors to improve runtimes of LDJT.
TAMe with Options 2 and 3 improves runtimes of LDJT signifi-
cantly. Overall, TAMe is able to save runtime of LDJT of up to
2 orders of magnitude. Knowing that TAMe can significantly im-
prove the performance of LDJT, we look at the costs of the speed up,
namely the introduced absolute error. We calculate the absolute error,
by querying all ground instances of the PRV At(X) once solely with
LDJT and once with LDJT and TAMe. We then report the difference
of the results of the marginal queries.

We compare the two options that merge parfactors with a higher
angle between them and thereby, do introduce an error. Table 1 shows
the absolute error in the marginals for 10 symmetry groups for the
most aggressive option and Option 2, when performing filtering, 2
time step prediction, and 4 time step prediction for each instance and
each time step. In both cases, for filtering queries, the error is already
negligible and decreases for prediction queries. Merging less often
(Option 2) has as to be expected a lower average error compared to
merging faster (Option 3). For 5 symmetry groups as another rep-
resentative, Table 2 shows the absolute error. Here, we see the very
same behaviour as for 10 symmetry groups. Thus, the empirical eval-
uation underscores that TAMe keeps reasoning polynomial, introduc-
ing only a negligible error. Further, the error converges to the true be-
lief state without new evidence as the prediction queries show. Over-
all, we observed such a behaviour for all symmetry groups. Next, we
investigate the influence of the significance check.

π Max Min Average

0 0.0001512367808 0.0000000000003 0.0000097980420
2 0.0000000837146 0.0000000000000 0.0000000054739
4 0.0000000000470 0.0000000000000 0.0000000000036

0 0.0001537746121 0.0000000001720 0.0000191206488
2 0.0000000851654 0.0000000000001 0.0000000111949
4 0.0000000000478 0.0000000000000 0.0000000000068

Table 1. Error; ε = 5 · 10−2, 10 groups, top: I = 5 and bottom: I = 2

To empirically evaluate the significance check, we run LDJT with
TAMe on a model once with and once without the significance check.
Table 3 shows the introduced errors for these runs. The maximum er-
ror hardly differs between the two runs, which is is due to the error
being bounded. Further, the minimum error is lower with the signif-
icance check as the significance check does not accept all proposed
clusters. Discarding a clustering and thus, not following through with
another approximation, the current approximation and the true belief

π Max Min Average

0 0.0001417171395 0.0000000000001 0.0000124653173
2 0.0000000820954 0.0000000000000 0.0000000073763
4 0.0000000000461 0.0000000000000 0.0000000000048

0 0.0001481776653 0.0000000059350 0.0000209354270
2 0.0000000873810 0.0000000000552 0.0000000129184
4 0.0000000000467 0.0000000000000 0.0000000000071

Table 2. Error; ε = 5 · 10−2, 5 groups, top: I = 5 and bottom: I = 2

state continue to converge based on the mixing rate. Lastly, the aver-
age error without the significance check is around 32% higher. Even
though in this case both average errors are negligible on an absolute
scale, the average error on a relative scale without the significance
check does increase significantly.

Max Min Average

w 0.0002259927071 0.0000000000000 0.0000104567643
w/o 0.0002260554389 0.0000000000168 0.0000137870835

Table 3. Introduced error; with and without significance test

Overall, we show empirically that TAMe does not introduce any
unacceptable error due to the significance check and that TAMe
keeps reasoning polynomial for LDJT.

6 Conclusion

Evidence often grounds a temporal model over time. Consequently,
inference runtimes suffer. Thus, the idea is to use approximate sym-
metries to restore a lifted representation and thus, keep reasoning
polynomial by taming evidence. To the best of our knowledge, we
present the first approach solving the KRP problem for temporal re-
lational probabilistic models. The algorithm can be used within any
(exact or approximate) temporal inference algorithm. The main idea
is that instances of parfactors with similar ratios between potentials
behave similarly. To merge parfactors, TAMe uses a message LDJT
sends between time steps as this message is smaller than the model
and causes splits in the next time step. To identify similar instances,
TAMe uses density-based clustering with the cosine similarity as a
distance measure, which captures similarity of potentials, allowing to
cluster on potentials without having to ground or compute marginals.
TAMe applies ANOVA to the clustering result to check if the cluster
means significantly discriminate the clusters. We show that TAMe
can merge parfactors as their distributions converge and that TAMe
introduces an indefinitely bounded error. Additionally, the approx-
imated distributions converge to the true distributions and without
new evidence TAMe obtains a fully lifted representation again since
the influence of the model over time outweighs a slight difference in
evidence. Empirical results show that LDJT with TAMe significantly
outperforms LDJT without TAMe. The results support our analysis
that TAMe retains a lifted solution, while keeping the introduced er-
ror negligible. Hence, TAMe tames the effect of evidence over time
and LDJT with TAMe produces fast and precise results.

Future work includes how to approximate evidence [21] to cause
fewer splits in temporal models as well as learning temporal mod-
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els. Additionally, we investigate approximate symmetries for count-
converted PRVs. For counted PRVs with the same number of ground-
ings, TAMe is directly applicable. Otherwise, one could ground the
counted PRVs and see if TAMe can merge some of these factors.
However, lifting aims at avoiding groundings, leaving room for im-
provement for TAMe with counted PRVs.
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