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Abstract. We address the problem of identifying the best arm in
a pure-exploration multi-armed bandit problem. In this setting, the
agent repeatedly pulls arms in order to identify the one associated
with the maximum expected reward. We focus on the fixed-budget
version of the problem in which the agent tries to find the best arm
given a fixed number of arm pulls. We propose a novel sequential
elimination method exploiting the empirical variance of the arms. We
detail and analyse the overall approach providing theoretical and em-
pirical results. The experimental evaluation shows the advantage of
our variance-based rejection method in heterogeneous test settings,
considering both identification accuracy and execution time.

1 Introduction

In this paper, we consider the problem of selecting the best expected
value among a finite set of random variables (RVs), assuming un-
known distributions. Such a problem can be formulated as a stochas-
tic best arm identification problem in multi-arm bandits (MAB). In
this setting, an agent (or forecaster) repeatedly chooses an action
(or arm) and observes a reward, drawn from an unknown, but fixed
probability distribution associated with each arm. The aim of the
forecaster is to identify the arm maximizing the expected reward,
based on the observations. Notice that the classical problem in MAB
is to maximize the cumulative reward by effectively balancing the
trade-off between the exploration and the exploitation of the arms
[18, 13, 3]. We focus instead on the pure exploration version of the
problem [4, 1, 8, 5, 19], in which the forecaster ultimately outputs a
recommended arm, and the objective function is the expected reward
of that arm.

The best arm identification problem is relevant for various appli-
cations. For instance, in channel allocation for mobile phones, an
exploration period before the communication start is needed to iden-
tify the best channel to operate [1]. Another example is provided by
preference elicitation applications, where a system is tasked with dis-
covering the preferences of a user. Efficient elicitation is based on
identifying the query (i.e., the arm) with the highest expected value
of information, a pure exploration problem [17, 14]. Best arm iden-
tification problems are also relevant to sequential decision making
under uncertainty to support policy selection methods [12, 6].

Since we are interested in rapidly estimating the best arm given
limited resources, in this work we focus on the fixed-budget best arm
identification problem (FBBAI) [1, 5, 19], in which the agent is given
a maximum number of arm pulls to find the best arm.

The main contribution of this paper is a novel sequential elimina-
tion approach to FBBAI, called variance-based rejects (VBR) algo-
rithm, that exploits variance estimation for pull allocation and arm
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rejection. Sequential elimination approaches to this problem have
been proposed in the literature [1, 11, 19], but these methods base
their decisions only on the estimated mean values. Moreover, their
effectiveness has been assessed, both theoretically and empirically,
considering probability distributions in which the variance is either
limited due to a bounded support (e.g. Rademacher) or univocally
determined by the mean value (e.g. Bernoulli). In contrast, when the
arms are associated with more general distributions, higher central
moments provide further information on the shape of the unknown
distributions and may hence improve the pull attribution strategy and
the accuracy of the final arm selection.

In the literature, the only variance-based approach to the fixed-
budget best arm identification problem is proposed by [9] in a multi-
bandit scenario. However, that method does not leverage incremen-
tal rejection and is limited by design to bounded distributions. Simi-
lar issues can be found in other methods, where empirical Bernstein
bounds are exploited to address different, but related problems, like
fixed-confidence multi-arm bandit [2] or single-arm stopping [16].
An incremental rejection algorithm based on confidence bounds is
proposed by [15] in the context of the model selection problem; how-
ever, those bounds are computed in a data-independent way based on
Hoeffding’s inequality, and assuming a known and bounded range of
possible values.

In this paper, we tackle these limitations by proposing the VBR
algorithm, in which both the empirical means and variances are ex-
ploited by a sequential elimination method to rapidly find the best
arm, assuming arbitrary distributions. Following this approach, the
initial arms are incrementally pruned until only one is left or the over-
all budget is consumed. At each filtering cycle, a budget is allocated
to refine the empirical mean and variance of the remaing arms; the
arms whose upper confidence bound is lower than the current max-
imal lower bound are dismissed. We provide both theoretical and
empirical evidence about the effectiveness of our approach.

From a theoretical point of view, we introduce the problem com-
plexity measure Hσ , which refines the measure H2 proposed in [1].
We then prove an upper bound for the accuracy (that is, probability of
misidentification) of VBR in terms ofHσ . Up to our knowledge, this
is the first upper bound for a class of unbounded distributions, under
the rather general assumption that the distribution is sub-Gaussian.
Interestingly, the experiments also show that Hσ is strongly corre-
lated with the actual accuracy of both VBR and its competitors.

Finally, we provide an experimental evaluation that compares
VBR with respect to the main FBBAI algorithms proposed in the lit-
erature. In particular, we assess the algorithms’ accuracy in heteroge-
neous experimental settings, considering various distribution types,
both discrete and continuous, and different parameters. To support
on-line applications, where actual execution time is critical, we also
measure the algorithms’ running times for a given budget, observing
substantial performance differences between different algorithms.
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The collected results show the advantage of our variance-based
approach in terms of both time performance and accuracy, on a wide
variety of input distributions. More specifically, we show that VBR
dominates the other methods in most of the proposed settings, while
providing competitive results in the remaining test cases. We also
show that the only other variance-based method proposed in the lit-
erature [9], when comparable, is dominated in accuracy and signifi-
cantly slower than VBR.

2 Preliminaries

Problem setup

Consider a set of K arms, enumerated by [K] = {1, . . . ,K}. Each
arm i ∈ [K] is associated with a reward which is a random variable
Xi with expectation μi = E[Xi] and variance σ2i = E[(Xi − μi)2].
Initially, a forecaster ignores the probability distribution associated to
each arm, however she can iteratively choose an arm and observe an
independent sample of its reward. After a fixed number T of rounds,
the forecaster is supposed to return the arm with maximal expecta-
tion. The fixed-budget best arm identification problem (FBBAI) con-
cerns the design of an allocation strategy minimizing the probability
of misidentification.

For convenience we assume that arms are ordered by their ex-
pected values and that there is only one optimal arm, i.e. μ1 > μ2 ≥
· · · ≥ μK . By Δi = μ1 − μi we denote the sub-optimality gap of
arm i = 2, . . . ,K. In particular, we setΔ = Δ2 as the minimal gap.

Assume that at round t = 1, . . . , T an arm i has been chosen
s ≤ t times and that xi,1, . . . , xi,s are the observed rewards. Then,
μ̂i,s = 1

s

∑s
j=1 xi,j is the empirical mean of arm i observed after s

pulls and

σ̂i,s =
1

s− 1

√√√√ s∑
j=1

(xi,j − μ̂i,s)2

is the corresponding empirical standard deviation.
Due to the central limit theorem (CLT), as the number of samples

s tends to infinity, the random variable (RV) μ̂i,s tends to a normal
distribution N (μi, ε

2
i,s), where εi,s = σi√

s
. Then, given a real γ >

0, we define the confidence upper and lower bounds UB i,s[γ] and
LB i,s[γ] as:

UB i,s[γ] = μ̂i,s + γ ε̂i,s and LB i,s[γ] = μ̂i,s − γ ε̂i,s .

where ε̂i,s =
σ̂i,s√
s

is the estimated standard error. For γ = 1.96,
UB i,s[γ] is called the upper 95% confidence limit and, symmetri-
cally, LB i,s[γ] is the lower 95% confidence limit. Intuitively, due
to CLT, the probability that μi is included in the interval from
LB i,s[1.96] to UB i,s[1.96] is about 0.95. Thereafter, when clear
from the context, we omit the subscript s and implicitly consider all
the pulls of a given arm up to a certain round.

In previous works [1, 11], the hardness of a best arm identification
problem as been measured through the value

H2 = max
i∈{2,...,K}

i

Δ2
i

.

Here, we introduce the refined measure

Hσ = max
i∈{2,...,K}

σ21 + σ2i
Δ2
i

that explicitly depends also on the variance of the arms. In the next
section, we show that the probability of misidentification of our ap-
proach is bounded above by a function ofHσ . Moreover, the experi-
ments reported later in the paper show thatHσ can be more accurate
than H2 in predicting the hardness of a problem instance, for both
our approach and its competitors.

Previous algorithms

Here, we briefly describe the main algorithms for FBBAI proposed
in the literature.

SR: Successive rejects [1]. In SR, the initial budget is split in K −
1 arm elimination phases according to the following definition.
First, let log(K) = 1

2
+

∑K
i=2

1
i
, let n0 = 0, and

nj =

⌈
1

log(K)

T −K
K + 1− j

⌉
, (1)

with 1 ≤ j ≤ K − 1. In each phase l ∈ {0, . . . ,K − 2}, all
the surviving arms are pulled nl+1 − nl times each and the corre-
sponding empirical means are updated accordingly. Then, the arm
whose mean is minimal is rejected. After K − 1 phases the only
surviving arm is returned.

SH: Sequential halving [11]. Analogously to SR, SH progressively
rejects the candidate arms until a single one is left. The initial
budget is split evenly across �log2 T � phases. The budget for each
phase is uniformly distributed over the remaining arms and the
empirical mean values are updated. At the end of a phase, the
worst half of the arms (in terms of empirical mean) are ruled out.

UCBE: Adaptive upper confidence bound exploration [1]. The ini-
tial budget is split in K − 1 phases as in SR. At the beginning of
each phase l, the empirical gaps Δ̂i = (max1≤j≤K μ̂j)− μ̂i are
computed and Ĥ1,l is set to the empirical value of H2 among the
worst l arms:

Ĥ1,l = max
K−l+1≤i≤K

i

Δ̂2
〈i〉
,

where 〈i〉 is an ordering of the arms such that Δ̂〈2〉 ≤ · · · ≤
Δ̂〈K〉. Then, at each round t of phase l, UCBE pulls the arm i
with highest upper confidence bound

μ̂i +

√
T

Ĥ1,l · si(t− 1)
,

where si(t − 1) is the number of samples arm i has accumulated
up to round t− 1.

GapEV: Gap-based exploration with variance [9]. This is the only
algorithm that exploits empirical variances to distribute pulls4. At
each round, the algorithm pulls the arm i that maximizes the quan-
tity

−Δ̂i +

√
2aσ̂2i
si(t− 1)

+
7ab

3(si(t− 1)− 1)
, (2)

where σ̂2i is the empirical variance of arm i, a is an exploration
parameter, and b is an upper bound to the value of the rewards.
Hence, GapEV is designed to work on RVs with bounded and
known support, whereas our proposal obviates both assumptions.

4 GapE-V is closely related to the algorithm UCB-V [2]. We have focused on
GapE-V because it has been specifically designed for the best arm identifi-
cation problem, whereas UCB-V refers to the classical multi-armed bandit
problem, where exploitation may interfere with mere identification.
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Notice that we are presenting GapEV in a single-bandit context,
whereas it was originally aimed at the more general multi-bandit
setting, where the objective is to identify the best arm in each ban-
dit.

Roughly speaking, SR and SH can be considered two extremes in a
spectrum: SR cautiously rejects arms one by one, whereas the num-
ber of candidate arms decay exponentially in SH. However, both SR
and SH are inflexible algorithms in that the number of arms dis-
missed at each phase is predetermined and does not depend on the
observations.

UCBE and GapEV are more flexible because they select which
arm has to be pulled one round at a time. On the other hand, the fact
that the budget is carefully distributed at round scale has a notable
impact on the execution time and makes these methods less appro-
priate to on-line applications (see also Section 4).

When selecting the next arm to pull, UCBE favours those arms
with greater empirical mean, and the arms that have received fewer
pulls so far (an exploration term). In GapEV, the exploration term de-
pends on the empirical variance of each arm: arms having exhibited
a larger variance are more likely to be pulled, as they require more
data to be accurately assessed.

Our main idea is then to design an allocation strategy that is as fast
as SR and SH, and yet it can flexibly modulate its aggressiveness, i.e.
how many candidates to reject at the end of each phase, based on the
empirical estimation of means and variances.

3 Variance-Based Rejects Algorithm

In this section we describe the VBR algorithm (Algorithm 1). The
algorithm proceeds in at mostK − 1 phases which iteratively prune
the initial set of arms until only one is left and returned.

The variables Q and budget hold the set of surviving arms and
the residual budget, respectively. Initially, all the arms are possible
candidates (line 1) and all the input budget is available (line 2). The
variable elimmaintains the total number of eliminated arms up to the
previous phase whereas arm bdg holds the per-arm budget for the
current phase. For the first phase, the latter is initialized to n1 − n0,
where nj is defined as in SR (see (1)).

During a phase each surviving arm i is sampled arm bdg times
and the corresponding empirical mean μ̂i and standard deviation σ̂i
are updated (lines 6-9). Then, all the arms i whose upper bound
UB i[γ] is lower than the currently maximal lower bound MaxLB
are dismissed (lines 10–11, and 15). If no arm satisfies the previous
condition, then the same policy as SR is applied. That is, the arm
with the lowest empirical mean is dismissed (lines 12–15).

Next, if there is more than one surviving arm, then the set of can-
didates, the per-arm budget and the number of eliminated arms are
updated for the next phase (lines 18–20). According to line 19, it is
straightforward to see that if VBR rejects k arms during a phase, then
in the next phase it will consume the budget that SR would consume
to reject the same number of arms.

Otherwise, a special catch-up phase uses the residual budget to
improve the estimates and perform the final selection (lines 21–27).
Indeed, differently from SR and SH, where the number of arms that
are dismissed during a phase is predetermined, in VBR this number
depends on the stochastic values UB i[γ] and LB i[γ] and hence it
cannot be known beforehand. Consequently, a phase might end up
with only one arm left without having used the entire input budget. If
so, in order not to waste budget, the last dismissed arms are recovered
and the remaining budget is equally distributed. Finally, the arm with
maximal empirical mean is returned.

input : A set [K] of arms, a budget T ∈ N, a confidence
parameter γ > 0.

output: An arm in [K].

1 Q← [K]
2 budget ← T
3 elim ← 0
4 arm bdg ← n1 − n0
5 while |Q| > 1 do
6 foreach i ∈ Q do
7 sample arm bdg times arm i
8 update μ̂i and σ̂i
9 end

10 MaxLB ← maxi∈Q LB i[γ]
11 Reject ← {i ∈ Q | UB i[γ] < MaxLB}
12 if Reject = ∅ then // mimic SR
13 Reject ← {argmini∈Q μ̂i}
14 end

15 Q′ ← Q \ Reject
16 budget ← budget− |Q| · arm bdg
17 if |Q′| > 1 then
18 Q← Q′

19 arm bdg ← 1
|Q|

∑K−|Q|
j=elim+1(nj+1 − nj)(K − j)

20 elim ← K − |Q|
21 else // catch-up phase
22 foreach i ∈ Q do
23 sample

⌊
budget
|Q|

⌋
times arm i

24 update μ̂i
25 end

26 iM ← argmaxi∈Q μ̂i
27 Q← {iM}
28 end

29 end

30 return i s.t. Q = {i}
Algorithm 1: VBR: Variance-Based Rejects algorithm.

We now provide an upper bound to the probability of misidenti-
fication (that is, the probability that VBR returns an arm different
from 1) under the hypothesis that each arm i is associated to a sub-
Gaussian random variable Xi with parameter σi. Recall that a RV
X with expected value μ is said to be sub-Gaussian with parameter
λ > 0 if for all t ∈ R it holds that

E[et·(X−μ)] ≤ e−λ2t2

2 .

Clearly, if a random variable is sub-Gaussian with parameter λ, then
it is also sub-Gaussian with any positive parameter λ′ smaller than
λ.

The following result proves that the probability of misidentifica-
tion decreases exponentially with the budget and is connected to the
shape of the RVsXi via the measureHσ .

Theorem 1 Let [K] be a set of arms where each RV Xi is sub-
Gaussian with parameter σi. The probability of misidentification of
VBR, denoted by Pr(err), is at most

ψ(K) · exp
(
−φ(T,K)

2Hσ

)
,

where:

ψ(K) =
(K − 1)(K + 2)

2
and φ(T,K) =

T −K
log(K) · (K + 1)

.

M. Faella et al. / Rapidly Finding the Best Arm Using Variance 2587



Proof. Let [K] be a set of sub-Gaussian arms and assume that, for
some budget T and confidence parameter γ, VBR takes m phases
to select an arm as output. Moreover, let Q(r) be the set of arms
that are still viable candidates at the beginning of phase r ≤ m. The
probability of misidentification Pr(err) is the probability that the
true best arm 1 is dismissed either at some phase r < m (we denote
this event by errr) or in the last catch-up phasem, denoted by errc:

Pr(err) = Pr

(
m−1⋃
r=1

errr ∪ errc
)
. (3)

Then, by a union bound, we have that

Pr(err) ≤
m−1∑
r=1

Pr(errr) + Pr(errc) . (4)

The event errr occurs when 1 ∈ Q(r) and one of the following con-
ditions holds: either UB1[γ] < MaxLB (i.e., UB1[γ] < LBi[γ],
for some i ∈ Q(r)) or Reject is empty at line 12 and μ̂1 is smaller
than all the other means μ̂j with j ∈ Q(r)\{1}. Since we are trying
to bound the probability of errr , we can assume that the conditions
1 ∈ Q(r) and Reject = ∅ have probability equal to 1 and hence we
neglect these conjuncts. Formally, we have that

Pr(errr) ≤ Pr(err1r) + Pr(err
2
r)

err1r =
⋃

i∈Q(r)

(UB1[γ] < LBi[γ])

err2r =
⋂

i∈Q(r)\{1}
(μ̂1 < μ̂i) .

Then, by a union bound, Pr(errr) is at most∑
i∈Q(r)

Pr (UB1[γ] < LBi[γ]) + Pr (μ̂1 < μ̂k) , (5)

where k is any arm in Q(r) \ {1}.
Let sr be the number of pulls performed on each arm in Q(r)

up to and including phase r. Notice that sr is greater than or equal
to nr as defined in (1). Moreover, being Xk and X1 sub-Gaussians
with parameters σk and σ1, respectively, the RV μ̂k − μ̂1 is a sub-

Gaussian with expectation −Δk and parameter τk =

√
σ2
1+σ

2
k

sr
. By

applying the concentration inequality of sub-Gaussian distributions
[20], we have that

Pr (μ̂1 < μ̂k) = Pr (μ̂k − μ̂1 +Δk > Δk)

≤ exp

(
−Δ2

k

2τ2k

)
.

Then, we have that

Δ2
k

2τ2k
=

Δ2
k · sr

2(σ21 + σ2k)
≥ Δ2

k · nr
2(σ21 + σ2k)

≥ φ(T,K)

2Hσ· , (6)

where
φ(T,K) =

T −K
log(K) · (K + 1)

.

Consequently, we obtain

Pr (μ̂1 < μ̂k) ≤ exp
(
− φ(T,K)

2Hσ

)
.

Similarly, Pr (UB1[γ] < LBi[γ]) is equal to

Pr (μ̂i − μ̂1 +Δi > γ · (ε̂1 + ε̂i) + Δi) .

By using again the concentration inequality of sub-Gaussian distri-
butions, we have that

Pr (UB1[γ] < LBi[γ]) ≤ exp
(
− (γ · (ε̂1 + ε̂i) + Δi)

2

2τ2i

)

≤ exp
(
− Δ2

i

2τ2i

)

≤ exp
(
− φ(T,K)

2Hσ

)
by (6) .

We can use the above bounds and the fact that |Q(r)| ≤ K − r to
obtain that (5) is smaller than (K − r + 1) · exp (− φ(T,K)

2Hσ

)
.

Finally, sincem ≤ K − 1, we have that

m−1∑
r=1

Pr(errr) ≤ K · (K − 1)

2
· exp

(
− φ(T,K)

2Hσ

)
. (7)

The event errc that arm 1 is dismissed in the catch-up phase m
occurs when 1 ∈ Q(m) and μ̂1 < μ̂i, for some i ∈ Q(m) \ {1}, as
we omit the first condition and obtain

Pr(errc) ≤ Pr

⎛
⎝ ⋃
i∈Q(m)\{1}

μ̂1 < μ̂i

⎞
⎠

≤
∑

i∈Q(m)\{1}
Pr(μ̂1 < μ̂i)

≤ (K − 1) · exp
(
− φ(T,K)

2Hσ

)
. (8)

The thesis follows from equations (4), (7), and (8). �

The upper bound in Theorem 1 shares some evident similarities
with the upper bounds of competing algorithms. In all approaches
the probability of error exponentially decays with the budget T . Re-
garding the multiplicative term ψ(K) in Theorem 1, the analogous
term in SR is quadratic in K as in our bound, whereas in SH that
term is only logarithmic in K. In GapEV, the multiplicative term is
proportional to the product K · T and hence, since T is typically
much greater than K, our approach shows a better behaviour in this
respect.

Nevertheless, it is worth to note that the upper bound provided in
Theorem 1 is more general than the analogous results shown for its
competitors. More specifically, the other upper bounds assume that
the RVs are bounded in some interval [a, b]. Bounded RVs are just
a special case of sub-Gaussian RVs with parameter σ, which clearly
include also unbounded distributions (first and foremost Gaussian
distributions). Moreover, our bound depends on the variances via the
problem complexity measure Hσ , whereas previous bounds gener-
ally use a variance-independent measure H2.5 The experiments in
the next section will show thatHσ is significantly more accurate than
H2 in predicting the misidentification rate in case of unbounded RVs
(see Figure 4).

In [1] the authors provide a lower bound for the best arm identifi-
cation problem, but it is limited to Bernoulli RVs only. Again, since
Bernoulli RVs are bounded, this result depends on the complexity
measure H2. Other than that, the gap between our upper bound and
such lower bound essentially derives from the multiplicative factor
ψ(K), which is replaced by a constant in the lower bound. Extend-
ing the lower bound to sub-Gaussian distributions is left to future
works.
5 Only GapEV is equipped with a complexity measure that takes variances
into account, but this measure is tailored to RVs with bounded and known
support.
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(a) Normal-S (b) Normal-M (c) Normal-L

Figure 1: Percentage of misidentification on normal distributions andK = 40.

4 Experiments

In this section, we report on a set of experiments based on a pro-
totype implementation of Algorithm 1 developed in Java. We com-
pare its performance and accuracy with the algorithms presented in
Section 2. Summarizing, we compare the following algorithms: Suc-
cessive rejects (SR), Sequential halving (SH) Adaptive upper confi-
dence bound exploration (UCBE), Adaptive gap-based exploration
with variance (GapEV), and Variance-based rejects (VBR).

As a quick preview, the experiments reveal that VBR frequently
outperforms all other algorithms on a wide range of input scenarios,
both in error rate and in execution time.

All experiments were run on an AMD Ryzen 2700X clocked at
3.7Ghz.

Input distributions. A problem instance is defined by K RVs
X1, . . . , XK and a budget T > 0. As distributions for the RVs, we
consider the following kinds, identified by a label:

Normal-X: Normal distributions with expected values μi uniformly
distributed in [0, 1] and standard deviations σi distributed as fol-
lows:

X=S. Uniformly in [0.01, 0.1]

X=M. Uniformly in [0.1, 0.5]

X=L. Uniformly in [0.5, 2]

Normal-H2: Normal distributions with μ0 = 1 and μi = 0 for
all i �= 0. Standard deviations σi distributed uniformly in [2, 10]
(including σ0). Notice that for this family of inputs it holdsH2 =
K.

Rademacher: Rademacher distributions with parameters x, y uni-
formly distributed in [0, 1]. This is a discrete distribution with two
equally likely outcomes x and y.

Bernoulli: Bernoulli distributions with parameter p uniformly dis-
tributed in [0, 1].

Parameters. In all experiments the following parameters are
fixed:

• VBR confidence coefficient γ. Heuristically fixed to 2 (more in-
formation below).

• UCBE exploration rate c. Fixed to 1, since this is the best setting
in the experiments of [1].

• GapEV exploration parameter a. It adapts dynamically during the
execution according to the estimation algorithm discussed in [9].

• Each experiment is run on 100k problem instances.

We let the following parameters vary in the experiments:

• Budget T . Varying in {5k, 10k, 15k, 20k}.
• Number of arms K. In most experiments we set K = 40, to ob-

tain significant misidentification rates. In one experiment we let
K vary in {40, 80, 160, 320}.

Percentage of misidentification

As customary in the fixed-budget setting, we measure the percentage
of inputs on which a given algorithm fails to identify the true best
arm. Figure 1 reports the misidentification percentages on experi-
ments Normal-S, Normal-M, and Normal-L. Data shows that VBR
outperforms all other algorithms on small and medium variances,
whereas for large variances it sits in the middle of the group.

Figure 2 reports the misidentification percentages for the discrete
distributions Rademacher and Bernoulli. Once again, VBR achieves
lower error rate than the previous algorithms across the range of bud-
gets.

Table 1 summarizes the average percentage of misidentification
across all classes of inputs and all budgets, normalized w.r.t. VBR.
On 4 classes, VBR displays the lowest error rate. Compared to the
second-best algorithm, VBR performs from 8% to 29% better in
these scenarios. On the class Normal-L, where the standard deviation
can be 80 times the expected value of Δ, VBR is outperformed by
UCBE and SH by a 3% margin. As for the other algorithms, UCBE
performs very similarly to SH, but the latter can boast a faster execu-
tion time (see next section).

Execution time

The fixed-budget model is a useful abstraction for comparing the per-
formance of different algorithms on equal footing. In some multi-
armed bandit applications, requesting a sample is the most expensive
operation that the estimation process performs. In other applications,
such as preference elicitation, requesting a sample is a mildly expen-
sive operation that may involve querying an MCMC sampler [14].
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(a) Rademacher (b) Bernoulli

Figure 2: Percentage of misidentification on Rademacher and
Bernoulli withK = 40.

Figure 3: Execution time on Bernoulli with varyingK and T = 100 ·
K (100 samples per arm on average).

The other calculations performed by the estimation algorithm may
end up being at least as expensive as collecting the samples from the
arms. Therefore, in this section we compare the actual execution time
of the algorithms.

Figure 3 shows the time performance of all algorithms on
Bernoulli. The results show that all algorithms perform in very sim-
ilar time, except UCBE and GapEV, which are significantly slower.
That can be explained by the fact that those algorithms assign sam-
ples to arms one at a time, whereas all other algorithms assign blocks
of samples. GapEV is further encumbered by the necessity to up-
date the adaptive a parameter after each new sample. Notice that our

VBR GapEV UCBE SH SR
Normal-S 1 - 1.23 1.28 1.51
Normal-M 1 - 1.10 1.08 1.28
Normal-L 1 - 0.97 0.97 1.04
Rademacher 1 1.51 1.30 1.29 1.54
Bernoulli 1 1.14 1.13 1.11 1.36

Table 1: Normalized misidentification rates for different classes of
inputs. Values are averaged over all values of the budget and then
normalized w.r.t. the performance of VBR. The lowest value for each
row is emphasized.

Figure 4: Percentage of misidentification on Normal-H2 (random nor-
mals with fixedH2 and varying values ofHσ).

Figure 5: Percentage of misidentification for different values of γ on
Normal-M.

UCBE implementation attempts to optimize time efficiency by em-
ploying appropriate data structures (balanced trees).

Estimating the problem hardness

Parameter H2 has been proved to be connected to the hardness of
the problem via a lower bound [1] and upper bounds that apply to
the algorithms SR, SH, and UCBE. However, H2 depends only on
the expected values of the arms, and does not take variances into
account. For this reason, we introduced the refined measure Hσ . To
show that Hσ can be a more accurate measure of problem hardness,
we report the result of running a set of experiments on a family of
normal distributions with fixedH2.

Figure 4 plots the percentage of misidentification on random nor-
mals grouped by intervals of Hσ . More precisely, for each problem
instance we computed its Hσ value and we ran all the algorithms.
Let Hσ andHσ denote the minimum and maximum value ofHσ oc-
curring in the experiment, we divided the interval [Hσ, Hσ] into 20
sub-intervals, so that each sub-interval contains the same number of
problem instances. The x-coordinates of the points in Figure 4 are
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the right endpoints of the 20 sub-intervals. The y-coordinates report
the average percentage of misidentification on that class of instances.

The plot shows that, with constant H2, Hσ is very accurate in
predicting the remaining variability in problem hardness (in terms of
misidentifications).

On the choice of γ

The rejection confidence parameter γ allows us to tune the behavior
of VBR between two extremes. For values close to 0, VBR behaves
more and more like the uniform allocation strategy6, because all arms
except one are discarded during the first phase; then, all arms are
re-evaluated in the catch-up phase and the final decision is made.
For large values of γ, no arm is ever discarded based on its upper
confidence bound and the algorithm falls back on behaving like SR.

Figure 5 plots the accuracy of VBR for different values of γ,
and compares it to SR and the uniform allocation algorithm (labeled
Unif ). The results confirm the above analysis and show that the per-
formance of VBR on random Gaussians is best for γ close to 2.

5 Conclusions

We addressed the problem of stochastic best arm identification in
multi-arm bandits considering the fixed-budget setting. We proposed
the VBR method, a novel sequential rejection approach exploiting
variance for pull allocation and arm rejection.

Alternative methods in the literature are based on the estimated
mean values only, with the exception of GapEV [9], where variance
exploitation has been applied to the multi-bandit setting, but the ap-
proach is limited by design to bounded distributions and does not
leveradge incremental rejection. Analogously to UCBE, GapEV as-
signs samples to arms one at a time, which predictably slows down
the execution, as shown by our experiments (see Figure 3).

We introduced and detailed the novel approach, providing both
theoretical and empirical results. On the one hand, we obtain a the-
oretical upper bound for the accuracy of VBR which uses a novel
variance-based measure Hσ of problem complexity. On the other
hand, we empirically compared our approach with respect to alter-
native methods in the literature, addressing both identification accu-
racy and time performance. In contrast with assessments based on
a few specific cases of input distributions [1, 19], we evaluated the
approaches with respect to a variety of randomly generated input dis-
tributions, both bounded and unbounded.

The collected results show that the VBR method dominates the
others in the majority of the proposed settings, with up to 30% im-
proved accuracy. In the few remaining test cases, VBR lags behind
the best algorithm by a small 3% accuracy margin. This assessment
shows that the present approach exhibits an effective balance be-
tween performance and adaptiveness to heterogeneous settings, in-
cluding both discrete and continuous distributions and different pa-
rameter setups.

As future work, we aim at extending the proposed method con-
sidering not only a budget of arm pulls, but also a target confidence
level [7, 8, 10]. The goal would then be to minimize the trials needed
to find the best arm while aiming at the prescribed confidence and
respecting the maximum budget. Finally, as an application, we are
currently developing a preference elicitation framework that exploits
VBR to rapidly identify the queries with the highest expected value
of information.
6 The uniform allocation strategy samples each arm the same number of times
(that is, T/K) and picks the arm with the highest sample mean.
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Csaba Szepesvári, volume 35 of JMLR Workshop and Conference Pro-
ceedings, pp. 423–439. JMLR.org, (2014).

[11] Zohar Karnin, Tomer Koren, and Oren Somekh, ‘Almost optimal explo-
ration in multi-armed bandits’, in International Conference on Machine
Learning, pp. 1238–1246, (2013).

[12] Levente Kocsis and Csaba Szepesvári, ‘Bandit based Monte-Carlo
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