
Algebraic Circuits for
Decision Theoretic Inference and Learning

Vincent Derkinderen and Luc De Raedt1

Abstract. While it is well known that arithmetic circuits can be
used for efficient probabilistic inference, arithmetic circuits can also
be used for other tasks. In this paper, we show how arithmetic cir-
cuits in a semiring setting (i.e., algebraic circuits) can solve decision
theoretic inference tasks and a utility learning task under partial ob-
servability. The former involves finding the set of decisions that max-
imises the expected utility. We introduce two approaches for this,
both applying algebraic circuits. The learning task involves learn-
ing unknown utility values from partially observed interpretations of
which the total utility is given. We provide the necessary theory and
also perform an experimental evaluation of the approaches.

1 INTRODUCTION

Probabilistic models are ubiquitous in artificial intelligence [16, 28].
Inference and learning for such models is computationally hard.
Nonetheless, there has been a steady progress in developing tractable
representations and algorithms for supporting a wide range of tasks.
Especially techniques of knowledge compilation [7] have been in-
strumental in speeding up inference in Bayesian networks and Sta-
tistical Relational AI [28]. Knowledge compilation is concerned with
compiling a logical theory into a representation, a circuit, that al-
lows to perform particular operations in polynomial time. Various
classes of circuits have been produced, giving rise to the celebrated
knowledge compilation map [7]. Central to probabilistic inference
is the problem of weighted model counting (WMC), an extension
of the well known satisfiability (SAT) problem. In SAT, one deter-
mines whether a propositional theory has a model, while in model
counting (#SAT) the problem is to determine how many models it
has. In WMC, every model has a weight (the product of the weight
of its literals) and the task is to compute the weighted sum of its
models. While WMC in general is #P-complete, once the theory has
been compiled to an appropriate circuit representation (e.g. a Senten-
tial Decision Diagram [6]), it can be performed in time linear in the
size of the circuit. This is especially beneficial for repeated inference
where the circuit is constructed once and only the weights and oper-
ations change (e.g. in learning). This is a state of the art approach for
inference in Bayesian networks.

It is well-known that a wide range of algorithms can be gener-
alised using semirings, for instance, belief propagation with the sum-
product and max-product algorithms. The key idea is to replace the
traditional + and × by semiring operations ⊕ and ⊗. This has in-
spired work on Algebraic Model Counting (AMC) [14, 15] where
rather than using the standard probabilistic semiring, a range of other
semirings are used to solve a wide range of inference tasks, including
max-product, sensitivity analysis, gradient computation, and even

1 KU Leuven, Belgium, email: name.surname@cs.kuleuven.be

weighted model integration [33]. These techniques have also found
their way in algebraic extensions of probabilistic programming lan-
guages such as aProbLog [14], and have been used in new learning
frameworks such as DeepProbLog [22].

In this paper, rather than considering the standard probabilistic
setting, we consider decision theoretic extensions and investigate
how we can adapt and apply AMC techniques to cope with some of
the resulting inference and learning problems. One way of viewing
this, is as the transition from standard Bayesian networks to influ-
ence diagrams or from a probabilistic programming language (such
as ProbLog [11]) to its decision theoretic extension (such as DT-
ProbLog [3]). An additional inference task for such an extension is
to find the decisions that maximise the expected utility. We focus on
the one-shot setting where all decisions are made before there are
any observations. Maximising the expected utility requires three op-
erations – max sum product, which already indicates that it is unclear
how to apply standard AMC techniques to this problem.

The key contributions of this paper are that we introduce mod-
ified AMC techniques to solve two problems. The first problem is
the maximisation of the expected utility, for which we introduce two
techniques (Section 3). The first technique constrains the variable or-
dering and is based on earlier work on the Same-Decision Probabil-
ity task [27]. Constraining the circuit can lead to larger circuits. We
therefore also consider an alternative approach which instead views
the circuit as a function with unknown values (decisions) that have
to be optimised. We optimise these decisions using gradient ascent
and show how AMC can be used to compute the gradients on the
circuit. The second problem we solve is a novel learning task for
utility values (Section 4). In this setting, each example of the data set
represents an instance – a possible world – of which only some vari-
ables are observed. In addition, we also observe the total utility of
each instance, a linear sum of the utilities of the instance variables.
The combination of both partially observed interpretations and to-
tal utilities makes this a novel learning setting. One way of tackling
this problem is to minimise a loss function using gradient descent.
We evaluate this approach and show how AMC can be used to com-
pute the gradients. To validate all contributions, we implement them
as an extension of DT-ProbLog. The code and data is available at
https://github.com/VincentDerk/Paper-AC-Decisions-Learning.

2 BACKGROUND

In this section, we first provide background on circuits and the type
of tasks they can solve (Section 2.1 and 2.2). Second, we clarify the
relation with knowledge compilation and define the class of circuits
which we will use, Sentential Decision Diagrams (Section 2.3).

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200392

2569

2.1 Weighted model counting

Weighted model counting (WMC) consists of counting all models
that satisfy a propositional logic theory, each with a particular weight.
More formally, the task consists of a propositional logic theory T
over a set of variables V . A model of T is a set of positive and neg-
ative literals, one for each variable in V , assigning truth values (v
or ¬v) such that T is satisfied. We denote by M(T) the set of all
models that satisfy T . The weight of m ∈ M(T) is determined by
its literals l ∈ m and a weight function w(l) assigning a real value
to each positive and negative literal.

Definition 1. The weighted model count of a propositional logic
theory T and a weight function w is equal to

WMC(T,w) =
∑

m∈M(T)

∏
l∈m

w(l) (1)

Example 1. Consider T = A ∨ B over V = {A,B} and w =
{a �→ 1,¬a �→ 2, b �→ 3,¬b �→ 4}, then

WMC(T,w) = w(a)w(b) + w(a)w(¬b) + w(¬a)w(b)

= 3 + 4 + 6 = 13

2.2 Algebraic model counting

Algebraic model counting (AMC) generalises WMC by also support-
ing non-real weights and generalising

∑
and

∏
to the operations of

a commutative semiring, ⊕ and ⊗ respectively. In AMC, the weight
function is referred to as labeling function α.

Definition 2. A commutative semiring S is an algebraic structure
(A,⊕,⊗, e⊕, e⊗) where

• A defines the domain of the values,
• ⊕ and ⊗ are associative, commutative binary operations over A,
• ⊗ distributes over ⊕,
• e⊗ ∈ A and for all a ∈ A : e⊗ ⊗ a = a,
• e⊕ ∈ A and for all a ∈ A : e⊕ ⊕ a = a and e⊕ ⊗ a = e⊕.

Definition 3. Algebraic model counting [15] is the task of comput-
ing Equation 2 given a propositional logic theory T over variables
V , a commutative semiring S = (A,⊕,⊗, e⊕, e⊗) and a labeling
function α mapping literals to elements of A.

AMC(T, S, α) =
⊕

m∈M(T)

⊗
l∈m

α(l) (2)

Example 2. Consider the semiring S = (R,max,×, 0, 1), T =
A ∨ B and α = {a �→ 1,¬a �→ 2, b �→ 3,¬b �→ 4} then
AMC(S, T, α) = 6, the highest weight out of all models of T .

Many problems can be transformed into an AMC problem by
defining the appropriate semiring and labeling function, examples
include sensitivity analysis and computing gradients [15].

2.3 Knowledge compilation: SDDs

A state-of-the-art approach to compute the AMC involves compiling
the theory T into a representation that allows for tractable weighted
(and algebraic) model counting. This process is studied in the domain
of knowledge compilation [7]. One representation class that can be
used for this is the Sentential Decision Diagrams class (Figure 1) [6].

5

C D ¬C�

3

¬B C �

1

¬A B A �

1

A B ¬A�

Figure 1. An SDD representing theory (A∧B)∨ (C ∧D)∨ (B ∧C). A
circle is an or-node, a paired-box is an and-node consisting of two children.

1

A
0

B
2

3

5

C
4

D
6

Figure 2. The vtree used for the SDD in Figure 1.

A Sentential Decision Diagram (SDD) represents a logic theory
and is either a constant (� or ⊥), a literal or a decomposition node
{(p1, s1), . . . , (pn, sn)}. The latter represents

∨n
i=1 pi ∧ si with pi

and si both SDDs. A decomposition node is an or-node which parti-
tions the theory into disjoint children (pi, si) called the elements of
the decomposition node. Each element is graphically represented as
a paired box where the left and right box are respectively the prime
pi and sub si. The pair (pi, si) represents a conjunction of both (and-
node). si represents the parent theory conditioned on pi (Example 3).

Example 3. The root r in Figure 1 represents the theory T = (A ∧
B) ∨ (C ∧D) ∨ (B ∧ C). Call the children of r, from left to right,
r1, r2 and r3 and the theory they represent 〈r1〉, 〈r2〉 and 〈r3〉. The
prime of r1 represents ¬B and the sub of r1 represents T conditioned
on ¬B which equals C ∧D. The conjunction of both the prime and
sub of r1 forms the theory 〈r1〉 = ¬B ∧ C ∧D. The theory of r is
the disjunction of each of its children: 〈r〉 = T = 〈r1〉∨〈r2〉∨〈r3〉.

A vtree is a full binary tree where each SDD variable appears in a
leaf node (Figure 2). Denote with vl and vr the left and right subtree
of vtree v. A vtree guides the construction of an SDD by determin-
ing the variables present in the primes and subs of each SDD node.
When node {(p1, s1), . . . , (pn, sn)} respects vtree node v, the vari-
ables in each pi and si are determined by respectively the variables
in vl and vr , and each pi (si) respects vl (vr). Graphically, the num-
ber in the decomposition node refers to the vtree node that it respects
(Figure 1 and 2). The following is the formal SDD definition intro-
duced by Darwiche [6]. The definition uses 〈α〉 to denote the boolean
function represented by the SDD α.

Definition 4. α is an SDD that respects vtree v iff:

- α = ⊥ or α = �.
Semantics: 〈⊥〉 = false and 〈�〉 = true.

- α = X or α = ¬X and v contains variable X .
Semantics: 〈X〉 = X and 〈¬X〉 = ¬X .

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning2570

- α = {(p1, s1), . . . (pn, sn)}, v is internal, p1, . . . , pn are SDDs
that respect the subtrees of vl, s1, . . . , sn are SDDs that respect
the subtrees of vr , and 〈p1〉, . . . , 〈pn〉 is a partition.
Semantics: 〈α〉 = ∨n

i=1〈pi〉 ∧ 〈si〉.
Example 4. We denote the root node in Figure 1 as r and the root
of the vtree in Figure 2 as v. The primes of r only involve A and B
since vl only contains A and B. The subs of r only involve C andD
since vr only contains C andD. We say r respects v (node label 3).

When we replace the or-nodes (circle) and and-nodes (paired box)
in an SDD with respectively + and ×, we obtain what is called an
arithmetic circuit. This circuit can be evaluated bottom-up to obtain
the WMC at the root node [5]. Furthermore, when replacing the +
and× with the more general⊕ and⊗ operations, and the leaf values
with semiring elements, we obtain what we refer to as an algebraic
circuit. The latter circuit can be used to compute the AMC [15]. In
a sense, this circuit represents the computations required to obtain
the AMC in a tractable manner, by exploiting the theory T and the
semiring properties of the ⊕ and ⊗ operations.

An SDD is an X-constrained SDD when the vtree satisfies certain
conditions. The following definitions are taken from the work that
introduced X-constrained SDDs [27].

Definition 5. A vtree node v is X-constrained iff v appears on the
right-most path of the vtree and X is the set of variables outside v. A
vtree is X-constrained iff it has an X-constrained node.

Definition 6. An SDD is X-constrained iff it respects an X-
constrained vtree. An SDD node is X-constrained iff it respects an
X-constrained vtree node.

Example 5. The vtree in Figure 2 is both {A,B}- and {A,B,C}-
constrained because of respectively node 5 and 6. The SDD in Fig-
ure 1 is hence both {A,B}- and {A,B,C}-constrained.

We use the SDD package2 to implement our work. The package
supports both SDD and X-constrained SDDs.

3 MAXIMISING DECISIONS

We first explain how AMC can be used to compute a probability and
an expected utility.

Probabilities Weighted model counting (and AMC) can be used to
answer probabilistic queries and is a basis for inference in Bayesian
networks and ProbLog programs. Probabilistic inference can be cast
into a WMC (and the more general AMC) task as follows. The prob-
ability of a model is equal to multiplying the weights of the posi-
tive and negative literals of that model

∏
l∈m w(l). By summing up

all the models where query q holds, the WMC yields the probabil-
ity of q3:

∑
m∈M(T∧q)

∏
l∈m w(l). This corresponds exactly to the

weighted model counting task (and AMC).

Expected utility When each variable is associated with both a
probability and a utility, then the expected utility can be computed
using AMC, similar to the probability approach. We denote with
u(m) and p(m) the utility and probability of a model m and with
uv (u¬v) the utility obtained from variable v being true (false). The

2 The SDD package is available at http://reasoning.cs.ucla.edu/sdd/.
3 When computing the conditional probability or supporting constraints, a
normalisation is required WMC(T ∧ q)/WMC(T).

expected utility of m is defined as eu(m) = p(m)× u(m). The ex-
pected utility of a theory T , eu(T), is defined in Equation 3 and can
be computed using the AMC framework.

eu(T) =
∑

m∈M(T)

p(m)︷ ︸︸ ︷
(
∏
l∈m

pl)

u(m)︷ ︸︸ ︷
(
∑
l∈m

ul)

︸ ︷︷ ︸
eu(m)

(3)

Define the labeling function α such that α(v) = (pv, pv × uv), then
the expected utility semiring can be used to compute eu(T).

Definition 7. The expected utility semiring (A,⊕,⊗, e⊕, e⊗) with

• A = {(p, eu)|p ∈ R≥0, eu ∈ R}
• (p1, eu1)⊕ (p2, eu2) = (p1 + p2, eu1 + eu2)
• (p1, eu1)⊗ (p2, eu2) = (p1p2, p1eu2 + p2eu1)
• e⊕ = (0, 0) and e⊗ = (1, 0)

is an instance of the expectation semiring [10] and can be used to
compute the expected utility of a theory.

Maximising expected utility A more complicated problem arises
when we introduce decision variables and seek the assignment of
truth values to those decisions that maximises the expected utility.
We refer to this problem as the maximum expected utility (MEU)
problem. We focus on its one-shot decision setting where all deci-
sions are made before observing any stochastic variable.

Definition 8. The maximum expected utility (MEU) problem con-
sists of a propositional logic theory T over a set of decision variables
D and a set of stochastic variables S, each associated with a proba-
bility and utility. For decisions, the probability is either 0 or 1. For
the first solving approach, we set p(d) = 1 = p(¬d) for all d ∈ D
such that the probability of a model is not impacted by its decision.
We useDv to refer to an assignment of a truth value for each decision
variable d ∈ D and T [D : Dv] to refer to the theory T where the
truth values of the variablesD are set toDv . The MEU task consists
of finding the best truth assignmentDv such that the expected utility
is maximised (Equation 4).

argmax
Dv

∑
m∈M(T [D:Dv])

(
∏
l∈m

pl)(
∑
l∈m

ul) (4)

While this task consists of three operations (max, sum and product),
a semiring is a structure of only two. It is therefore not obvious on
how to apply AMC.

Example 6. Consider a very small problem, deciding whether to use
machine A. Using A has a cost of −3 but, when there is no failure,
it also yields a reward of 4.

(profit ∧ useA ∧ ¬failure)∨
(¬profit ∧ ¬useA)∨
(¬profit ∧ failure)

puseA = 1.0, p¬useA = 1.0, uuseA = −3, u¬useA = 0
pprofit = 1.0, p¬profit = 1.0, uprofit = 4, u¬profit = 0
pfailure = 0.6, p¬failure = 0.4, ufailure = u¬failure = 0

3.1 Constrained algebraic circuit

To obtain the expected utility of a set of decision assignmentsDv , we
need to sum all the models with the same set of decisions. This im-
plies that there is an ordering that the circuit needs to adhere to in or-
der to compare decisions in a valid manner. More specifically, when

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning 2571

3

P ¬F ¬P F

1

A ¬A¬P

Figure 3. An {A}-Constrained SDD modelling Example 6. The variables
are abbreviated: A = useA, P = profit and F = failure.

using SDDs, the circuit must first condition on the decision variables
before considering the rest. X-constrained SDDs with X = D have
exactly this property (Figure 3). This can be seen as follows. By def-
inition, the D-constrained SDD nodes in a D-constrained SDD rep-
resent the whole theory T conditioned on an assignment for each
decision, T [D : Dv]. Such a node represents a disjunction of all the
models with the same decisions. The circuit will thus first combine
models with the same set of decisions before combining (comparing)
with models of other decisions, as was required.

The vtree can be used to determine whether an or-node of the X-
constrained SDD represents a summation or a maximisation. Another
approach that can be used is to store the decision information in the
semiring elements in the form of a decision set L and performing
maximisation when the sets of decisions are different. To stay close
to the algebraic framework, we choose the latter approach and use
the following structure (A,⊕,⊗, e⊕, e⊗), dynamically defining the
⊕-operation:

{α(v) = (pv, pv × uv, Lv)|v ∈ D ∪ S} ⊂ A (5)

with Lv = {v} and L¬v = {¬v} or Lv = ∅ = L¬v depending on
whether v is a decision.

a⊕ b =

{
max(a, b), if La �= Lb

(pa + pb, eua + eub, La), otherwise
(6)

a⊗ b = (papb, paeub + pbeua, La ∪ Lb) (7)

e⊕ = (0, 0, D ∪ ¬D) (8)

e⊗ = (1, 0, ∅) (9)

max(a, b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a, if b = e⊕

b, else if a = e⊕

a, else if eua
pa

≥ eub
pb

b, otherwise

(10)

This structure (Equation 5 to 10) extends the expectation semir-
ing to keep track of the decision sets L and to perform max when
required. For a set of decision assignments, the probability of all
models must sum up to one. This is not necessarily the case when
constraints are present and we therefore normalise when comparing
expected utilities: eua

pa
≥ eub

pb
(Equation 10). Additional cases can be

added to prevent division by 0 when pa = 0 or pb = 0. When such a
case occurs, the other value must be chosen. Note that this structure
is not a semiring as the associativity property is only satisfied within
the X-constrained context. This is expected and the reason we require
an X-constrained SDD. If associativity was satisfied in general, then
any SDD would have been sufficient.

3.2 Unconstrained algebraic circuit

The vtree which yields the smallest circuit is not necessarily X-
constrained. This means that constraining the vtree can lead to larger
circuits. To avoid this problem, we introduce another approach which
does the maximisation outside of the circuit and does not rely on a
constrained ordering. Instead, it treats the circuit as a function where
the decision values are unknown and have to be chosen such that the
output of the function, the expected utility, is maximised. This works
as follows. When the probability of each decision variable is set to
either 0 or 1 (and its negation to 1 or 0), the output of the circuit is
the expected utility of that decision set. Hence, optimising these pa-
rameters will maximise the expected utility. We solve this problem
via gradient ascent and compute the gradient using the circuit and
AMC. While the constrained approach is exact and ensures an opti-
mal decision, the unconstrained approach does not ensure this when
optimising with gradient ascent.

Implementation To keep the probability of a decision d in [0, 1],
we use the sigmoid function: pd = σ(z) = 1

1+e−z for which
σ′(z) = σ(z)(1 − σ(z)). We optimise the function represented by
the algebraic circuit (Equation 11) via gradient ascent and use alge-
braic circuits to obtain the required gradients (Equation 12 to 16).

MEU =
∑

m∈M(T)

U(m)× P (m) (11)

∂MEU

∂di
=

∑
m∈M(T)

U(m)× ∂P (m)

∂di
(12)

P (m) is a combination of stochastic variables S and decision vari-
ables D that are in m (positive literals) and not in m (negative liter-
als, Equation 13),

P (m) =
∏
s∈m,
s∈S

ps
∏
s/∈m,
s∈S

p¬s

∏
d∈m,
d∈D

pd
∏
d/∈m,
d∈D

(1− pd) (13)

thus, if di ∈ m

∂P (m)

∂di
= (1− σ(di))P (m) (14)

and if di /∈ m

∂P (m)

∂di
= −(1− σ(di))P (m) (15)

This means the gradient with respect to di can be obtained by
computing the sigmoid of di, the expected utility where di is true
and where di is false (Equation 16). The last two each result in one
(parallel) circuit evaluation.

∂MEU

∂di
= (

∑
m∈M(T),

di∈m

U(m)
∂P (m)

∂di
)

+ (
∑

m∈M(T),
di /∈m

U(m)
∂P (m)

∂di
)

= (1− σ(di))(
∑

m∈M(T∧di)

EU(m))

+ (σ(di)− 1)(
∑

m∈M(T∧¬di)

EU(m))

(16)

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning2572

The decision values we find with this approach are in the range
of [0,1] and affect the weight with which models contribute to the
expected utility. The optimal value will always be either 0 or 1.
However, insufficient measures to prevent local minima or insuffi-
cient time can cause decision values to be far from 0 or 1. To obtain
the best decisions from the found values, several approaches can be
investigated. Examples include rounding to the nearest integer, eval-
uating different decisions for which the value is far from 0 and 1,
treating the results as a stochastic policy, etc. In our implementation,
we choose to set each final parameter to the nearest integer in order to
have a deterministic policy and use random restarts to counter local
minima.

3.3 Experiments

In our experiments, rather than using the low level AMC encodings
directly, we use the higher-level probabilistic programming language
ProbLog to specify models and queries. These models are then com-
piled into AMC problems using the mechanics of aProbLog [14].
This lead to new abilities for ProbLog4. We implement our ap-
proaches for DT-ProbLog by using the mechanics of aProbLog [14].
The data set is constructed as follows. Well known Bayesian net-
works [30], Survey [31], Asia [18] and Earthquake [17] are first
compiled into ProbLog programs using ProbLog’s existing conver-
sion script. Next, we add decisions to the programs by converting
each parent node of the Bayesian network with two possible values
into a decision. If this results in less than four decisions, any node
of the Bayesian network not yet considered has a chance of 0.5 to
introduce a new decision. Each value of the node has an equal prob-
ability of being affected by this new decision. Finally, we introduce
utilities using two different approaches. The first approach considers
each term t and adds a utility value for t with a probability of 0.8 and
for ¬t with a probability of 0.3. The utility values themselves are
uniformly sampled from [−50, 50]. The second approach instead in-
troduces five new separate terms with a positive and negative utility,
and for each new term samples five interpretations from the program.
The samples serve as rules for the new term to become satisfied.
The second approach happens before adding the decisions. The first
approach happens afterwards, to allow decisions to also have utili-
ties. Using this process, we construct 60 DT-ProbLog models (20 for
Asia, Earthquake and Survey), half of them constructed with the first
utility approach and half of them with the second. The number of
rules in the resulting models ranges from 38 up to 108, the number
of utilities from 7 to 23 and the number of decisions from 1 to 6.
The memory consumption of larger networks (e.g. Sachs [30]) was
too high to consider here. This is due to the rather naive standard en-
coding of Bayesian networks as ProbLog programs, which could be
optimized using more compact encodings, a better vtree heuristic or
when configuring the SDD package more optimally. Our experiments
are designed to answer two questions.

Q1) Does the unconstrained approach provide optimal solutions?
We experimented on the 60 DT-ProbLog models comparing both ap-
proaches. For 85% of the models, the difference was less than 0.1.
The average difference over the experiments is 1.472 and the aver-
age relative difference is 0.057. We conclude that overall, the uncon-
strained approach provides promising results. Further investigation
into problems of a larger size would be interesting.

Q2) How does the constrained ordering impact the circuit size,
compile- (CT) and runtime (RT) compared to the unconstrained ap-
proach? We report on the average compile-, runtime and SDD size
4 ProbLog is available at https://dtai.cs.kuleuven.be/problog/

in Table 1. It is clear that constraining the circuit can lead to larger
circuits5. However, the unconstrained approach trades compile time
for more evaluation time and currently becomes slower than the con-
strained approach. This part in the implementation can still be opti-
mised, e.g. by using a better random restart configuration.

Table 1. Statistics on the executions for the constrained (c) and
unconstrained (u) approach for each dataset D (earthquake (e), asia (a) and
survey (s)) and for all datasets combined (g). The average compile time
(CT), run time (RT) and SDD size is provided. The run time includes the

compilation time.

D Appr. avg. CT (s) avg. RT (s) avg. SDD Size (# nodes)

g c 4.0 4.3 1 480 603
u 2.5 41.0 1 055 494

e c 0.0 0.0 2065
u 0.0 1.1 2244

a c 0.0 0.1 12539
u 0.0 3.3 5539

s c 11.9 12.7 4 427 204
u 7.5 118.6 3 158 698

We conclude that to scale to larger problem sizes, more work is
required on the used encoding, vtree heuristics, random restart con-
figuration, etc. Regardless, we have shown that AMC and algebraic
circuits provide an expressive framework that can also solve decision
theoretic tasks.

4 LEARNING UTILITY PARAMETERS

Several techniques have already been introduced to learn the proba-
bility parameters in ProbLog [12, 13, 22]. The most recent addition
jointly learns the parameters of probabilistic facts and those of neural
networks by optimising a loss-function using gradient descent [22].
This approach integrates well with ProbLog’s inference as the gra-
dient can also be computed using the algebraic circuit. We will use
the same approach and define a loss function that we use as an ap-
proximate signal, allowing us to learn the utility parameters for each
variable.

Setting The input of our learning task is based on a set of inter-
pretations {m1, . . . ,mM} called examples. These examples we only
observe partially Q = {q1, . . . , qM}. For each of the interpretations
mj , we also observe the total utility ũj , Ũ = {ũ1, . . . , ũM}. The
output of this learning task consists of the positive and negative util-
ity, respectively ui,p and ui,n, associated with each fact fi. We focus
on the utilities here and assume the probability parameter of each
probabilistic fact is already known. This can be relaxed in two ways.
On the one hand, we can learn the probabilities first, ignoring the
utility values, after which we are in our described setting. On the
other hand, the assumption can be relaxed when the loss function is
extended with a component concerning the likelihood of the obser-
vations. Though it could be interesting to compare the performance
of these different approaches empirically, this is left for further work.
We also assume that of each example, all decisions are observed. Our
approach works for both one-shot and sequential decision problems.

Approach To learn the utility parameters, we minimise the fol-
lowing loss function:

5 The reported circuit sizes were obtained from the SDD package and can
include dead nodes left over from the construction process.

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning 2573

MSE(Q, Ũ, T) =
1

M

M∑
j=1

(ceu(qj , T)− ũj)
2 (17)

ceu(qj , T) =
∑

m∈M(T)

P (m|qj).u(m) (18)

The intuition behind this equation is that we minimise the differ-
ence between the utility we expect ceu(qj) and the utility that was
actually observed ũi. The former is defined by u(m) and P (m|qj).
Note that the assumption that all decisions are fully observed, sim-
plifies the calculation of P (m|qj) and is justified as long as the de-
cisions are not made by some unknown third party. Our approach
also works for partially observed decisions when each decision has
an associated probability. When assuming optimal behavior, the cal-
culation of P (m|qj) and our minimisation approach becomes more
complex.

To optimise Equation 17, we employ a gradient descent approach
and use an algebraic circuit to compute the gradient ∂MSE(Q,Ũ,T)

∂ui,p

(Equation 19).

2

M

M∑
j=1

(ceu(qj , T)︸ ︷︷ ︸
Part1

−ũj)
∑

m∈M(T)

δi,m,pP (m|qj)
︸ ︷︷ ︸

Part2

(19)

δi,m,p =

{
1 if fi ∈ m,

0 otherwise
(20)

The gradient for the negative utility parameter ui,n is similar to
Equation 19 except that we use δi,m,n instead of δi,m,p.

δi,m,n =

{
1 if fi /∈ m,

0 otherwise
(21)

Part 1 of Equation 19 can be computed using the expected utility
semiring querying for qj conditioned on qj . Part 2 of that equation
can be computed using the probability semiring querying for qj ∧ fi
(or qj ∧ ¬fi for the ui,n case) conditioned on qj .

Experiments The correct DT-ProbLog programs are constructed
using the process described for maximisation (Section 3). To simplify
the experiment setup, we do not add decisions to the programs. To
construct the partially observed examples, we sample from the pro-
grams and leave out each observed term with a probability of pdrop.
The input model of the learning task is the original model with for
each utility term, a chance of 0.5 that it is made unknown.

To evaluate our approach we answer the following questions. Q1)

Is the MSE loss function a good indicator when our aim is to 1) pre-
dict the utility of an interpretation, 2) recover the correct values or 3)
to make good decisions. Q2) How does the partial observability af-
fect the results? We consider three metrics to answer both questions,
mean squared sampled error (MSSE), mean relative error (MRE) and
relative regret. The MSSE (Q1.1, Q2) is closest to what we are opti-
mising and is evaluated by sampling ns = 100 interpretations, com-
paring the total utility of the interpretation tc with the total utility of
the learned values tl: 1

ns

∑ns
i=1(tc − tl)

2. The MRE (Q1.2) is used
to compare how close the learned utility values xi are to the actual
values x̃i, using the relative error to normalise for large (small) x̃i,
When there are nv learned values, MRE = 1

nv

∑nv
i=0 |xi−x̃i

x̃i
|. If

we use the learned model for decision making, then the regret metric
is more interesting, but also more complex to compute. The regret
(Q1.3) is based on the utility to expect when taking the decisions

based on the learned model. Denote Dl as the optimal decisions
according to the learned model, Dt as the true optimal decisions
and eu(D) as the expected utility when taking decisions D. Then
the relative regret is defined as | eu(Dt)−eu(Dl)

eu(Dt)
| and computed us-

ing the maximisation approaches described in this paper. This metric
requires decisions which we add as described for the maximisation
approach (Section 3).

Q1) We have tested the learning approach on five different Survey,
Earthquake and Asia networks, each for varying values of pdrop6.
Each experiment was given 80 epochs to converge and 150 partially
observed examples to train on. Figure 4 shows that while optimising
our loss function, the MSSE and MRE successfully decrease as well.
This suggests the MSE can be used as an indicator to optimise MSSE
and MRE. It is possible that when optimising too long, the MSSE
and MRE can increase again due to overfitting to MSE. This is more
noticeable for MRE (Figure 5) than for MSSE. The relative regret
is low, even for high pdrop (Figure 6). Q2) We investigate the effect
of pdrop on the MSSE (Figure 7). As expected, it generally becomes
harder to learn with an increased pdrop.

0 20 40 60 80

1,000

2,000

0.2

0.4

0.6

0.8

1

epoch

M
SE

M
SS

E

M
R
E

Figure 4. The learning progress of a Survey network with pdrop = 0.8.

0 20 40 60 80

0

1,000

2,000

3,000

4,000

0.4

0.6

0.8

1

epoch

M
SE

M
SS

E

M
R
E

Figure 5. The learning progress of a Survey network with pdrop = 0.7.

We conclude that AMC techniques can be adapted to perform util-
ity learning. The performed experiments show good results. To in-
vestigate larger problems with more parameters, we first need im-
provements to obtain smaller circuits.

6 Due to a non-deterministic ordering originating in the ProbLog database,
an increase in pdrop can cause previously unobserved terms to become
observed. It is however still impossible for more terms to become observed.

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning2574

0 0.5

0

0.5

1

1.5

pdrop

R
el
.R

eg
re
t

Figure 6. Relative regret for 180 survey networks.

0 0.5

0

200

400

600

800

pdrop

M
SS

E

Figure 7. The MSSE for five different survey networks, over different
degrees of partial observability (pdrop).

5 RELATED WORK

Maximisation Our maximisation approaches address the same
problem as DT-ProbLog [3]. Their approach consists of manipulating
Binary Decision Diagrams (BDD) while we use a more general AMC
approach applied to SDDs. Our approaches also retain the circuit so
that it can be used for other tasks (e.g. learning utilities) or an ex-
tension of this task (e.g. stochastic constraints). Finally, DT-ProbLog
did not yet consider a learning setting. Sum-Product-Max Networks
(SPMN) and Decision Circuits (DC) have a structure similar to our
constrained circuit approach [2, 24]. They determine the operations
of each node during the construction process. Our approach empha-
sises the power of an algebraic circuit and AMC, dynamically defin-
ing the operations. Due to the higher level definition, we can also
reuse existing compilation tools. This AMC approach provides more
flexibility towards extended or different tasks [20]. Finally, we have
also introduced an approach that does not constrain the variable or-
dering and a learning task. A DPLL approach can also maximise the
expected utility [1, 21]. This is related to our approach as the traces
of DPLL can be used to form an arithmetic circuit. The advantage
of a circuit is that it can be reused, significantly reducing the cost
of re-evaluating the theory with different input weights. This is es-
pecially beneficial for the utility learning approach which requires
multiple evaluations to obtain gradients. Another example of a task
that requires multiple evaluations is sensitivity analysis [5]. AND-
OR graphs are related to DPLL and algebraic circuits [8, 9]. Work
in that domain is often used in a probabilistic setting but can also be

applied to the maximum expected utility problem [19, 23]. Those ap-
proaches often start from an influence diagram while we start from
an expressive DT-ProbLog program. Furthermore, as main difference
to the work on AND-OR graphs, our contribution includes the appli-
cation of algebraic circuits to utility learning and an unconstrained
circuit approach. This has not been considered by those other ap-
proaches.

Utility learning There is a lot of work already performed in
the context of utility learning. However, to the best of our knowl-
edge there is none that is situated in our setting, that is, with par-
tially observed interpretations and the total utility of that interpre-
tation. In terms of data structure, the work on Sum-Product-Max
networks [25] is the most similar but it considers a fully observed
setting. Markov Decision Processes and Influence Diagrams (also
known as Bayesian Decision Networks) are two alternatives for mod-
elling a decision problem. We are not aware of any work for those
models that considers our setting. In general, utility information is
not provided and instead obtained indirectly for example by pref-
erence elicitation [4, 29] or based on interpretations with optimal
behavior [26, 32]. The latter is the case in the domain of inverse
reinforcement learning [26] where an unknown utility function, for
example of an MDP, is learned from examples containing optimal
behavior.

6 CONCLUSION

Algebraic circuits are versatile structures. We have shown at the level
of AMC how maximising the expected utility and utility learning
can be solved. Because we defined this at the high-level of AMC,
we were able to reuse the algebraic circuit mechanics of the ex-
isting probabilistic languages (aProbLog and DTProbLog) without
adding new constructs to them. We have shown two approaches for
the maximisation problem and we introduced a novel learning setting
where unknown utility values are learned from partially observed in-
terpretations with observed utilities. This learning task can be tackled
by a gradient descent approach, using algebraic circuits to compute
the gradients. The circuit size and compilation time rapidly increase
for larger problems and is currently an obstacle for scaling our ap-
proaches. In future work, we plan to investigate ways of improving
this by adapting our methods (e.g. encodings) or improving knowl-
edge compilation tools. Finally, we plan to extend the maximisation
approaches to sequential problems.

ACKNOWLEDGEMENTS

VD is an SB PhD fellow at FWO (1SA5520N). This research was
also partially funded by the Flemish Government under the “On-
derzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” pro-
gramme, from the Research Foundation - Flanders under the Data-
driven logistics project (FWO-S007318N) and the VeriLearn project
(EOS No. 30992574) and from the European Research Council
(ERC) under the European Unions Horizon 2020 research and in-
novation programme (grant agreement No. 694980) SYNTH: Syn-
thesising Inductive Data Models.

REFERENCES

[1] Udi Apsel and Ronen I Brafman, ‘Lifted meu by weighted model
counting’, in Twenty-Sixth AAAI Conference on Artificial Intelligence,
(2012).

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning 2575

[2] Debarun Bhattacharjya and Ross D Shachter, ‘Evaluating influence dia-
grams with decision circuits’, arXiv preprint arXiv:1206.5257, (2012).

[3] Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De
Raedt, ‘Dtproblog: A decision-theoretic probabilistic prolog’, in Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI’10, pp. 1217–1222. AAAI Press, (2010).

[4] Urszula Chajewska, Daphne Koller, and Ronald Parr, ‘Making ratio-
nal decisions using adaptive utility elicitation’, in Proceedings of the
Seventeenth National Conference on Artificial Intelligence and Twelfth
Conference on on Innovative Applications of Artificial Intelligence, July
30 - August 3, 2000, Austin, Texas, USA., eds., Henry A. Kautz and
Bruce W. Porter, pp. 363–369. AAAI Press / The MIT Press, (2000).

[5] Adnan Darwiche, ‘A differential approach to inference in bayesian net-
works’, in UAI ’00: Proceedings of the 16th Conference in Uncer-
tainty in Artificial Intelligence, Stanford University, Stanford, Califor-
nia, USA, June 30 - July 3, 2000, eds., Craig Boutilier andMoisés Gold-
szmidt, pp. 123–132. Morgan Kaufmann, (2000).

[6] Adnan Darwiche, ‘Sdd: A new canonical representation of proposi-
tional knowledge bases’, in Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence - Volume Two, IJ-
CAI’11, pp. 819–826. AAAI Press, (2011).

[7] Adnan Darwiche and Pierre Marquis, ‘A knowledge compilation map’,
J. Artif. Int. Res., 17(1), 229–264, (September 2002).

[8] Rina Dechter, ‘Bucket elimination: A unifying framework for reason-
ing’, Artif. Intell., 113(1-2), 41–85, (1999).

[9] Rina Dechter and Robert Mateescu, ‘And/or search spaces for graphical
models’, Artif. Intell., 171(2-3), 73–106, (February 2007).

[10] Jason Eisner, ‘Parameter estimation for probabilistic finite-state trans-
ducers’, in Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 1–8, (2002).

[11] Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Sht. Shteri-
onov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt,
‘Inference and learning in probabilistic logic programs using weighted
boolean formulas’, TPLP, 15(3), 358–401, (2015).

[12] Bernd Gutmann, Angelika Kimmig, Kristian Kersting, and Luc De
Raedt, ‘Parameter learning in probabilistic databases: A least squares
approach’, in Machine Learning and Knowledge Discovery in
Databases, European Conference, ECML/PKDD 2008, Antwerp, Bel-
gium, September 15-19, 2008, Proceedings, Part I, eds., Walter Daele-
mans, Bart Goethals, and Katharina Morik, volume 5211 of Lecture
Notes in Computer Science, pp. 473–488. Springer, (2008).

[13] Bernd Gutmann, Ingo Thon, and Luc De Raedt, ‘Learning the param-
eters of probabilistic logic programs from interpretations’, in Machine
Learning and Knowledge Discovery in Databases - European Confer-
ence, ECML PKDD 2011, Athens, Greece, September 5-9, 2011. Pro-
ceedings, Part I, eds., Dimitrios Gunopulos, Thomas Hofmann, Donato
Malerba, and Michalis Vazirgiannis, volume 6911 of Lecture Notes in
Computer Science, pp. 581–596. Springer, (2011).

[14] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt, ‘An al-
gebraic prolog for reasoning about possible worlds’, in Proceedings
of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2011, San Francisco, California, USA, August 7-11, 2011, eds., Wol-
fram Burgard and Dan Roth. AAAI Press, (2011).

[15] Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt, ‘Algebraic
model counting’, Journal of Applied Logic, 22, 46–62, (jul 2017).

[16] Daphne Koller and Nir Friedman, Probabilistic graphical models: prin-
ciples and techniques, MIT press, 2009.

[17] Kevin B Korb and Ann E Nicholson, Bayesian artificial intelligence,
CRC press, 2010.

[18] Steffen L Lauritzen and David J Spiegelhalter, ‘Local computations
with probabilities on graphical structures and their application to expert
systems’, Journal of the Royal Statistical Society: Series B (Method-
ological), 50(2), 157–194, (1988).

[19] Junkyu Lee, Radu Marinescu, Alexander T. Ihler, and Rina Dechter, ‘A
weighted mini-bucket bound for solving influence diagram’, in Pro-
ceedings of the Thirty-Fifth Conference on Uncertainty in Artificial
Intelligence, UAI 2019, Tel Aviv, Israel, July 22-25, 2019, eds., Amir
Globerson and Ricardo Silva, p. 432. AUAI Press, (2019).

[20] Zhifei Li and Jason Eisner, ‘First- and second-order expectation semir-
ings with applications to minimum-risk training on translation forests’,
in Proceedings of the 2009 Conference on Empirical Methods in Natu-
ral Language Processing: Volume 1 - Volume 1, EMNLP ’09, pp. 40–
51, Stroudsburg, PA, USA, (2009). Association for Computational Lin-
guistics.

[21] Stephen M. Majercik and Michael L. Littman, ‘Using caching to solve
larger probabilistic planning problems’, in Proceedings of the Fifteenth
National/Tenth Conference on Artificial Intelligence/Innovative Appli-
cations of Artificial Intelligence, AAAI ’98/IAAI ’98, pp. 954–959,
Menlo Park, CA, USA, (1998). American Association for Artificial In-
telligence.

[22] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas
Demeester, and Luc De Raedt, ‘Deepproblog: Neural probabilistic logic
programming’, in Advances in Neural Information Processing Sys-
tems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada., eds.,
Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, pp. 3753–3763, (2018).

[23] Radu Marinescu, ‘A new approach to influence diagrams evaluation’, in
Research and Development in Intelligent Systems XXVI, Incorporating
Applications and Innovations in Intelligent Systems XVII, Peterhouse
College, Cambridge, UK, 15-17 December 2009, eds., Max Bramer,
Richard Ellis, and Miltos Petridis, pp. 107–120. Springer, (2009).

[24] Mazen Melibari, Pascal Poupart, and Prashant Doshi, ‘Sum-product-
max networks for tractable decision making’, in Proceedings of the
Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI 2016, New York, NY, USA, 9-15 July 2016, ed., Subbarao Kamb-
hampati, pp. 1846–1852. IJCAI/AAAI Press, (2016).

[25] Mazen Melibari, Pascal Poupart, and Prashant Doshi, ‘Sum-product-
max networks for tractable decision making’, in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pp.
1846–1852, New York, USA, (2016).

[26] Andrew Y Ng, Stuart J Russell, et al., ‘Algorithms for inverse reinforce-
ment learning’, in Icml, volume 1, p. 2, (2000).

[27] Umut Oztok, Arthur Choi, and Adnan Darwiche, ‘Solving pppp-
complete problems using knowledge compilation’, in Principles of
Knowledge Representation and Reasoning: Proceedings of the Fif-
teenth International Conference, KR 2016, Cape Town, South Africa,
April 25-29, 2016., eds., Chitta Baral, James P. Delgrande, and Frank
Wolter, pp. 94–103. AAAI Press, (2016).

[28] Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole,
‘Statistical relational artificial intelligence: Logic, probability, and com-
putation’, Synthesis Lectures on Artificial Intelligence and Machine
Learning, 10(2), 1–189, (2016).

[29] Constantin A. Rothkopf and Christos Dimitrakakis, ‘Preference elic-
itation and inverse reinforcement learning’, in Machine Learning
and Knowledge Discovery in Databases, eds., Dimitrios Gunopulos,
Thomas Hofmann, Donato Malerba, andMichalis Vazirgiannis, pp. 34–
48, Berlin, Heidelberg, (2011). Springer Berlin Heidelberg.

[30] Marco Scutari. Bnlearn: Bayesian network repository.
http://www.bnlearn.com/bnrepository/. Accessed: 2019-11-10.

[31] Marco Scutari and Jean-Baptiste Denis, Bayesian networks: with exam-
ples in R, Chapman and Hall/CRC, 2014.

[32] Dicky Suryadi and Piotr J. Gmytrasiewicz, ‘Learning models of other
agents using influence diagrams’, in Proceedings of the Seventh Inter-
national Conference on User Modeling, UM ’99, pp. 223–232, Secau-
cus, NJ, USA, (1999). Springer-Verlag New York, Inc.

[33] Pedro Miguel Zuidberg Dos Martires, Anton Dries, and Luc De Raedt,
‘Exact and approximate weighted model integration withprobability
density functions using knowledge compilation’, in Proceedings of the
30th Conference on Artificial Intelligence. AAAI Press, (2019).

V. Derkinderen and L. De Raedt / Algebraic Circuits for Decision Theoretic Inference and Learning2576

