
An Advance on Variable Elimination with Applications to
Tensor-Based Computation

Adnan Darwiche1

Abstract. We present new results on the classical algorithm of
variable elimination, which underlies many algorithms including for
probabilistic inference. The results relate to exploiting functional de-
pendencies, allowing one to perform inference efficiently on models
that have very large treewidth. The highlight of the advance is that
it works with standard (dense) factors, without the need for sparse
factors or techniques based on knowledge compilation that are com-
monly utilized. This is significant as it permits a direct implementa-
tion of the improved variable elimination algorithm using tensors and
their operations, leading to extremely efficient implementations espe-
cially when learning model parameters. We illustrate the efficacy of
our proposed algorithm by compiling Bayesian network queries into
tensor graphs and then learning their parameters from labeled data
using a standard tool for tensor computation.

1 Introduction

The work reported in this paper is motivated by an interest in model-
based supervised learning, in contrast to model-free supervised learn-
ing that currently underlies most applications of neural networks. We
briefly discuss this subject first to put the proposed work in context.

Supervised learning has become very influential recently and
stands behind most real-world applications of AI. In supervised
learning, one learns a function from labeled data, a practice that is
now dominated by the use of neural networks to represent such func-
tions; see [16, 17, 1, 26]. Supervised learning can be applied in other
contexts as well, such as causal models in the form of Bayesian
networks [23, 24, 25]. In particular, for each query on the causal
model, one can compile an Arithmetic Circuit (AC) that maps evi-
dence (inputs) to the posterior probability of interest (output) [9, 10].
AC parameters, which correspond to Bayesian network parameters,
can then be learned from labeled data using gradient descent. Hence,
like a neural network, the AC is a circuit that computes a function
whose parameters can be learned from labeled data.

The use of ACs in this fashion can be viewed as model-based su-
pervised learning, in contrast to model-free supervised learning using
neural networks. Model-based supervised learning is attractive since
the AC can integrate the background knowledge embecded in its un-
derlying causal model. This has a number of advantages, which in-
clude a reduced reliance on data, improved robustness and the ability
to provide data-independent guarantees on the learned function. One
important type of background knowledge is functional dependencies
between variables and their direct causes in a model (a special case of
what is known as determinism). Not only can this type of knowledge
significantly reduce the reliance on data, but it can also significantly
improve the complexity of inference. In fact, substantial efforts have

1 University of California, Los Angeles, email: darwiche@cs.ucla.edu

been dedicated to exploiting determinism in probabilistic inference,
particularly the compilation of Bayesian networks into ACs [9, 3, 2],
which is necessary for efficient inference on dense models.

There are two main approaches for exploiting functional depen-
dencies. The first is based on the classical algorithm of variable elim-
ination (VE), which underlies algorithms for probabilistic inference
including the jointree algorithm [29, 11, 18]. VE represents a model
using factors, which are tables or multi-dimensional arrays. It then
performs inference using a few and simple factor operations. Ex-
ploiting functional dependencies within VE requires sparse factors;
see, e.g., [19, 21]. The second approach for exploiting functional de-
pendencies reduces probabilistic inference to weighted model count-
ing on a propositional formula that encodes the model, including its
functional dependencies. It then compiles the formula into a circuit
that is tractable for model counting; see, e.g., [8, 2]. This approach is
in common use today given the efficacy of knowledge compilers.

Our main contribution is a new approach for exploiting functional
dependencies in VE that works with standard (dense) factors. This
is significant for the following reason. We wish to map probabilistic
inference, particularly the learning of parameters, into a tensor com-
putation to exploit the vast progress on tensor-based technology and
be on par with approaches that aggressively exploit this technology.
Tensors are multi-dimensional arrays whose operations are heavily
optimized and can be extremely fast, even on CPU-based platforms
like modern laptops (let alone GPUs). A tensor computation takes
the form of a tensor graph with nodes representing tensor opera-
tions. Factors map directly to tensors and sparse factors to sparse
tensors. However, sparse tensors have limited support in state of the
art tools, which prohibits an implementation of VE using sparse ten-
sors.2 Knowledge compilation approaches produce circuits that cast
into scalar tensor graphs, which are less effective than general ten-
sor graphs as they are less amenable to parallelization. Moreover,
while our approach needs to know that there is a functional depen-
dency between variables it does not require the specific dependency
(the specific numbers). Hence, it can be used to speed up inference
even when the model parameters are unknown which can be critical
when learning model parameters from data. Neither of the previous
approaches can exploit this kind of abstract information.

VE is based on two theorems that license factor operations. We
add two new theorems that license more operations in the presence
of functional dependences. This leads to a standard VE algorithm ex-
cept with a significantly improved complexity and computation that
maps directly to a tensor graph. We present experimental results for

2 For example, in TensorFlow, a sparse tensor can only be multiplied by a
dense tensor, which rules out the operation of (sparse) factor multiplication
that is essential for sparse VE; see https://www.tensorflow.org/
api_docs/python/tf/sparse/SparseTensor.

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200391

2559



inference and learning that show promise of the proposed algorithm.
We start in Section 2 by discussing factors, their operations and

the VE algorithm including its underlying theorems. We also present
our new VE theorems in this section. We then propose a new VE al-
gorithm in Section 3 that exploits functional dependencies. We show
how the proposed algorithm maps to tensor graphs and why this mat-
ter in Section 4. We follow by case studies in Section 5 that illustrate
the algorithm’s performance in the context of model-based super-
vised learning. We finally close with some remarks in Section 6.

2 The Fundamentals: Factors & Operations

The VE algorithm is based on applying operations to factors.
A factor for discrete variables X is a function that maps each in-

stantiation x of variables X into a number. The following are two
factors over binary variables A,B,C and ternary variable D:

A D f(AD)

0 0 0.2
0 1 0.3
0 2 0.6
1 0 0.9
1 1 0.6
1 2 0.1

A B C g(ABC)

0 0 0 1.0
0 0 1 0.0
0 1 0 0.0
0 1 1 1.0
1 0 0 0.2
1 0 1 0.8
1 1 0 0.5
1 1 1 0.5

Factors can be represented as multi-dimensional arrays and are now
commonly referred to as tensors (factor variables corresponds to ar-
ray/tensor dimensions). One needs three factor operations to imple-
ment the VE algorithm: multiplication, sum-out and normalization.

The product of factors f(X) and g(Y) is another factor h(Z),
where Z = X ∪ Y and h(z) = f(x)g(y) for the unique instan-
tiations x and y that are compatible with instantiation z. Summing-
out variables Y ⊆ X from factor f(X) yields another factor g(Z),
where Z = X \Y and g(z) =

∑
y f(yz). We use

∑
Y f to denote

the resulting factor g. We also use
∑

=
Z f which reads: sum out all

variables from factor f except for variables Z. Normalizing factor
f(X) yields another factor g(X) where g(x) = f(x)/

∑
x f(x).

We use ηf to denote the normalization of factor f .
A Bayesian Network (BN) is specified by a directed acyclic graph

(DAG) and a set of factors. In particular, for each node X and its par-
ents U, we need a factor fX over variables XU. The value fX(xu)
represents the conditional probability P (x|u) and the factor fX is
called a Conditional Probability Table (CPT). The joint distribution
specified by a Bayesian network is simply the product of its CPTs.

The Bayesian network in Figure 2 has five CPTs fA(A), fB(AB),
fC(AC), fD(BCD) and fE(CE). The network joint distribution is
the product of these factors Pr(ABCDE) = fAfBfCfDfE .

Evidence on variable X is captured by a factor λX(X) called an
evidence indicator. Hard evidence fixes a value x giving λX(x) =
1 and λX(x�) = 0 for x� �= x. For soft evidence, λX(x) is the
likelihood of x [23]. The posterior distribution of a Bayesian network
is the normalized product of its CPTs and evidence indicators.

An expression constructed by applying operations to factors will
be called an f-expression. Suppose we have evidence on variables
A and E in Figure 2. The posterior on variable D is obtained by
evaluating the following f-expression:

P �(D) = η
∑

ABCE

λAλEfAfBfCfDfE .

The VE algorithm factors f-expressions so they are evaluated more
efficiently [29, 11] and is based on two theorems; see, e.g., [10, Chap-
ter 6]. The first theorem says that the order in which variables are
summed out does not matter.

Theorem 1.
∑

XY f =
∑

X

∑
Y f =

∑
Y

∑
X f .

The second theorem allows us to reduce the size of factors in-
volved in a multiplication operation.

Theorem 2. If variables X appear in factor f but not in factor g,
then

∑
X f · g = g

∑
X f .

Factor
∑

X f is exponentially smaller than factor f so Theorem 2
allows us to evaluate the f-expression

∑
X f ·g much more efficiently.

Consider the f-expression
∑

ABDE f(ACE)f(BCD). A direct
evaluation multiplies the two factors to yield f(ABCDE) then sums
out variables ABDE. Using Theorem 1, we can arrange the expres-
sion into

∑
AE

∑
BD f(ACE)f(BCD) and using Theorem 2 into∑

AE f(ACE)
∑

BD f(BCD), which is more efficient to evaluate.
Using an appropriate order for summing out (eliminating) vari-

ables, Theorems 1 and 2 allow one to compute the posterior on any
variable in a Bayesian network in O(n exp(w)) time and space.
Here, n is the number of network variables and w is the network
treewidth (a graph-theoretic measure of the network connectivity).

This works well for sparse networks that have a small treewidth,
but is problematic for dense networks like the ones we will look at in
Section 5. We present next two new results that allow us to sometimes
significantly improve this computational complexity, by exploiting
functional relationships between variables and their direct causes.

While we will focus on exploiting functional dependencies in
Bayesian networks, our results are more broadly applicable since the
VE algorithm can be utilized in many other domains including sym-
bolic reasoning and constraint processing [12]. VE can also be used
to contract tensor networks which have been receiving increased at-
tention. A tensor network is a set of factors in which a variable
appears in at most two factors. Contracting a tensor network is the
problem of summing out all variables that appear in two factors; see,
e.g., [14, 15]. The VE algorithm can also be used to evaluate Ein-
stein summations which are in common use today and implemented
in many tools including NumPy.3

2.1 Functional CPTs

Consider variable X that has parents U in a Bayesian network and
let factor fX(XU) be its conditional probability table (CPT).4 If
f(xu) ∈ {0, 1} for all instantiations x and u, the CPT is said to be
functional as it specifies a function that maps parent instantiation u
into the unique value x satisfying fX(xu) = 1. The following CPTs
are functional:

X Y fY (XY )

x0 y0 0
x0 y1 1
x1 y0 1
x1 y1 0

A B fB(AB)

a0 b0 0
a0 b1 1
a0 b2 0
a1 b0 0
a1 b1 0
a1 b2 1

The first specifies the function x0 �→ y1, x1 �→ y0. The second
specifies the function a0 �→ b1, a1 �→ b2. Functional dependen-
cies encode a common type of background knowledge (examples in
Section 5). They are a special type of determinism, which generally
refers to the presence of zero parameters in a CPT. A CPT that has
zero parameters is not necessarily a functional CPT.

We will next present two results that empower the VE algorithm
in the presence of functional CPTs. The results allow us to factor f-
expressions beyond what is permitted by Theorems 1 and 2, leading

3 https://numpy.org/
4 Since

∑
x P (x|u) = 1 the CPT satisfies

∑
x fX(xu) = 1 for every u.

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation2560



to significant reduction in complexity. The results do not depend on
the identity of a functional CPT, only that it is functional. This is
significant when learning model parameters from data.

To state these results, we will use F , G and H to denote sets of
factors. Depending on the context, a set of factors F may be treated
as one factor obtained by multiplying members of the set

∏
f∈F f .

The first result says the following. If a functional CPT for variable
X appears in both parts of a product, then variable X can be summed
out from one part without changing the value of the product.

Theorem 3. Consider a functional CPT f for variable X . If f ∈ G
and f ∈ H, then G · H = G∑

X H.

Proof. Suppose CPT f is over variables XU. Let h(X) and g(Y) be
the factors corresponding to H and G, respectively. Let Z = X ∪Y
and X� = X\{X}. Then variables XU must belong to X, Y and Z,
and parents U must belong to X�. Let el = G·H and er = G∑

X H.
We want to show el(z) = er(z) for every instantiation z.

Consider an instantiation z and let u, x�, x and y be the instantia-
tions of U, X�, X and Y in z. Then el(z) = g(y)h(x) and er(z) =
g(y)

∑
x h(xx

�). Since CPT f is functional, f(xu) ∈ {0, 1} for
any x and there is a unique x, call it xu, such that f(xu) = 1.

If f(xu) = 0, then h(xx�) = 0 since f ∈ H, leading to

er(z) = g(y)
∑
x

h(xx�) = g(y)
∑
x

f(xu)=1

h(xx�) = g(y)h(xux
�).

If xu is the instantiation of X in z, then xux
� = x and er(z) =

g(y)h(x) = el(z). Otherwise, g(y) = 0 since f ∈ G, which leads
to el(z) = er(z) = 0. Hence, el(z) = er(z) for every instantiation
z and we have G · H = G∑

X H.

Theorem 3 has a key corollary. If a functional CPT for variable X
appears in both parts of a product, we can sum out variable X from
the product by independently summing it out from each part.

Corollary 1. Consider a functional CPT f for variable X . If f ∈ G
and f ∈ H, then

∑
X G · H =

(∑
X G) (∑X H)

.

Proof.
∑

X G · H =
∑

X

(G∑
X H)

by Theorem 3, which equals(∑
X H) (∑

X G) by Theorem 2.

Theorem 3 and Corollary 1 may appear unusable as they require
multiple occurrences of a functional CPT whereas the factors of a
Bayesian network contain a single (functional) CPT for each vari-
able. This is where the second result comes in: duplicating a func-
tional CPT in a product of factors does not change the product value.

Theorem 4. For functional CPT f , if f ∈ G, then f · G = G.

Proof. Let g(Z) be the product of factors in G and let h = f ·g. Sup-
pose factor f is the CPT of variable X and parents U. Consider an in-
stantiation z and suppose it includes instantiation xu. If f(xu) = 0,
then g(z) = 0 since f ∈ G. Moreover, h(z) = f(xu)g(z) = 0. If
f(xu) = 1, then h(z) = f(xu)g(z) = g(z). Hence, g(z) = h(z)
for all instantiations z and we have G = f · G.

Theorem 4 holds if f embeds any functional dependency that is
implied by factors G instead of being a functional CPT in G but we
do not pursue the applications of this generalization in this paper.

To see how Theorems 3 and 4 interplay, consider the f-expression∑
X f(XY )g(XZ)h(XW ). In the standard VE algorithm, one

must multiply all three factors before summing out variable X ,
leading to a factor over four variables XY ZW . If factor f is

Figure 1: An arithmetic circuit (AC) compiled from the Bayesian net-
work A → B, A → C. The AC computes factor f(B), where ηf is
the posterior on variable B given evidence on variables A and C.

a functional CPT for variable X , we can duplicate it by Theo-
rem 4: f(XY )g(XZ)h(XW ) = f(XY )g(XZ)f(XY )h(XW ).
Moreover, Corollary 1 gives

∑
X f(XY )g(XZ)f(XY )h(XW ) =∑

X f(XY )g(XZ)
∑

X f(XY )h(XW ), which avoids construct-
ing a factor over four variables. We show in Section 3 how these the-
orems enable efficient inference on models with very large treewidth.

3 Variable Elimination with Functional CPTs

We now present our proposed VE algorithm. We first present a stan-
dard VE algorithm based on jointrees [18] and then extend it to
exploit functional CPTs. Our algorithm will not compute probabil-
ities, but will compile symbolic f-expressions whose factors contain
symbolic parameters. A symbolic f-expression is compiled once and
used thereafter to answer multiple queries. Moreover, its parameters
can be learned from labeled data using gradient descent. We will
show how to map symbolic f-expressions into tensor graphs in Sec-
tion 4 and use these graphs for supervised learning in Section 5.

Once the factors of a symbolic f-expression are unfolded, the result
is an Arithmetic Circuits (ACs) [9, 4] as shown in Figure 1. In fact,
the standard VE algorithm we present next is a refinement on the one
proposed in [9] for extracting ACs from jointrees.

The next section introduces jointrees and some key concepts that
we need for the standard and extended VE algorithms.

3.1 Jointrees

Consider the Bayesian network in the middle of Figure 2 and its join-
tree on the left of the figure. The jointree is simply a tree with factors
attached to some of its nodes (the circles in Figure 2 are the jointree
nodes). We use binary jointrees [28], in which each node has either
one or three neighbors and where nodes with a single neighbor are
called leaves. The two jointrees in Figure 2 are identical but arranged
differently. The one on the left has leaf node 2 at the top and the one
on the right has leaf node 3 at the top.

Our use of jointrees deviates from normal for reasons that become
apparent later. First, we use a binary jointree whose leaves are in
one-to-one correspondence with model variables. Second, we only
attach factors to leaf nodes: The CPT and evidence indicator for each
variable X are assigned to the leaf node i corresponding to variable
X . Leaf jointree node i is called the host of variable X in this case.5

5 For similar uses and a method for constructing such binary jointrees, see [7]
and [10, Chapter 8]. Contraction trees which were adopted later for con-
tracting tensor networks [15] correspond to binary jointrees.

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation 2561



Figure 2: A Bayesian network with a jointree (two views).

The Bayesian network in Figure 2 has five variables. Its jointree
also has five leaves, each of which hosts a network variable. For ex-
ample, jointree node 2 at the top-left hosts variable D: the CPT and
evidence indicator for variable D are assigned to this jointree node.

A key notion underlying jointrees are edge separators which de-
termine the space complexity of inference (the rectangles in Figure 2
are separators). The separator for edge (i, j), denoted sep(i, j), are
model variables that appear in leaf nodes on both sides of the edge.
For example, sep(6, 7) = {B,C} as these are the model variables
that appear in jointree leaves {0, 2} and {1, 3, 4}. A related notion is
the cluster of jointree node i. If i is leaf, its cluster are the variables
appearing at node i. Otherwise, it is the union of separators for edges
(i, j). Every factor constructed by VE is over the variables of some
separator or cluster. The time complexity of VE is exponential in the
size of clusters and linear in the number of nodes in a jointree.

The size of largest cluster −1 is called the jointree width and can-
not be lower than the Bayesian network treewidth; see [10, Chapter
9] for a detailed treatment of this subject. When the network contains
variables with different cardinalities, the size of a cluster is better
measured by the number of instantiations that its variables has. We
therefore define the binary rank of a cluster as log2 of its instantia-
tion count. The binary rank coincides with the number of variables
in a cluster when all variables are binary.

Our technique for exploiting functional dependencies will use
Theorems 3 and 4 to shrink the size of clusters and separators sig-
nificantly below jointree width, allowing us to handle networks with
very large treewidth. The algorithm will basically reduce the maxi-
mum binary rank of clusters and separators, which can exponentially
reduce the size of factors constructed by VE during inference.

3.2 Compiling Symbolic f-expressions using VE

Suppose we wish to compile an f-expression that computes the pos-
terior on variable Q. We first identify the leaf jointree node h that
hosts variable Q. We then arrange the jointree so host h is at the top
as in Figure 2. Host h will then have a single child r which we call
the jointree root. The tree rooted at node r is now a binary tree, with
each node i having two children c1 and c2 and a parent p. On the left
of Figure 2, root r=7 has two children c1=0, c2=6 and parent p=2.
We refer to such a jointree arrangement as a jointree view.

Jointree views simplify notation. For example, we can now write
sep(i) to denote the separator between node i and its parent p instead
of sep(i, p). We will adopt this simpler notation from now on.

We now compile an f-expression using the following equations:

P �(Q) = η
=∑
Q

Fhf(r) (1)

f(i) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

=∑
sep(i)

Fi i is leaf

=∑
sep(i)

f(c1)f(c2) i has children c1, c2

(2)

Here, Fi is the product of factors assigned to leaf node i (CPT and
evidence indicator for the model variable assigned to node i).

For the jointree view in Figure 2 (left), applying these equations
to variable Q=D, host h=2 and root r=7 yields the f-expression:

P �(D) = η
=∑
D

F2

=∑
BC

[
=∑
C

F0][
=∑

BC

[
=∑

AC

F4][
=∑

AB

[
=∑

AB

F3][
=∑
A

F1]]].

This expression results from applying Equation 1 to the host h=2
followed by applying Equation 2 to each edge in the jointree. Each
sum in the expression corresponds to a separator and every product
constructed by the expression will be over the variables of a cluster.

Our compiled AC is simply the above f-expression. The value of
the expression represents the circuit output. The evidence indicators
in the expression represent the circuit inputs. Finally, the CPTs of the
expression contain the circuit parameters (see the AC in Figure 1).

We will now introduce new notation to explain Equations 1 and 2
as we need this understanding in the following section; see also [10,
Chapter 7]. For node i in a jointree view, we use

�Fi to denote the
set of factors at or below node i. We also use

�Fi to denote the set
of factors above node i. Consider node 6 on the left of Figure 2.
Then

�F6 contains the factors assigned to leaf nodes {1, 3, 4} and
�F6

contains the factors assigned to leaf nodes {0, 2}.
For a jointree view with host h and root r,

�Fr

�Fr contains all fac-
tors in the jointree and

�Fr = Fh. Equation 1 computes η
∑

=
Q

�Fr

�Fr ,

while delegating the computation of product
�Fr to Equation 2, which

actually computes
∑

=
sep(r)

�Fr by summing out all variables but for

ones in sep(r). The equation uses the decomposition
�Fi =

�Fc1

�Fc2

to sum out variables more aggressively:

f(i) =
=∑

sep(i)

�Fi =
=∑

sep(i)

�Fc1

�Fc2 (3)

=
=∑

sep(i)

⎛
⎝

=∑
sep(c1)

�Fc1

⎞
⎠

⎛
⎝

=∑
sep(c2)

�Fc2

⎞
⎠ .

The rule employed by Equation 2 is simple: sum out from product
�Fi all variables except ones appearing in product

�Fi (Theorem 2).
The only variables shared between factors

�Fi and
�Fi are the ones in

sep(i) so Equation 2 is exploiting Theorem 2 to the max. The earlier
that variables are summed out, the smaller the factors we need to
multiply and the smaller the f-expressions that VE compiles.

3.3 Exploiting Functional Dependencies

We now present an algorithm that uses Theorems 3 and 4 to sum out
variables earlier than is licensed by Theorems 1 and 2. Here, ‘earlier’
means lower in the jointree view which leads to smaller factors.

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation2562



1: procedure SHRINK SEP(r, h)
2: X ← variable assigned to host h
3: if X ∈ fvars(r) then
4: sep(r) -= {X}
5: end if
6: SUM(r)
7: end procedure

8: procedure SUM(i)
9: if leaf node i then

10: return
11: end if
12: c1, c2 ← children of node i
13: X ← fvars(c1) ∩ fvars(c2)
14: c ← either c1 or c2
15: sep(c) -= X
16: sep(c1) &= sep(c2) ∪ sep(i)
17: sep(c2) &= sep(c1) ∪ sep(i)
18: SUM(c1)
19: SUM(c2)
20: end procedure

Figure 3: Left: Algorithm for shrinking separators based on func-
tional CPTs. Right: An application of the algorithm where dropped
variables are colored red. Variables B and C have functional CPTs.

Our algorithm uses the notation fvars(i) to denote the set of
variables that have a functional CPT at or below node i in the join-
tree view. For example, in Figure 3, we have fvars(8) = {B,C},
fvars(11) = {B} and fvars(2) = {}.

The algorithm is depicted in Figure 3 and is a direct application
of Theorem 3 with a few subtleties. The algorithm traverses the join-
tree view top-down, removing variables from the separators of visited
nodes. It is called on root r and host h of the view, SHRINK SEP(r, h).
It first shrinks the separator of root r which decomposes the set of
factors into

�Fr

�Fr . The only functional CPT that can be shared be-
tween factors

�Fr and
�Fr is the one for variable X assigned to host h.

If variable X is functional and its CPT is shared, Theorem 3 imme-
diately gives

�Fr

�Fr =
�Fr

∑
X

�Fr . Variable X can then be summed
at root r by dropping it from sep(r) as done on line 4.

The algorithm then recurses on the children of root r. The algo-
rithm processes both children c1 and c2 of a node before it recurses
on these children. This is critical as we explain later. The set X com-
puted on line 13 contains variables that have functional CPTs in both
factors

�Fc1 and factors
�Fc2 (recall Equation 3). Theorem 3 allows

us to sum out these variables from either
�Fc1 or

�Fc2 but not both, a
choice that is made on line 14. A variable that has a functional CPT
in both

�Fc1 and
�Fc2 is summed out from one of them by dropping

it from either sep(c1) or sep(c2) on line 15. In our implementation,
we heuristically choose a child based on the size of separators below
it. We add the sizes of these separators (number of instantiations) and
choose the child with the largest size breaking ties arbitrarily.

If a variable is summed out at node i and at its child c2, we
can sum it out earlier at child c1 by Theorem 2 (classical VE):∑

X(
�Fc1

∑
X

�Fc2) = (
∑

X

�Fc1)(
∑

X

�Fc2). A symmetric situa-
tion arrises for child c2. This is handled on lines 16-17. Applying
Theorem 2 in this context demands that we process nodes c1 and c2
before we process their children. Otherwise, the reduction of sep-
arators sep(c1) and sep(c2) will not propagate downwards early
enough, missing opportunities for applying Theorem 2 further.

Figure 3 depicts an example of applying algorithm SHRINK SEP

to a jointree view for the Bayesian network in Figure 2. Variables
colored red are dropped by SHRINK SEP. The algorithm starts by
processing root r = 5, dropping variable B from sep(5) on line 4.

It then processes children c1 = 6 and c2 = 8 simultaneously. Since
both children contain a functional CPT for variable C, the variable
can be dropped from either sep(6) or sep(8). Child c2 = 8 is cho-
sen in this case and variable C is dropped from sep(8). We have
sep(6) = {A,C} and sep(8) = {A,B} at this point. Lines 16-17
shrink these separators further to sep(6) = {A} and sep(8) = {A}.

Our proposed technique for shrinking separators will have an ef-
fect only when functional CPTs have multiple occurrences in a join-
tree (otherwise, set X on line 13 is always empty). While this devi-
ates from the standard use of jointrees, replicating functional CPTs
is licensed by Theorem 4. The (heuristic) approach we adopted for
replicating functional CPTs in a jointree is based on replicating them
in the Bayesian network. Suppose variable X has a functional CPT
and children C1, . . . , Cn in the network, where n > 1. We replace
variable X with replicas X1, . . . , Xn. Each replica Xi has a single
child Ci and the same parents as X . We then construct a jointree for
the resulting network and finally replace each replica Xi by X in the
jointree. This creates n replicas of the functional CPT in the jointree.
Replicating functional CPTs leads to jointrees with more nodes, but
smaller separators and clusters as we shall see in Section 5.

4 Mapping ACs into Tensor Graphs

We discuss next how we map ACs (symbolic f-expressions) into ten-
sors graphs for efficient inference and learning. Our implementation
is part of the PYTAC system under development by the author. PY-
TAC is built on top of TensorFlow and will be open sourced.

A tensor is a data structure for a multi-dimensional array. The
shape of a tensor defines the array dimensions. A tensor with shape
(2, 2, 3) has 2× 2× 3 elements or entries. The dimensions of a ten-
sor are numbered and called axes. The number of axes is the tensor
rank. Tensor computations can be organized into a tensor graph: a
data flow graph with nodes representing tensor operations. Tensors
form the basis of many machine learning tools today.

A factor over variables X1, . . . , Xn can be represented by a ten-
sor with rank n and shape (d1, . . . , dn), where di is the cardinality of
variable Xi (i.e., its number of values). Factor operations can then be
implemented using tensor operations, leading to a few advantages.
First, tensor operations are heavily optimized to take advantage of
special instruction sets and architectures (on CPUs and GPUs) so
they can be orders of magnitude faster than standard implementations
of factor operations (even on laptops). Next, the elements of a tensor
can be variables, allowing one to represent symbolic f-expressions,
which is essential for mapping ACs into tensor graphs that can be
trained. Finally, tools such as TensorFlow and PyTorch provide sup-
port for computing the partial derivates of a tensor graph with respect
to tensor elements, and come with effective gradient descent algo-
rithms for optimizing tensor graphs (and hence ACs). This is very
useful for training ACs from labeled data as we do in Section 5.

To map ACs (symbolic f-expressions) into tensor graphs, we need
to implement factor multiplication, summation and normalization.
Mapping factor summation and normalization into tensor operations
is straightforward: summation has a corresponding tensor operation
(TF.REDUCE SUM) and normalization can be implemented using ten-
sor summation and division. Factor multiplication does not have a
corresponding tensor operation and leads to some complications.6

6 Tensor multiplication is pointwise while factors are normally over different
sets of variables. Hence, multiplying the tensors corresponding to factors
f(ABC) and g(BDE) does not yield the expected result. The simplest
option is to use TF.EINSUM, which can perform factor multiplication if we
pass it the string “abc, bde –> abcde” (https://www.tensorflow.

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation 2563



We bypassed these complications in the process of achieving
something more ambitious. Consider Equation 2 which contains al-
most all multiplications performed by VE. Factors f1(c1), f2(c2)
and the result f(i) are over separators sep(c1), sep(c2) and sep(i).
This equation multiplies factors f1 and f2 to yield a factor over vari-
ables sep(c1)∪sep(c2) and then shrinks it by summation into a fac-
tor over variables sep(i). We wanted to avoid constructing the larger
factor before shrinking it. That is, we wanted to multiply-then-sum in
one shot as this can reduce the size of our tensor graphs significantly.7

A key observation allows this using standard tensor operations.
The previous separators are all connected to jointree node i so they

satisfy the following property [10, Chapter 9]: If a variable appears in
one separator, it also appears in at least one other separator. Variables
sep(c1) ∪ sep(c2) ∪ sep(i) can then be partitioned as follows:8

C: variables in f1, f2 and f , sep(c1) ∩ sep(c2) ∩ sep(i)
X: variables in f1, f but not f2, (sep(c1) ∩ sep(i)) \ sep(c2)
Y: variables in f2, f but not f1, (sep(c2) ∩ sep(i)) \ sep(c1)
S: variables in f1, f2 but not f , (sep(c1) ∩ sep(c2)) \ sep(i)

where variables S are the ones summed out by Equation 2. The vari-
ables in each factor can now be structured as follows: f1(C,X,S),
f2(C,Y,S) and f(C,X,Y). We actually group each set of vari-
ables C,X,Y and S into a single compound variable so that factors
f1, f2 and f can each be represented by a rank-3 tensor. We then use
the tensor operation for matrix multiplication TF.MATMUL to com-
pute f =

∑
S f1f2 in one shot, without having to construct a tensor

for the product f1f2. Matrix multiplication is perhaps one of the most
optimized tensor operations on both CPUs and GPUs.

Preparing tensors f1(C,X,S) and f2(C,Y,S) for matrix mul-
tiplication requires two operations: TF.RESHAPE which aggregate
variables into compound dimensions and TF.TRANSPOSE which or-
der the resulting dimensions so TF.MATMUL can map f1 and f2 into
f(C,X,Y). The common dimension C must appear first in f1 and
f2. Moreover, the last two dimensions must be ordered as (X,S) and
(S,Y) but TF.MATMUL can transpose the last two dimensions of an
input tensor on the fly if needed. Using matrix multiplication in this
fashion had a significant impact on reducing the size of tensor graphs
and the efficiency of evaluating them, despite the added expense of
using TF.TRANSPOSE and TF.RESHAPE operations (the latter opera-
tion does not use space and is very efficient).

PYTAC represents ACs using an abstract tensor graph called an
ops graph, which can be mapped into a particular tensor implemen-
tation depending on the used machine learning tool. PYTAC also has
a dimension management utility, which associates each tensor with
its structured dimensions while ensuring that all tensors are struc-
tured appropriately so operations can be applied to them efficiently.
We currently map an ops graph into a TF.GRAPH object, using the
TF.FUNCTION utility introduced recently in TensorFlow 2.0.0. PY-
TAC also supports the recently introduced Testing Arithmetic Cir-
cuits (TACs), which augment ACs with testing units that turns them
into universal function approximators like neural networks [6, 5, 27].

org/api_docs/python/tf/einsum). We found this too inefficient
though for extensive use as it performs too many tensor transpositions.
One can also use the technique of broadcasting by adding trivial di-
mensions to align tensors (https://www.tensorflow.org/xla/
broadcasting), but broadcasting has limited support in TensorFlow re-
quiring tensors with small enough ranks.

7 See a discussion of this space issue in [10, Chapter 7].
8 In a jointree, every separator that is connected to a node is a subset of

the union of other separators connected to that node. Hence, sep(i) ⊆
sep(c1) ∪ sep(c2).

5 Case Studies

We next evaluate the proposed VE algorithm on two classes of mod-
els that have abundant functional dependencies. We also evaluate the
algorithm on randomly generated Bayesian networks while varying
the amount of functional dependencies. The binary jointrees con-
structed for these models are very large and prohibit inference us-
ing standard VE. We constructed these binary jointrees from variable
elimination orders using the method proposed in [7]; see also [10,
Chapter 9]. The elimination orders were obtained by the minfill
heuristic; see, e.g., [20].9

5.1 Rectangle Model

We first consider a generative model for rectangles shown in Fig-
ure 4. In an image of size n × n, a rectangle is defined by its upper
left corner (row, col), height and width. Each of these variables
has n values. The rectangle also has a binary label variable, which
is either tall or wide. Each row has a binary variable rowi indicating
whether the rectangle will render in that row (n variables total). Each
column has a similar variable colj . We also have n2 binary variables
which correspond to image pixels (pixelij) indicating whether the
pixel is on or off. This model can be used to predict rectangle at-
tributes from noisy images such as those shown in Figure 4. We use
the model to predict whether a rectangle is tall or wide by compiling
an AC with variable label as output and variables pixelij as input.
The AC computes a distribution on label given a noisy image as
evidence and can be trained from labeled data using cross entropy as
the loss function.10

Our focus is on the variables rowi and colj which are determined
by row/height and col/width, respectively (for example, rowi is
on iff row≤ i < row+ height). In particular, we will investigate the
impact of these functional relationships on the efficiency of our VE
compilation algorithm and their impact on learning AC parameters
from labeled data. Our experiments were run on a MacBook Pro, 2.2
GHz Intel Core i7, with 32 GB RAM.

Table 1 depicts statistics on ACs that we compiled using our pro-
posed VE algorithm. For each image size, we compiled an AC for
predicting the rectangle label while exploiting functional CPTs to
remove variables from separators during the compilation process. As
shown in the table, exploiting functional CPTs has a dramatic im-
pact on the complexity of VE. This is indicated by the size of largest
jointree cluster (binary rank) in a classical jointree vs one whose sep-
arators and clusters where shrunk due to functional dependencies.11

Recall that a factor over a cluster will have a size exponential in the
cluster binary rank (the same for factors over separators). The table
also shows the size of compiled ACs, which is the sum of tensor sizes
in the corresponding tensor graph (the tensor size is the number of
elements/entries it has). For a baseline, the AC obtained by standard

9 The minfill heuristic and similar ones aim for jointrees that minimize the
size of largest cluster (i.e., treewidth). It was observed recently that min-
imizing the size of largest separator (called max rank) is more desirable
when using tensors since the memory requirements of Equation 2 can de-
pend only on the size of separators not clusters (see [14] for recent methods
that optimize max rank). This observation holds even when using classi-
cal implementations of the jointree algorithm and was exploited earlier to
reduce the memory requirements of jointree inference; see, e.g., [22, 13].

10 Arthur Choi suggested the use of rectangle models and Haiying Huang
proposed this particular version of the model.

11 We applied standard node and value pruning to the Bayesian network be-
fore computing a jointree and shrinking it. This has more effect on the
digits model in Section 5.2. For example, it can infer that some pixels will
never be turned on as they will never be occupied by any digit.

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation2564



Figure 4: Left: A generative model for rectangles. Right: Examples of clean and noisy rectangle images.

Figure 5: Left: A generative model for seven-segment digits. Middle: Examples of noisy digit images. Right: Seven-segment digit.

VE (without exploiting functional CPTs) for an image of size 20×20
is 18, 032, 742, 365, which is about 80 times larger than the size of
AC reported in Table 1. What is particularly impressive is the time
it takes to evaluate these ACs (compute their output from input). On
average it takes about 7 milliseconds to evaluate an AC of size ten
million for these models, which shows the promise tensor-based im-
plementations (these experiments were run on a laptop).

We next investigate the impact of integrating background knowl-
edge when learning AC parameters. For training, we generated la-
beled data for all clean images of rectangles and added n noisy im-
ages for each (with the same label). Noise is generated by randomly
flipping min(n, a− 1, b/2) background pixels, where a is the num-
ber of rectangle pixels and b is the number of background pixels. We
used the same process for testing data, except that we increased the
number of noisy pixels to min(2 ∗ n, a − 1, b/2) and doubled the
number of noisy images. We trained the AC using cross entropy as
the loss function to minimize the classification accuracy.12

Table 2 shows the accuracy of classifying rectangles (tall vs wide)
on 10 × 10 images using ACs with and without background knowl-
edge. ACs compiled from models with background knowledge have
fewer parameters and therefore need less data to train. The training
and testing examples were selected randomly from the datasets de-
scribed above with 1000 examples always used for testing, regardless
of the training data size. Each classification accuracy is the average
over twenty five runs. The table clearly shows that integrating back-
ground knowledge into the compiled AC yields higher classification
accuracies given a fixed number of training examples.

5.2 Digits Model

We next consider a generative model for seven-segment dig-
its shown in Figure 5 (https://en.wikipedia.org/wiki/
Seven-segment_display). The main goal of this model is to
recognize digits in noisy images such as those shown in Figure 5.
The model has four vertical and three horizontal segments. A digit
is generated by activating some of the segments. For example, digit

12 Some of the CPTs contain zero parameters but are not functional, such
as the ones for width and height. We fixed these zeros in the AC when
learning with background knowledge. We also tied the parameters of the
pixelij variables therefore learning one CPT for all of them.

Table 1: Size and compile/evaluation time for ACs that compute the
posterior on rectangle label. Reported times are in seconds. Evalua-
tion time is the average of evaluating an AC over a batch of examples.

Image Functional Network Max Cluster Size AC Eval Compile
Size CPTs Nodes rank binary rank Size Time Time

8× 8
� 85 11 15.0

926, 778 .001 4.9
� 197 5 13.0

10× 10
� 125 13 17.6

3, 518, 848 .003 2.9
� 305 5 14.3

12× 12
� 173 15 20.2

10, 485, 538 .007 4.1
� 437 5 15.3

14× 14
� 229 17 22.6

26, 412, 192 .018 5.7
� 593 5 16.2

16× 16
� 293 19 25.0

58, 814, 458 .034 7.4
� 773 5 17.0

20× 20
� 445 23 29.6

224, 211, 138 .140 14.1
� 1205 5 18.3

Table 2: Classification accuracy on 10×10 noisy rectangle images.
Testing data included 1000 examples in each case.

Functional Accuracy Number of Training Examples Param
CPTs 25 50 100 250 500 1000 Count

fixed in AC mean 82.64 89.16 96.08 97.92 99.51 98.39
136stdev 15.06 11.98 8.34 5.56 0.62 7.00

trainable mean 53.29 56.92 62.20 74.62 84.94 88.69
4, 428stdev 1.89 5.31 6.95 5.29 3.14 2.79

Table 3: Size and compile/evaluation time for ACs that compute a
posterior over digits. Reported times are in seconds. Evaluation time
is the average of evaluating an AC over a batch of examples.

Image Functional Network Max Cluster Size AC Eval Compile
Size CPTs Nodes rank binary rank Size Time Time

8× 8
� 638 32 33.3

264, 357 .008 9.3
� 1155 9 12.6

10× 10
� 954 59 60.8

2, 241, 205 .008 13.6
� 2173 9 14.1

12× 12
� 1334 81 83.8

11, 625, 558 .014 23.2
� 3469 10 16.7

14× 14
� 1778 116 121.0

32, 057, 227 .030 36.8
� 5007 11 18.4

16× 16
� 2286 134 140.0

95, 094, 167 .076 50.4
� 6825 11 19.3

Table 4: Classification accuracy on 10× 10 noisy digit images. Test-
ing data included 1000 examples in each case.

Functional Accuracy Number of Training Examples Param
CPTs 25 50 100 250 500 1000 Count

fixed in AC mean 83.51 89.17 94.94 97.68 98.49 98.44
275stdev 8.70 6.02 4.57 1.45 0.91 0.27

trainable mean 9.82 12.26 13.28 22.36 29.51 35.67
22, 797stdev 0.77 2.25 3.32 3.45 2.40 1.57

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation 2565



8 is generated by activating all segments and digit 1 by activating
two vertical segments. Segments are represented by rectangles as in
the previous section, so this model integrates seven rectangle mod-
els. A digit has a location specified by the row and column of its
upper-left corner (height is seven pixels and width is four pixels).
Moreover, each segment has an activation node which is turned on
or off depending on the digit. When this activation node is off, seg-
ment pixels are also turned off. An image of size n×n has n2 pixels
whose values are determined by the pixels generated by segments.

This is a much more complex and larger model than the rectangle
model and also has an abundance of functional dependencies. It is
also much more challenging computationally. This can be seen by
examining Tables 3, which reports the size of largest clusters in the
jointrees for this model. For example, the model for 16× 16 images
has a cluster with a binary rank of 140. This means that standard
VE would have to construct a factor of size 2140 which is impossi-
ble. Our proposed technique for exploiting functional dependencies
makes this possible though as it reduces the binary rank of largest
cluster down to 19.3. And even though the corresponding AC has
size of about one hundred million, it can be evaluated in about 76
milliseconds. The AC compilation times are also relatively modest.

We trained the compiled ACs as we did in the previous section. We
generated all clean images and added noise as follows. For each clean
image we added 100 noisy images for training and 200 for testing by
randomly flipping n background pixels where n is the image size.

Table 4 parallels the one for the rectangle model. We trained two
ACs, one that integrates background knowledge and one that does
not. The former AC has fewer parameters and therefore requires less
data to train. While this is expected, it is still interesting to see how
little data one needs to get reasonable accuracies. In general, Tables 3
and 4 reveal the same patterns of the rectangle model: exploiting
functional dependencies leads to a dramatic reduction in the AC size
and integrating background knowledge into the compiled AC signif-
icantly improves learnability.

5.3 Random Bayesian Networks

Table 5: Reduction in maximum cluster size due to exploiting func-
tional dependencies. The number of values a node has was cho-
sen randomly from (2, 3). We averaged over 10 random networks
for each combination of network node count, maximal parent count
and the percentage of nodes having functional CPTs. The parents
of a node and their count where chosen randomly. Functional nodes
where chosen randomly from non-root nodes. The binary rank of a
cluster is log2 of the number of its instantiations.

Network Maximal Percentage Binary Rank of Largest Cluster

Node Parent Functional Original Jointree Shrunk Jointree Reduction
Count Count Nodes % mean stdev mean stdev mean stdev

75 4

25 22.4 2.8 19.4 3.1 3.0 1.7
50 22.5 2.2 16.9 1.8 5.6 2.5
67 22.9 3.9 13.1 2.3 9.8 3.4
80 21.9 2.7 11.1 1.9 10.8 3.2

100 5

25 38.7 4.5 33.1 4.6 5.7 2.0
50 38.1 2.9 23.7 3.3 14.4 4.3
67 38.0 3.2 18.9 3.1 19.1 3.9
80 36.8 3.0 13.5 2.5 23.3 3.1

150 6

25 64.3 5.4 54.2 4.4 10.1 4.2
50 64.9 3.2 41.9 5.6 23.0 5.1
67 64.3 6.0 28.2 4.2 36.0 4.7
80 66.4 4.8 21.3 4.6 45.1 2.1

We next present two experiments on randomly generated Bayesian
networks. The first experiment further evaluates our proposed algo-
rithm for exploiting functional dependencies. The second experiment

Table 6: Comparing evaluation time of three AC representations:
Tensor graph (TenG), scalar graph (ScaG) and scalar-batch graph
(ScaBaG). We averaged over 10 random Bayesian networks for each
combination of batch size and limit on circuit size. AC size limit is in
millions of nodes. The binary rank of a tensor is log2 of the number
of its entries. Maximum binary rank is for the largest tensor in the
tensor graph. Normalized time (tensor graph) is evaluation time per
one million AC nodes (a node is a tensor entry). Each cell below con-
tains the mean (top) and stdev (bottom). Times are in milliseconds.

Batch Tensor Graph (TenG) Milliseconds Slow Down Factor
Size Limit on Actual Max Binary TenG Time ScaG / TenG ScaBaG / TenG

Size Size Rank Normalized Time Ratio Time Ratio

1

5-10 M 6, 992, 414 19.7 66.6 11.5 47.0
1, 830, 909 0.7 20.6 4.6 20.3

15-20 M 17, 979, 799 21.2 34.3 22.2 82.1
1, 391, 918 0.5 3.0 7.1 23.7

25-30 M 26, 540, 961 21.6 20.8 38.4 137.3
1, 154, 660 0.5 4.6 14.6 56.1

35-40 M 37, 058, 914 21.8 16.0 50.3 177.2
1, 349, 479 0.4 3.5 32.1 128.7

10

5-10 M 8, 157, 025 20.0 7.8 112.3 38.0
1, 599, 408 0.5 2.3 45.9 24.8

15-20 M 17, 504, 179 20.7 4.6 148.0 54.2
1, 482, 496 0.5 1.3 64.9 33.3

25-30 M 27, 728, 478 21.7 4.5 209.7 60.1
2, 029, 237 0.9 1.3 51.0 17.0

35-40 M 37, 850, 485 22.1 4.0 244.0 70.0
1, 547, 389 0.6 1.1 95.4 26.3

20

5-10 M 6, 506, 125 19.6 4.9 135.3 26.9
860, 631 0.7 1.9 42.2 11.1

15-20 M 17, 766, 240 20.7 3.1 251.5 39.9
1, 209, 040 0.5 1.3 123.7 15.2

25-30 M 27, 762, 672 21.7 3.1 271.9 46.0
1, 148, 761 0.5 1.1 92.4 17.7

35-40 M 37, 620, 063 22.1 3.0 287.5 44.3
1, 416, 214 0.3 1.2 118.9 19.7

reinforces our motivation for working with dense representations of
factors and the corresponding tensor-based implementations.13

We generated Bayesian networks by starting with a linear order
of nodes V1, . . . , Vn and a maximum number of parents per node
k. For each node Vi, we randomly determined a number of parents
≤ k and chose the parents randomly from the set V1, . . . , Vi−1. We
then selected a fixed percentage f of non-root nodes and gave them
functional CPTs, where each node had cardinality two or three.

In the first experiment, we considered networks with different
number of nodes n, maximum number of parents k and percentage
of functional nodes f . For each combination, we generated 10 net-
works, computed a binary jointree and averaged the size of largest
cluster. We then applied our algorithm for exploiting functional de-
pendencies and obtained a jointree with shrunk clusters and separa-
tors while also noting the size of largest cluster.

Table 5 depicts our results, where we report the size of a largest
cluster in terms of its binary rank: log2 of its instantiations count.
As can be seen from Table 5, our algorithm leads to substantial re-
ductions in binary rank, where the reduction increases as the frac-
tion of functional nodes increases. Recall that our algorithm includes
two heuristics: one for deciding how to replicate functional CPTs
when building a jointree and another corresponding to the choice on
Line 14 in Figure 3. Table 5 provides some evidence on the efficacy
of these heuristics beyond the rectangle and digits case studies we
discussed earlier.

The second experiment compares classical and tensor-based im-
plementations of ACs. In a classical implementation, the AC is rep-
resented as a directed acyclic graph where root nodes correspond to
scalars and other nodes correspond to scalar arithmetic operations;
see Figure 1. We will call this the scalar graph representation. In
a tensor-based implementation, the AC is represented using a ten-
sor graph where root nodes correspond to tensors (i.e., factors) and

13 The experiments of this section were run on a server with dual Intel(R)
Xeon E5-2670 CPUs running at 2.60GHz and 256GB RAM.

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation2566



1: procedure EVALUATE SCALAR GRAPH(graph nodes)
2: for n in graph nodes: do
3: c1, c2 = n.child1, n.child2
4: if n.type == ’add’ then
5: n.value = c1.value + c2.value
6: else if n.type == ’mul’ then
7: n.value = c1.value * c2.value
8: else if n.type == ’div’ then
9: n.value = c1.value / c2.value

10: end if
11: end for
12: end procedure

Figure 6: Evaluating a scalar graph representation of an AC. The
graph nodes are topologically sorted so the children of a node are
evaluated before the node is evaluated. The evaluation of a scalar-
batch representation is similar except that node values are NumPy
ndarrays and +, ∗, / are ndarray (tensor) operations.

other nodes correspond to tensor operations (i.e., factor operations)
as discussed in Section 4. The main benefit of a tensor-based imple-
mentation is that tensor operations can be parallelized on CPUs and
GPUs (for example, NumPy and tools such as TensorFlow leverage
Single Instruction Multiple Data (SIMD) parallelism on CPUs).14

Before we present the results of this experiment, we need to dis-
cuss the notion of a batch which is a set of AC input vectors. When
learning the parameters of an AC using gradient descent, the dataset
or a subset of it can be viewed as a batch so we would be interested
in evaluating the AC on a batch. A scalar graph would need to be
evaluated on each input vector in a batch separately. However, when
representing the AC as a tensor graph we can treat the batch as a ten-
sor. This allows us to evaluate the AC on a batch to yield a batch of
marginals, which creates more opportunities for parallelism.

There is middle grounds though: a scalar graph with a batch that
we shall call the scalar-batch graph. This is a tensor graph except
that each tensor has two dimensions only: a batch dimension and a
scalar dimension. For example, if the batch has size b, then a tensor
will have shape (b, 1). In a scalar-batch graph, each tensor is a set of
scalars, one for each member of the batch (AC input vector).

Scalar-batch graphs can be used in situations where a full tensor
graph cannot be used. This includes situations where the AC is com-
piled using techniques such as knowledge compilation, which pro-
duce ACs that cannot be cast in terms of tensor operations. A scalar-
batch graph can be used in this case to offer an opportunity for par-
allelism, even if limited, especially when training the AC from data.

Table 6 compares the three discussed AC representations in terms
of their evaluation time, while varying the batch size and AC size.
The tensor graph implementation is the one we discussed in Sec-
tion 4 using TensorFlow. The scalar graph implementation uses a
Python list to store the DAG nodes (parents before children) and then
uses the pseudocode in Figure 6 to evaluate the DAG. We extract the
DAG from the tensor graph where each DAG node corresponds to
a tensor entry. The scalar-batch graph is represented similarly to the
scalar graph except that members of the list are NumPy ndarrays of
shape (b, 1) instead of scalars (we found NumPy to be more efficient
than TensorFlow for this task). The evaluation time for both scalar
graphs and scalar-batch graphs are therefore based on benchmarking
the code in Figure 6 (we only measure the time of arithmetic opera-
tions, excluding setting evidence on root nodes and other overhead).

The networks in Table 6 were generated randomly as in the pre-
vious experiment, with 100 nodes and a maximum of 5 parents per

14 https://en.wikipedia.org/wiki/SIMD

node. For each limit on the AC size, we kept generating Bayesian
networks randomly until we found 10 networks whose compilations
yielded tensor graphs within the given size limit. The tensor graph
normalized time in Table 6 is the total time to evaluate the graph di-
vided by the batch size, then divided again by the size of the graph
over 1000, 000. Normalized time is then the average time for eval-
uating one million AC nodes (tensor entries) and is meant to give a
sense of speed independent of the batch and AC size.

We now have a number of observations on Table 6. The tensor
graph is faster than the scalar and scalar-batch graphs in all cases
and sometimes by two orders of magnitude. This can be seen in the
last two columns of Table 6 which report the evaluation times (whole
batch) of scalar and scalar-batch graphs over the evaluation time of
tensor graph. The gap between tensor and scalar graphs increases
with the batch size and with AC size as this means more opportu-
nities to exploit parallelism on two fronts that the scalar graph can-
not take advantage of. The gap between the tensor and scalar-batch
graphs increases with AC size, but decreases with batch size. Increas-
ing the AC size correlates with increasing the size of tensors (at least
the largest one in the fourth column) which creates more opportuni-
ties for exploiting parallelism that the scalar-batch graph cannot ex-
ploit. However, increasing the batch size can be exploited by both the
tensor and scalar-batch graphs, therefore narrowing the gap (NumPy
appears to be exploiting the batch more effectively than TensorFlow).
The scalar graph is faster than the scalar-batch graph when the batch
size is 1, but otherwise is slower. This is to be expected as there is
no need for the extra overhead of NumPy ndarrays in this case. We
finally emphasize the absolute evaluation times for the tensor graph,
which amount to a few milliseconds per one million AC nodes (nor-
malized time) when the batch and AC size are large enough.

6 Conclusion

We presented new results on the algorithm of variable elimination
that exploit functional dependencies using dense factors, allowing
one to benefit from tensor-based technologies for more efficient in-
ference and learning. We also presented case studies that show the
promise of proposed techniques. In contrast to earlier approaches,
the proposed one does not dependent on the identity of functional de-
pendencies, only that they are present. This has further applications
to exact inference (exploiting inferred functional dependencies) and
to approximate inference (treating CPTs with extreme probabilities
as functional CPTs) which we plan to pursue in future work.

ACKNOWLEDGEMENTS

I wish to thank members of the Automated Reasoning Group at
UCLA who provided valuable motivation and feedback: Arthur
Choi, Yizou Chen, Haiying Huang and Jason Shen. This work has
been partially supported by grants from NSF IIS-1910317, ONR
N00014-18-1-2561 and DARPA N66001-17-2-4032.

REFERENCES

[1] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle,
‘Greedy layer-wise training of deep networks’, in Advances in Neural
Information Processing Systems 19 (NIPS), pp. 153–160, (2006).

[2] Mark Chavira and Adnan Darwiche, ‘On probabilistic inference by
weighted model counting’, Artificial Intelligence, 172(6–7), 772–799,
(April 2008).

[3] Mark Chavira, Adnan Darwiche, and Manfred Jaeger, ‘Compiling rela-
tional bayesian networks for exact inference’, Int. J. Approx. Reason-
ing, 42(1-2), 4–20, (2006).

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation 2567



[4] Arthur Choi and Adnan Darwiche, ‘On relaxing determinism in arith-
metic circuits’, in Proceedings of the Thirty-Fourth International Con-
ference on Machine Learning (ICML), pp. 825–833, (2017).

[5] Arthur Choi and Adnan Darwiche, ‘On the relative expressiveness of
bayesian and neural networks’, in PGM, volume 72 of Proceedings of
Machine Learning Research, pp. 157–168. PMLR, (2018).

[6] Arthur Choi, Ruocheng Wang, and Adnan Darwiche, ‘On the relative
expressiveness of bayesian and neural networks’, International Journal
of Approximate Reasoning, 113, 303–323, (2019).

[7] Adnan Darwiche, ‘Recursive conditioning’, Artif. Intell., 126(1-2), 5–
41, (2001).

[8] Adnan Darwiche, ‘A logical approach to factoring belief networks’, in
Proceedings of the Eights International Conference on Principles and
Knowledge Representation and Reasoning (KR), pp. 409–420, (2002).

[9] Adnan Darwiche, ‘A differential approach to inference in Bayesian net-
works’, Journal of the ACM (JACM), 50(3), 280–305, (2003).

[10] Adnan Darwiche, Modeling and Reasoning with Bayesian Networks,
Cambridge University Press, 2009.

[11] Rina Dechter, ‘Bucket elimination: A unifying framework for proba-
bilistic inference’, in Proceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 211–219, (1996).

[12] Rina Dechter, Constraint processing, Elsevier Morgan Kaufmann,
2003.

[13] Rina Dechter and Yousri El Fattah, ‘Topological parameters for time-
space tradeoff’, Artif. Intell., 125(1-2), 93–118, (2001).

[14] Jeffrey M. Dudek, Leonardo Dueñas-Osorio, and Moshe Y. Vardi, ‘Effi-
cient contraction of large tensor networks for weighted model counting
through graph decompositions’, CoRR, abs/1908.04381, (2019).

[15] Glen Evenbly and Robert N. C. Pfeifer, ‘Improving the efficiency of
variational tensor network algorithms’, Phys. Rev. B, 89, 245118, (Jun
2014).

[16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville, Deep Learning,
MIT Press, 2016.

[17] Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh, ‘A fast learn-
ing algorithm for deep belief nets’, Neural Computation, 18(7), 1527–
1554, (2006).

[18] F. V. Jensen, S. Lauritzen, and K. Olesen, ‘Bayesian updating in recur-
sive graphical models by local computation’, Computational Statistics
Quarterly, 4, 269–282, (1990).

[19] Frank Jensen and S. Anderson, ‘Approximations in bayesian belief uni-
verse for knowledge based systems’, in Proceedings of the Sixth Con-
ference Annual Conference on Uncertainty in Artificial Intelligence
(UAI-90), pp. 162–169, Corvallis, Oregon, (1990). AUAI Press.

[20] Uffe Kjærulff, ‘Triangulation of graphs – algorithms giving small total
state space’, Technical report, (1990).

[21] David Larkin and Rina Dechter, ‘Bayesian inference in the presence of
determinism’, in Proceedings of the Ninth International Workshop on
Artificial Intelligence and Statistics (AISTATS), (2003).

[22] Vasilica Lepar and Prakash P. Shenoy, ‘A comparison of lauritzen-
spiegelhalter, hugin, and shenoy-shafer architectures for computing
marginals of probability distributions’, in UAI, pp. 328–337. Morgan
Kaufmann, (1998).

[23] Judea Pearl, Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference, MK, 1988.

[24] Judea Pearl, Causality, Cambridge University Press, 2000.
[25] Judea Pearl and Dana Mackenzie, The Book of Why: The New Science

of Cause and Effect, Basic Books, 2018.
[26] Marc’Aurelio Ranzato, Christopher S. Poultney, Sumit Chopra, and

Yann LeCun, ‘Efficient learning of sparse representations with an
energy-based model’, in Advances in Neural Information Processing
Systems 19 (NIPS), pp. 1137–1144, (2006).

[27] Yujia Shen, Haiying Huang, Arthur Choi, and Adnan Darwiche, ‘Con-
ditional independence in testing bayesian networks’, in ICML, vol-
ume 97 of Proceedings of Machine Learning Research, pp. 5701–5709.
PMLR, (2019).

[28] Prakash P. Shenoy, ‘Binary join trees’, in UAI, pp. 492–499. Morgan
Kaufmann, (1996).

[29] Nevin Lianwen Zhang and David Poole, ‘Exploiting causal indepen-
dence in bayesian network inference’, Journal of Artificial Intelligence
Research, 5, 301–328, (1996).

A. Darwiche / An Advance on Variable Elimination with Applications to Tensor-Based Computation2568


