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Abstract. For efficient malware detection, there are more and more
deep learning methods based on raw software binaries. Recent stud-
ies show that deep learning models can easily be fooled to make a
wrong decision by introducing subtle perturbations to inputs, which
attracts a large influx of work in adversarial attacks. However, most
of the existing attack methods are based on manual features (e.g.,
API calls) or in the white-box setting, making the attacks impracti-
cal in current real-world scenarios. In this work, we propose a novel
attack framework called GAPGAN, which generates adversarial pay-
loads (padding bytes) with generative adversarial networks (GANs).
To the best of our knowledge, it is the first work that performs end-
to-end black-box attacks at the byte-level against deep learning based
malware binaries detection. In our attack framework, we map input
discrete malware binaries to continuous space, then feed it to the
generator of GAPGAN to generate adversarial payloads. We append
payloads to the original binaries to craft an adversarial sample while
preserving its functionality. We propose to use a dynamic threshold
for reducing the loss of the effectiveness of the payloads when map-
ping it from continuous format back to the original discrete format.
For balancing the attention of the generator to the payloads and the
adversarial samples, we use an automatic weight tuning strategy. We
train GAPGAN with both malicious and benign software. Once the
training is finished, the generator can generate an adversarial sam-
ple with only the input malware in less than twenty milliseconds. We
apply GAPGAN to attack the state-of-the-art detector MalConv and
achieve 100% attack success rate with only appending payloads of
2.5% of the total length of the data for detection. We also attack
deep learning models with different structures under different de-
fense methods. The experiments show that GAPGAN outperforms
other state-of-the-art attack models in efficiency and effectiveness.

1 INTRODUCTION

Deep neural networks have achieved great success, more and more
work prefers to use deep learning for efficient malware detection.
Among them, some work (e.g., [5] and [12]) detects malware based
on manual features (e.g., API calls) which may contain malicious be-
haviour of a program, some work (e.g., [21], [24], and [4]) directly
uses information of software without running it, and other work (e.g.,
[13] and [20]) integrates the above strategies or uses other methods,
like visualization. Recently, there is a trend of using raw binaries for
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malware detection, which can efficiently mine the latent relationships
among different sections of the file. With the rapid development of
malware, the defense efficiency becomes crucial in today’s realis-
tic scenarios, making the end-to-end detection based on raw binaries
more promising.

However, many research work ([25], [7], [17], [9], and [27]) has
demonstrated that deep neural networks are susceptible to adversar-
ial attacks. The attackers add small perturbations to the original data
that is imperceptible to humans, which can mislead the classifiers
to do wrong decisions. These studies point out a serious threat to
the security of deep learning algorithms and AI applications. In mal-
ware detection, most of the adversarial attacks (e.g., [14], [15], and
[3]) rely on the complete information of the detector (i.e., white-box
attacks). However, there are limitations to this kind of attack, e.g.,
the target model must be fully exposed to the attackers. Meanwhile,
previous attack work (e.g., [11], [2], and [23]) are based on manual
features that are speculated to be used for training the detector. If
the speculation is wrong or once the defender changes its training
strategies, this kind of attacks will be invalid. The wide use of raw
binaries based detection also makes such an attack that needs plenty
of resources and time to extract features inapplicable.

Different from the manual features, the original binaries data can-
not be simply changed even with small modifications, or their func-
tionality will be damaged. Besides, the size of binaries data varies
widely, which further increases the attack difficulty. We also find that
subtle perturbations will be ignored when transforming adversarial
payloads in continuous space back to discrete binary when we save
the generated adversarial samples, which affects the effectiveness of
adversarial attacks. Therefore, how to perform effective and practi-
cal black-box attacks to the deep learning models based on malware
binaries while protecting the original functionality remains a great
challenge.

In this paper, we put forward a novel attack framework GAPGAN
which generates adversarial payloads via GANs. To the best of our
knowledge, it is the first work that performs end-to-end black-box
attacks at the byte-level against deep learning based malware binaries
detection. We apply GAPGAN to attack the state-of-the-art detector
MalConv [21] as well as other deep learning models with different
structures. The experiments show that our model can achieve a high
attack success rate, and it outperforms other state-of-the-art attack
methods in efficiency and effectiveness.

We have the following contributions:

1. We propose a novel adversarial attack framework GAPGAN,
which performs end-to-end black-box attacks at the byte-level
against deep learning based malware binaries detection, making
the attacks more efficient and effective.

2. In GAPGAN, the generator generates adversarial payloads and ap-
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pends it to the original data to craft a malware adversarial sample
while preserving its functionality. Once the training process is fin-
ished, the generator can efficiently generate each adversarial sam-
ple in less than twenty milliseconds.

3. We propose to use a dynamic threshold for reducing the loss of the
effectiveness of the payloads when mapping it from continuous
space back to discrete binaries. For balancing the attention of the
generator to the payloads and the adversarial samples, we adopt
an automatic weight tuning strategy.

4. We apply GAPGAN to attack the state-of-the-art malware detector
MalConv. The experiments show that the adversarial samples gen-
erated by GAPGAN can achieve an attack success rate of 100%
when appending adversarial payloads of 2.5% of the length of the
data for detection. The experiments also show that GAPGAN out-
performs other state-of-the-art attack methods in efficiency and
effectiveness under different defenses.

The remaining part of the paper is composed of five parts: In Sec-
tion 2, we introduce the background and related work. In Section 3,
we explain the details of our attack framework GAPGAN. In Section
4, we describe the experimental setup, including datasets, metrics,
and target models. In Section 5, we show the results of our experi-
ments. In Section 6, we sum up our work and give a conclusion.

2 BACKGROUND AND RELATED WORK

2.1 Adversarial Attacks Against Malware
Detection

Most of the traditional machine learning and deep learning meth-
ods for malware detection (e.g., [5] and [12]) focus on manual fea-
tures that are extracted from programs’ behavior information, like
signature and API calls. For this kind of detection methods, earlier
attack work is mainly based on the manual features which are sup-
posed to be used by the defender. Some work proposes to use APIs
as binary features, then adopt deep learning models to generate ad-
versarial samples ([11] and [8]). A different approach based on API
call sequences uses an optimization process to perform adversarial
attacks [23]. [2] proposes to use reinforcement learning for attack-
ing, it comprises numerous manual information as features, e.g., PE
header metadata, section metadata and byte histogram. Xu et al. [29]
put forward a genetic programming based attack method to perform
stochastic manipulations on the structures of file. However, these at-
tacks need expert experience and plenty of time to obtain effective
features, and once the features used for attacking is known by the
defenders, the fast update detectors can easily evade the attacks.

Recent malware detection work (e.g., [21], [24], and [4]) pays
more attention to use deep learning models on raw software binaries,
as deep neural networks can efficiently mine latent characteristics in
raw data without mass data preprocessing and prior experience. To
catch up with the updated malware detection technologies, the at-
tackers start to seek new methods that can be applied to raw software
binaries (e.g., [14], [15], and [3]). Different from the extracted fea-
tures, the raw binaries data cannot be simply changed or it may lose
important functionality. Besides, the raw binaries have variable input
sizes, which can further make these attacks more tricky than previ-
ous.

[14] proposes the first adversarial attack work at the byte-level,
which combines gradient ascent and greedy strategies. It appends
bytes one by one to the end of the file for preserving their function-
ality. However, it performs white-box attacks that have limitations in
real-world scenarios, and the model needs to calculate the gradient

for each padding byte which consumes a lot of time and resources.
[15] also puts forward an approach for discrete sequences by inject-
ing local perturbations. However, it is in the white-box setting and
not efficient. [3] proposes both white-box and black-box methods.
In the black-box method, it randomly selects and appends benign
data blocks to the malware data, tests the results at each time. It con-
sumes plenty of time to get the effective blocks before performing
attacks. This approach is simple but tedious and inefficient, which is
not applicable for effective malware adversarial samples generation.
In contrast, we will show that our end-to-end framework can attack
in the black-box setting and generates adversarial samples in far less
time.

2.2 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) [6] are widely used in com-
puter vision tasks (e.g., [30], [16] and [1]) in recent years. According
to their high level of imitation ability, some work (e.g., [11] and [28])
adopts GANs for adversarial attacks. The most representative attack
methods use the approach called distillation [10] to fit the discrim-
inator with the outputs of the target model, train the generator for
generating data that can mislead the discriminator. In this way, the
adversarial samples can attack the target model indirectly, i.e., the
transferability of the adversarial samples [19]. Different from pre-
vious work, we use the generator to generate adversarial payloads,
which is used to craft an adversarial sample without damaging its
functionality. In our model, once the training process of GANs is fin-
ished, the generator can independently generate malware adversarial
samples in a very short time with only the input malware binaries.

3 BLACK-BOX ATTACKS TO MALWARE
DETECTION WITH GAN

In this section, we will briefly explain the formal definition of the
input binaries and the adversarial samples, then introduce the frame-
work and strategies details of GAPGAN.

3.1 Problem Definition

Binary file of software consists of a sequence of bytes belonging to
the discrete space X = {0, ..., 255}. Let b = (b1, ..., bn) ∈ Xn

denote a binary, where n is the length of byte sequence, varying from
file to file. The binary file b has labels y ∈ {−1, 1}, where y = 1
indicates that it is a benign software bben, otherwise it is a malware
bmal.

The malware detector aims at learning a mapping function f :
x → {−1, 1} which satisfies f(bmal) = −1 and f(xben) = 1. On
the contrary, the goal of the adversarial attacks is to find a model
g and generate an effective adversarial sample badv = g(bmal)
to make the malware detector classify it as benign software, i.e.,
f(badv) = 1. In the meanwhile, badv must preserve the original
function of bmal.

3.2 GAPGAN Framework

Figure 1 shows the overview of the proposed framework GAPGAN.
It contains two stages: training process and attack process. In the
training process, we train the generator network G and the discrim-
inator D concurrently, where G intends to generate adversarial pay-
loads for input malware and concatenate them to craft adversarial
samples, while D tries to distill the target black-box detector f and
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Figure 1: Overview of GAPGAN

imitates the decision of f for both orignial benign samples and the
generated adversarial samples. In the attack process, we only need
the trained generator to attack black-box detector.

For protecting original functionality of malware when crafting its
adversarial sample, there have been some popular methods like us-
ing debug logs and compressing data before runtime, but they are
time-consuming and laborious. Other attacks performed by carefully
choosing and manipulating are sophisticated that may require spe-
cific experience and not applicable for efficient adversarial attacks.
Inspired by previous work ([3] and [14]), we choose to append bytes
(payloads) at the end of file to preserve their functionality, which is
simple and does not require any expert experience.

Since the length of software file n varies greatly, we first ap-
pend zeros (represented as the blue part in Figure 1) to the end of
input binaries to match the input size t of the network as b′ =
(b1, .., bn, 0, ..., 0) ∈ X t, where t ≥ n. In this way, we can feed
every sample with different lengths to a specific network with fixed
size. Then, we map each byte in discrete binaries to a continuous
space [−1, 1] by normalization. We define the normalized input as
x, where x = (x1, ..., xt) ∈ R

t.
After data preprocessing, the normalized malware xmal is fed to

G. Then G generates adversarial payloads aadv (represented as the
red part in Figure 1) based on the corresponding characteristics of
xmal:

aadv = G(xmal) (1)

We append aadv to the end of xmal to craft an adversarial mal-
ware sample xadv:

xadv = [xmal,aadv] (2)

where [·, ·] denotes concatenation operation.
For training D, both xadv and xben are integrated into the data

pool. In each iteration, we sample a batch of mixed examples from
the data pool, then use them to query the black-box detector f . Next,

we use the label responded by f to fitD, making the decision bound-
ary of D as close to f as possible.

During training, the generator G learns to create samples which
can evade the discriminator D. In addition, with the improvement
of the similarity between D and our target model f , the adversarial
attack ability of G to f will improve as well. Finally, the adversarial
samples generated by G can also evade f effectively because of the
transferability of adversarial attacks.

Once the training process is finished, we can use the trained G to
generate adversarial samples in a very short time with only the input
malware. It is worth noticing that we abandon the padding zeros for
reducing the whole length of payloads in the attack process. To our
practical experience, it will make the attack success rate decrease a
little, but the loss is acceptable. In addition, we need to convert the
adversarial samples back to discrete space as executable file.

In order to make our framework adapt to malware binaries and
payloads with different lengths, the generator network is designed to
have variable input and output size. To be more specific, the genera-
tor first extracts features of inputs with two convolution layers. Then,
it resizes the high-level features with fully-connected layers. After
two layers of deconvolution and one layer of 1 ∗ 1 convolution, the
adversarial payloads are generated. On the other hand, the discrim-
inator performs binary classification with convolutional layers and
fully-connected layers. Notice that if the size of the input data and
the length of payloads that we decide to generate are determined,
we can use them as input to easily tune the structure of GAPGAN
because of the fully-connected layers in both the generator and the
discriminator.

3.3 Black-box Attacks Strategy

Generator. The generator G aims at learning the characteristics of
xmal whose original label is y = −1, and generate corresponding
effective sample xadv , which can misleadD to predict it as "benign"
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whose label is y = 1. In our practical experience, G often pays more
attention to D’s prediction result of the xadv which brings a serious
problem, i.e., the effectiveness of adversarial payloads aadv cannot
be improved well. Therefore, we make G consider both the global and
the local (i.e., xadv and aadv) effectiveness of xadv . The adversarial
loss function of the generator G is:

LG = −(1− β)Ex∼pxadv
(D(x))− βEa∼paadv

(D(a)) (3)

where β is a hyperparameter that keeps a balance of the generator’s
attention between xadv and aadv . We try to find the best value of β,
however, a fixed β can not always perform the best, because the con-
ditions of networks are different every time the attack program runs.
Therefore, the best β should have the ability of adaptive adjustment.
Inspired by [18], we consider automatically tuning β based on the
outputs of D to xadv and aadv , which represent the attack effective-
ness of them respectively. We give the automatic tuning mechanism:

β =
exp(Ex∼pxadv

(D(x)))
exp(Ex∼pxadv

(D(x))) + exp(Ea∼paadv
(D(a))) (4)

If xadv is more effective than aadv , then the expectation of the output
ofD to xadv is larger. The automatic tuning mechanism will increase
β to improve the learning rate of aadv indirectly. We will show its
efficacy in our experiments.

Discriminator. We use the discriminator D to dynamically distill
the target black-box model f . To be more specifically, we sample a
batch of mixed data from the data pool, get labels by querying f . The
samples and their corresponding labels are used for fitting D based
on the distance metricH. The distillation loss of D is:

LD = Ex∼xadvH(D(x), f(x)) + Ex∼xbenH(D(x), f(x)) (5)

D tries to learn the decision strategies of f on xben and xadv . In
this way,D is treated as a substitute detector, which is used for trans-
ferring the attack effectiveness of adversarial samples to the ultimate
target black-box model f .

Dynamic threshold strategy. In the attack process, we will gen-
erate adversarial samples and save them locally. However, we find
that subtle perturbations will be ignored when we map the adversar-
ial samples from adversarial continuous space back to the discrete
space of binaries. A large part of payloads containing attack effec-
tiveness will be ignored because of their small values. To solve this
problem, we propose to use a dynamic threshold strategy to limit the
minimum value of payloads:

e =

{
e, if |e| > ε ∗ i

Tmax

0, else
(6)

where e represents each byte in payloads, i is the current training iter-
ation time, Tmax is the maximum training iteration time, and ε is the
maximum threshold value. We directly set the bytes with small val-
ues as zeros below the threshold. However, if we use a static thresh-
old, the learning process of G will get lost, leading to terrible ad-
versarial attack results (see experimental results in section 5). It is
because most of the bytes generated by G which is just after ini-
tialization are very small, they will be set as zeros in the beginning.
Hence we use ε ∗ i

Tmax
to dynamically increase the threshold, in

this way, G can gradually adjust its attack strategy to the constraints.
More concretely, if a byte with small value but certain attack effec-
tiveness, it will first be set to zero with the threshold. Then G will
continue to add the perturbations to the byte or other adjacent byte
for improving the adversarial attack effectiveness in this area. Finally,

Algorithm 1 Black-box Attacks to Malware Detection
Input: Training set S = {(x0, y0), ..., (xk−1, yk−1)}, generator
G(x;θG0), discriminator D(x;θD0), target black-box model f ,
max training iteration Tmax, maximum threshold ε, weight β

Output: A well-trained Generator G(x;θG)
for i = 0→ Tmax − 1 do

Sample m examples from S and get training set for D, Sd =
{(xd0 , yd0), ..., (xdm−1 , ydm−1)}

for xdi in Sd do

Query f and get f(xdi)
end for

Use Sd to update θD with ∇θD (Ex∼xmalH(D(x), f(x)) +
Ex∼xbenH(D(x), f(x)))

Sample m examples (yadvi = −1) from S and get training set
for G, Sadv = {(xadv0 , yadv0), ..., (xadvm−1 , yadvm−1)}

for (xadvi , yadvi) in Sadv do

Generate adversarial payloads aadvi = G(xadvi)
for e in aadvi do

if |e| < ε ∗ i
Tmax

then

e← 0
end if

end for

xadvi ← [xadvi ,aadvi ]
end for

Calculate β =
exp(Ex∼pxadv

(D(x)))

exp(Ex∼pxadv
(D(x)))+exp(Ea∼paadv

(D(a)))

Use Sadv to update θG with∇θG−(1−β)Ex∼pxadv
(D(x))−

βEa∼paadv
(D(a))

end for

return θG

Table 1: Malware and benign software data are collected from different
sources and split into four datasets according to their length distributions.

Datasets Class Number Max Mean Source

1 Malware 3,436 93,986 51,715 VirusTotal
Benign 3,436 98,304 41,651 Chocolatey

2 Malware 5,000 195,584 80,707 VirusTotal
Benign 5,000 196,608 98,072 Chocolatey

3 Malware 10,000 394,128 126,276 VirusTotal
Benign 10,000 393,640 128,808 Chocolatey

4 Malware 3,000 196,189 117,812 Kaggle 2015
Benign 3,000 195,320 92,526 Chocolatey

the byte or other adjacent byte will be modified to fill the adversarial
attack loss of the byte which is set to zero. It is worth noting that all
the adjustment process will perform automatically with the gradient
descent algorithm after we set ε.

On the basis of the above work, the overall algorithm of black-box
attacks to malware detection is shown in Algorithm 1. In Section 5,
we will show the details of our attack experiments.

4 EXPERIMENTAL SETUP

This section introduce the preparation of our attack experiments, in-
cluding datasets, evaluation metrics, and the target models which we
choose and train.

4.1 Datasets and Evaluation Metrics

Malware and benign software data are collected from different
sources for our adversarial attack experiments, as shown in Table
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Table 2: The detection accuracies of MalConv and other deep learning mod-
els used as target black-box models. A: CNN-based model; B: CNN-LSTM-
based model; C: CNN-GRU-based model; D: Parallel-CNN-based model.

Datasets MalConv A B C D
1 96.40% - - - -
2 96.42% 94.94% 95.99% 95.30% 94.70%
3 97.22% - - - -
4 95.55% 95.02% 95.27% 95.24% 95.30%

1. The malware samples are downloaded from VirusTotal4 and Mi-
crosoft Malware Classification Challenge (Kaggle 2015) [22]. The
benign software samples are downloaded by Chocolatey Software5,
a package manager for Windows. The data are split into four datasets
to make the binaries length distributions of malware close to benign
software in each dataset. Dataset 1, 2, and 3 with different maximum
and mean length are used for exploring the impact of binaries length
on attacks. Dataset 2 and 4 with different sources but close length
distributions are used for evaluating the generalization of attack al-
gorithms.

We randomly split each dataset into two parts, one (70%) is for
training the black-box model, the other (30%) is for adversarial at-
tacks. In this way, the data used for training black-box model and for
adversarial attacks are disjoint.

To evaluate the performance of adversarial attack methods, we
choose the attack success rate (ASR) metric:

ASR =

∑n
i=1 I(f(xmali) = −1 ∧ f(xadvi) = 1)∑n

j=1 I(f(xmalj ) = −1)
(7)

where I is indicator function, it equals to 1 if the expression is true,
or 0 otherwise. ASR represents the rate of malware samples that are
detected by the black-box model but evade successfully after being
crafted to be adversarial samples.

4.2 Target Black-box Models

We choose the state-of-the-art malware detector MalConv [21] as our
primary target black-box model. MalConv first embeds each byte in
input binaries to 8-dimensional vector, then uses two convolution lay-
ers with different activation functions for classification. We train a
MalConv detector with input size 2,000,000 for each dataset. Table
2 shows the test accuracy of each MalConv detector after training. It
demonstrates that the trained MalConv detectors have similar perfor-
mance with that in [21].

In order to test the generalization of the adversarial attack meth-
ods, we also use four deep learning models with different structures
as target models. For reducing the large dimensions of input binaries,
we consider adding CNN structures to each deep learning model.
Each byte in input binaries are embedded to 8-dimensional vector in
the same way as MalConv. We train these four models on dataset 2
and 4, the detection accuracies are shown in Table 2. It shows that
the four detectors also reach good classification accuracy.

5 EXPERIMENTAL RESULTS

In this section, we show the effectiveness of GAPGAN in adversarial
attack experiments. We also compare it with other state-of-the-art
attack methods under different defenses.

4 http://www.virustotal.com
5 https://chocolatey.org/

Table 3: Attack success rate (ASR) of the adversarial samples generated by
GAPGAN against MalConv models on different datasets. Payloads rate rep-
resents the rate of the length of payloads to that of binaries for detection.

Payloads Rate Dataset 1 Dataset 2 Dataset 3 Dataset 4
1% 64.66% 6.28% 2.15% 4.13%

2.5% 100.00% 36.10% 18.14% 30.99%
5% 100.00% 77.78% 43.27% 53.49%
10% 100.00% 98.21% 72.89% 76.88%
20% 100.00% 100.00% 88.95% 87.41%
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Figure 2: Comparison of ASR of adversarial samples generated by GAPGAN
and generated randomly against MalConv detectors on different datasets with
different payloads rates.

5.1 Black-box Attacks with GAPGAN

We first apply GAPGAN to attack the four trained MalConv detectors
(we have shown them in the previous section) with different lengths
of adversarial payloads. Payloads rate is used for representing the
rate of the length of payloads to that of binaries for detection. Ac-
cording to the performance of attacks on different datasets shown
in Table 3, it shows that GAPGAN can perform effective black-box
attacks against MalConv models. As can be seen from the results
on dataset 2 and dataset 4, the adversarial samples have a high at-
tack success rate on different data. Besides, the adversarial binaries
whose original length is shorter may have better attack effectiveness,
because of the increasement of the payloads rate. It is worth men-
tioning that the ASR of adversarial samples generated from dataset 1
can reach 100% with only a small proportion of payloads, i.e., 2.5%
of the total length of the data for detection.

We find that when ASR has already reached high value, using
larger payloads may just improve little attack success rate (e.g., ASR
is 98.21% when appending payloads with a rate of 10%, but it just
improve 1.79% when appending the payloads with twice the length).
However, the risk of being detected and the cost will increase with
the increasement of payloads’ length. Meanwhile, in order to prove
the effectiveness of adversarial payloads generated by GAPGAN, we
compare it with random payloads as shown in Figure 2. We see that
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Table 4: Comparison of the state-of-the-art adversarial attack methods in the
malware detection task. Run time is the time for generating an adversarial
samples in attack process, which is evaluated by generating 3000 adversarial
samples with each method.

Adversarial attack methods
Opt. [14] AdvSeq [23] MalGAN [11] GAPGAN

Black-box � � �
Run time >2h - 0.02s 0.02s

Attack level Bytes API calls API calls Bytes

Table 5: Comparison of the attack performance of Random, Opt. and GAP-
GAN against different detectors on dataset 2 and 4. Random: random pay-
loads. The payloads rates are 10% in these experiments.

Detector Dataset 2 Dataset 4
Random Opt. GAPGAN Random Opt. GAPGAN

MalConv 60.21% 99.87% 98.21% 57.52% 68.34% 76.88%

A 57.84% 90.41% 76.04% 17.10% 85.09% 51.31%
B 44.04% 93.32% 99.35% 46.50% 77.24% 68.67%
C 64.25% 92.74% 84.40% 55.72% 78.17% 64.96%
D 70.47% 97.23% 99.93% 9.03% 74.49% 87.80%

adversarial samples with payloads generated by GAPGAN have far
better attack effectiveness compared with payloads generated ran-
domly. It can also be seen that ASR of random payloads is pro-
portional to the payload rates, while adversarial payloads increase
rapidly with the increasement of the payloads rates and the growth
rate of ASR slows down when it reaches high value. We consider that
there exists optimum payload rates for each dataset, i.e., the growth
rate of ASR will decline fast when appending larger payloads.

5.2 Comparison with State-of-the-art Attack
Methods

We compare GAPGAN with other state-of-the-art adversarial attack
methods in malware detection task, i.e., Opt. method based on gra-
dient optimization [14], AdvSeq method based on sequences of API
calls [23], and MalGAN method based on API calls and GANs [11].
The results of them is shown in Table 4. It can be seen that only Opt.
method performs attacks in the white-box setting. From the perspec-
tive of attack efficiency, once the attack models are trained, GAP-
GAN and MalGAN generate adversarial samples far faster than other
methods (AdvSeq is also based on sophisticated optimization pro-
cesses, which is supposed not efficient). However, only GAPGAN
performs efficient black-box attacks at the byte-level, which is more
threatening in real-world scenarios.

In order to further explore the effectiveness of attack approaches
against binaries based detection, we choose to compare GAPGAN
with Opt. method, i.e., the byte-level attack methods. The adversar-
ial samples with random payloads are chosen for comparison. It can
be seen from Table 5, both of the two attack methods have good
attack performance against different detectors. However, GAPGAN
performs efficient black-box attacks which is considered crucial for
adversarial attacks in application.

5.3 Attack Performance Under Different Defense
Methods

A lot of defense methods have been proposed to defend various of at-
tacks. The most popular way to make the model robust to adversarial
samples is adversarial training [7], which introduces adversarial per-
turbations in the training process to make the deep learning models

Table 6: Comparison of the attack performance of Random, Opt. and GAP-
GAN to different detectors under defenses. RND: random nullification data
defense method; Adv.: adversarial training defense method. The payloads
rates are 10% in these experiments.

Defense Detector Dataset 2 Datast 4
Random Opt. GAPGAN Random Opt. GAPGAN

RND

Malconv 24.64% 51.23% 63.69% 49.59% 41.25% 75.73%

A 20.67% 57.84% 45.00% 0.76% 37.14% 23.64%
B 0.00% 62.29% 87.47% 5.79% 37.82% 41.07%

C 7.65% 39.47% 34.57% 22.91% 29.74% 39.22%

D 9.52% 43.58% 92.35% 3.06% 54.41% 71.09%

Adv.

Malconv 23.87% 29.78% 57.04% 13.10% 22.17% 30.46 %

A 0.00% 15.14% 23.72% 0.00% 7.72% 9.49%

B 0.00% 27.17% 39.17% 0.00% 9.38% 15.82%

C 1.04% 19.77% 24.18% 4.99% 13.47% 18.13%

D 0.00% 31.65% 41.73% 0.00% 17.97% 27.60%

Table 7: Attack success rate of adversarial samples generated by GAPGAN
with different ε and β. ε is set to 0.06. β is set to 0.5 in the static case. W:
without using the method; S: using static parameter; D: using dynamic pa-
rameter.

β ε Dataset 1 Dataset 2 Dataset 3 Dataset 4
W W 70.94% 70.97% 22.94% 58.47%
W D 100.00% 94.09% 61.38% 72.12%
D W 83.12% 87.95% 46.44% 74.56%
S D 100.00% 96.06% 69.38% 75.33%
D S 8.74% 6.49% 1.38% 7.98%
D D 100.00% 98.21% 72.89% 76.88%

tune the decision strategies. Another efficient defense method [26]
randomly nullifies the input data to eliminate the attack effective-
ness of adversarial samples. We compare the attack effectiveness of
random payloads with that of adversarial samples generated by GAP-
GAN and Opt. under these defenses.

For simulating real-world scenarios, we assume that the attacker
does not know any information on the defenses. In the experiments of
RND defense methods, we randomly nullify 10% of input data and
test the attack success rate of adversarial samples. Since the struc-
tures of the detectors contain an embedding layer, the gradient can-
not be transferred in the adversarial training defense method. There-
fore, we propose to use substitute models that are used for distilling
the detectors to generate training data with adversarial perturbations.
The new training data are used for improving the robustness of the
detectors. The adversarial samples generated with the previous detec-
tors will be evaluated on the retrained detectors. Table 6 shows the
results of attacks under defenses. We show that in most cases, the at-
tack performance of GAPGAN outperforms Opt. method, especially
under the defense of adversarial training. A possible explanation is
that Opt. method overly relies on the structures and gradient informa-
tion of the target models. In addition, a byte in payloads is generated
by the gradients of the current adversarial sample by Opt. method.
The attack effectiveness is greatly damaged when the connections
between bytes are cut off, i.e., in the random nullification process of
RND defense. By comparison, GAPGAN considers the attack abil-
ity of the whole adversarial samples, making it more effective under
defenses.

5.4 Effectiveness of Dynamic Threshold and
Automatic Weight Tuning

As we explained in Section 3, we put forward a dynamic threshold
strategy to limit the minimum value of payloads and an automatic
weight tuning mechanism to balance the attention of the generator to
both the payloads and the adversarial samples. We perform ablation
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studies to verify the effectiveness of these strategies with different
parameters, i.e., without, static and dynamic, as shown in Table 7.
It shows that our dynamic threshold and automatic weight tuning
strategies significantly improve the effectiveness of adversarial sam-
ples. However, if we set the static threshold, then most of the bytes
generated by the generator will directly be set as zeros at the be-
ginning of the experiments. It makes the generator lose the correct
direction of attacks, leading to poor results.

6 CONCLUSION

In this paper, we propose an adversarial attack framework GAPGAN
to generate adversarial samples against binaries based malware de-
tection via GANs. In our model, we append adversarial payloads
generated by the generator to the original malware binaries to craft an
adversarial sample without damaging its original functionality. The
experiments show that GAPGAN can effectively attack the state-of-
the-art detector MalConv as well as other deep learning models with
different structures. The results also show that our model outper-
forms other state-of-the-art attack approaches under current defenses
in efficiency and effectiveness.

GAPGAN is the first practical end-to-end black-box attack frame-
work against malware detection, posing a threat to the next genera-
tion of popular detection technology, i.e., raw binaries based malware
detection. While our work focuses on malware binaries, it can easily
be extended to other fields, such as adversarial text or graph gener-
ation. This makes GAPGAN a promising attack framework for im-
proving the robustness of the defense methods of malware detection
or other tasks that it can be used for.
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