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Abstract. The unification of low-level perception and high-level
reasoning is a long-standing problem in artificial intelligence, which
has the potential to not only bring the areas of logic and learning
closer together but also demonstrate how abstract concepts might
emerge from sensory data. Precisely because deep learning methods
dominate perception-based learning, including vision, speech, and
linguistic grammar, there is fast-growing literature on how to inte-
grate symbolic reasoning and deep learning. Broadly, efforts seem to
fall into three camps: those focused on defining a logic whose for-
mulas capture deep learning, ones that integrate symbolic constraints
in deep learning, and others that allow neural computations and sym-
bolic reasoning to co-exist separately, to enjoy the strengths of both
worlds. In this paper, we identify another dimension to this inquiry:
what do the hidden layers really capture, and how can we reason
about that logically? In particular, we consider variational autoen-
coders that are widely used for dimensionality reduction and inject
a symbolic generative framework onto the feature layer. This allows
us, among other things, to generate example images for a class to
get a sense of what was learned. Moreover, the modular structure of
the proposed model makes it possible to learn relations over multi-
ple images at a time, as well as handle noisy labels. Our empirical
evaluations show the promise of this inquiry.

1 INTRODUCTION

The unification of low-level perception and high-level reasoning is
a long-standing problem in artificial intelligence, which has the po-
tential to not only bring the areas of logic and learning closer to-
gether but also demonstrate how abstract concepts might emerge
from sensory data. Precisely because deep learning methods dom-
inate perception-based learning, including vision, speech, and lin-
guistic grammar, there is fast-growing literature on how to inte-
grate symbolic reasoning and deep learning. Efforts have ranged
from providing a truth-theory to deep learning [31, 9], neural ar-
chitectures that enable differential computation for symbolic con-
straints [36, 2, 29, 30], and embeddings for graph and relational
data [37, 21, 24, 7]. Approaches such as DeepProbLog [23], on the
other hand, treat deep learning as an external computation and inte-
grate its predictions as an external predicate in a probabilistic logic
programming framework. Broadly, efforts seem to fall into three
camps: those focused on semantic characterizations (i.e., define a
logic whose formulas capture deep learning), constrained learning
(i.e., integrate symbolic constraints in deep learning), and hybrid
methods (allow neural computations and symbolic reasoning to co-
exist separately, to enjoy the strengths of both worlds).
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In this paper, we identify another dimension to this inquiry:
what do the hidden layers really capture, and how can we rea-
son about that logically? In particular, we consider autoencoders
(AEs) [12, 15, 27]. As a variant of neural networks, AE frameworks
are perhaps the most popular for dimensionality reduction, but its in-
ner workings are entirely opaque and mysterious. Basically, given an
encoder e, one first applies it to input data x to obtain a feature layer
(FL) and then attempts to recover x from FL using a decoder d. Con-
straints on FL can lead to massive reductions on the dimensionality
and identify salient features for applications such as anomaly detec-
tion. (See, for example, [7] that is a purely logical approach inspired
by autoencoding principles.) Thus, we ask the question: can we in-
ject a logical language onto the FL to perform Boolean reasoning
over the FL’s variables?

The exact choice of the language would depend on what we in-
tend to do with the logic. A purely discrete representation such as
propositional logic may not be very interesting or insightful about
what the FL really captures, especially in cases where there may be
probabilities assigned to image labels. In that regard, there has been
an interesting development in knowledge representation over the last
few years. As a special case of probabilistic logical models [6, 11]
tractable probabilistic models have emerged as an extension to data
structures such as binary decision diagrams (BDDs). In particular
probabilistic sentential decision diagram (PSDDs) [16], for example,
are a complete and canonical representation of a probabilistic dis-
tribution defined over the models of a propositional theory. By im-
posing certain properties on the propositional representation, such as
decomposability and determinism, probabilistic queries can be an-
swered in polynomial time in the size of the data structure by way
of model counting. Its parameters can be learned efficiently from
data, which allows us to view the representation through a genera-
tive lens over a logical base. We discuss below how these features
are put to use, but more generally, we see the work as a step in re-
purposing deep learning in logical space to contributing to the emer-
gence of high-level reasoning from a low-level system. Our contri-
butions are orthogonal in many regards to the existing literature on
neuro-symbolic systems and thus we imagine there would be space
for looking at other kinds of integration with the existing literature.

Interestingly, we take note of multiple approaches for visually in-
specting and interpreting NNs in the literature [33, 38], with a special
focus on understanding convolutions of deep networks after train-
ing [32, 39]. While many of these methods yield various analysis
of what happens in a given NN, including saliency maps [32], they
differ in thrust significantly from our contributions. For example, op-
timization methods are usually used to infer and decode regions of
interest in a specific layer of a pre-trained network. In contrast to this,
our logical approach uses a symbolic framework to make sense of the
NN over a generative model. As such we do not infer the meaning
of individual variables, although it is possible to visualize them, but
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rather compute conditional probabilities over those variables.
It should also be noted that recent circuit models attempt to tackle

vision problems too (e.g., [26, 10, 20]), and so it is possible to realize
the entire image classification pipeline using these tractable proba-
bilistic models (however usually as a discriminative model). We think
this is a very exciting development. What our work attempts to do,
however, is to inspect state-of-the-art deep learning architectures (es-
pecially models like AEs that are very powerful for dimensionality
reduction) via such symbolic generative models, in case such archi-
tectures are already in place, or are tackling problems still to be ad-
dressed using a pure circuit scheme. In that regard, as mentioned, our
work is to be seen as attempting to re-purpose the latent space in a
logical manner.

Our approach offers the following capabilities. We learn a PSDD
over a discretized FL, which yields a joint distribution over the indi-
vidual variables, including image labels, of the FL. This allows us,
among other things, to visualize these individual variables by con-
ditional sampling. In particular, this enables us to generate example
images for a class to get a sense of what was learned. Moreover,
the modular structure of the proposed model makes it possible to
learn relations over multiple images at a time. Finally, because of the
logical structure that we impose, noisy labels can also be handled.
We also discuss how we can evaluate the learned representation over
well-known datasets, and also discuss both reconstructability (i.e.,
generative capabilities) and classification accuracy.

At the outset, from an engineering (as opposed to mathematical)
viewpoint, it should be noted that, at this point, since circuit soft-
ware packages have not enjoyed the same amount of maturity as
deep learning packages, the reported accuracy is not as competitive
as state-of-the-art systems. Nonetheless, although this reported accu-
racy is lower, the model has considerably more functionality, includ-
ing the ability to sample prototypical images for each of the learned
classes, ultimately aiding us in understanding what has been learned
by the model (i.e., visually showing us what the model thinks a given
class represents).

2 PRELIMINARIES

2.1 Probabilistic Sentential Decision Diagrams

Sentential decision diagrams (SDDs) were first introduced in [5]
and are tractable representations of propositional knowledge bases.
SDDs are shown to be a strict subset of deterministic decomposable
negation normal form (d-DNNF), a popular representation for prob-
abilistic reasoning applications [3] due to their desirable properties.
Decomposability and determinism especially ensure tractable prob-
abilistic inference. PSDDs extend SDDs with probabilities, and are
a complete and canonical representation of joint probability distribu-
tions [16].

Intuitively, PSDDs are parametrized directed acyclic graphs
(DAGs), as seen in Figure 1. Here, each terminal node represents
a univariate (Bernoulli) distribution over a binary variable (e.g. Bj)
with a probability θ represented by the tuple (θj : Bj). Within the
tree, each node is either an AND or an OR node. An AND node has
two inputs termed prime p for the left one and sub s for the right one.
The OR node can have an arbitrary number of inputs, where each
of the n input wires is annotated by a probability θ1, ..., θn together
making up a normalised distribution over the variables represented
by the corresponding vtree. Moreover, OR and AND gates always
alternate, such that a given OR node can also be represented as a set
of AND nodes or decisions: {(p1, s1, θ1), ...., (pn, sn, θn)}.

In order to retain the desirable properties of SDDs for inference
(tractability) and canonicity, similar syntactic restrictions hold here
as well. Firstly, each of the AND gates has to be decomposable,
meaning that the vtree nodes represented by prime and sub share
no variables. In other words, the prime and sub have to represent
probability distributions over disjoint sets of variables. Analogously,
determinism demands that for each possible world (or assignment),
there can be at most one prime that assigns a non-zero probability to
it (the specific world).

In [19, 1], a learning regime is proposed that is capable of learn-
ing a PSDD, called learnPSDD, as well as the underlying SDD and
vtree [25] directly from data in an unsupervised manner. It works
by iteratively updating and improving the structure of the PSDD to
better fit the data. It does so by applying specified clone and split op-
erations to a PSDD r at each step. Learning is then carried out until
a time limit is reached or a pre-defined score converges on the vali-
dation data (if present, otherwise training data). This score is based
on the log-likelikhood of the model given the data, but takes the size
of the tree into account as well. The log-likelihood of PSDD r given
data D is then a sum of log-likelihood contributions per node:

lnL(r|D) = lnPrr(D) =
∑
q∈r

∑
i∈q

lnθq,iD#(γq, [pq,i]) (1)

where #(γq, [pq,i]) is the number of examples that satisfy the node
context of q and the base of a prime q, that is, pq,i. Additionally,
[19] also proposed an algorithm for learning ensembles of PSDDs
(EM-LearnPSDD) which is built on the learnPSDD algorithm and
the soft structural EM algorithm from [8]. This algorithm consists
of two nested learners, where the outer EM is learning the structure
and the inner EM is learning the parameters. This is the algorithm we
predominantly use in our experiments.

Figure 1: A Bayesian network and its equivalent PSDD [19].

2.2 Neural Networks & Autoencoders

An AE is a specific instance of an artificial neural network (NN) that
is intended to reproduce the given input as an output [12]. It consists
of two parts: the encoder e and decoder d. Internally, it has a hid-
den layer referred to as the feature layer (FL) such that FL = e(x)
for some input data x and xrec = d(FL) where xrec is the recon-
structed input, FL ∈ R

dim, and dim is the dimensionality of the FL.
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Restrictions are usually imposed on the structure of the network such
as reduced dimentionality in the FL or added noise on the input. By
reducing the dimension of the FL relative to the dimension of the in-
put x, the network is intended to learn the most valuable features for
reconstructing the original image. The learning procedure then con-
stitutes learning the encoder and decoder function simultaneously by
minimising the reconstruction loss (e.g., mean squared error) penal-
ising d(e(x)) for being dissimilar to x.

The variational autoencoder (VAE) [15, 27] is a variant of AE
that builds on the stochastic generalisation of the classical AE archi-
tecture, where instead of a deterministic function, e and d are stochas-
tic mappings pe(FL|x) and pd(x|FL). Thus, we can also view e and
d as conditional probability distributions. Utilising this probabilis-
tic interpretation, the VAE framework defines a distribution q(FL|x)
(e.g the Gaussian distribution) such that FL samples can be drawn
from that distribution. Then we can use the Kullback-Leibler diver-
gence (DKL) to enforce the encoder network to be as similar as pos-
sible to our chosen distribution q(FL|x) while at the same time max-
imizing the log p(x) prior which is achieved by updating the weights
based on the gradient of [12]:

log p(x|FL)−DKL(q(FL|x)‖p(FL)) (2)

The reparameterization trick [15] then allows us to enable stochas-
tic gradient descent by reformulating the task using stochastic input
layers.

Finally, we leverage the Gumbel-Max trick [13, 22] which yields
the Gumbel-Softmax Distribution that is defined as a continuous dis-
tribution over the simplex that can approximate samples from a cat-
egorical distribution [14].

3 METHODOLOGY & EVALUATION METRICS

In this section, we propose a novel model for representing and learn-
ing a symbolic generative model from a neural network that is trained
over unstructured data D. This is possible by means of the interme-
diate FL, defined over n discrete variables. The model is to be con-
sidered as generative but over a set of domains, meaning that we
can perform conditional sampling for a given domain with respect
to other domains. Domains, written as DA, DB , DC , . . . , represent
disjoint subsets of D. For example, suppose we are given an image
dataset such as MNIST. Here, the images are denoted by domain DA

(say, DA ⊂ R
28×28
[0,1,...,255]) and the corresponding labels by domain

DY (say, DY ⊂ N) such that DA � DY = D. The model is then
able to approximate the distributions p(DA, DY ) and moreover, can
sample from p(DA | DY ) and p(DY | DA).

3.1 Architecture

We now discuss the formal and architectural components of our
model.

Definition 1 : (Feature layer) The FL is a finite set of discrete
(typically, Boolean) variables (represented as Ci with instantiation
ci ∈ ΔCi ⊂ N); that is, FL = {C0, C1, ..., Cl} for some l ≥ 0.
Furthermore, FLi = Ci represents the ith variable of the FL.

Intuitively, FL represents an encoded discretized version of the
original data D. If the data is split into different domains (disjoint
sets, as explained above) D = DA � . . . � DY , then the FL can
also be split into disjoint domains: FL = FLA � . . . � FLY . The
size of FL is then the number of variables |FL| = l and note that,

|FL| = |FLA| + . . . + |FLY |. Further, for a given domain FLX , we
use dom(FLX) > 0 to denote the number of possible values that the
discrete variables can take.

The reason we define the FL in such a general manner with dis-
crete variables although PSDDs only handle binary variables, is to
keep the formulation separate from the implementation. This will al-
lows us to appeal to different high-level models (e.g., SPNs, proba-
bilistic relational models) in the future with the same formulation.

3.1.1 Encoders and Decoder Specification

For a given domain DX ∈ {DA, DB , DC , ..}, we have an encoder
eX and a decoder dX such that FLX = eX(DX) and dX(FLX) =
dX(eX(DX)) ⊂ DX . This is like the usual AE setup, where we
map from the input domain (e.g. DX ) to an intermediate discrete
representation (e.g. FLX ) using the encoder and then map back to
the original domain using the decoder. This formulation also works
for stochastic encoder/decoder networks with pe(FLX | DX) and
pd(D

X | FLX) utilising the Gumbel-Softmax distribution.
Essentially, encoders and decoders are functions tasked with map-

ping the inputs data to the discrete FL representation with respect to
the domain. While some encoder-decoder pairs may be learned from
data, others can be defined deterministically or are simply the identity
mapping. Revisiting the MNIST dataset, for example, here we may
define domain DA to be the images (e.g. a ∈ DA ⊂ R

28 x 28
[0,1,..,255]) and

domain DY to represent the corresponding labels (e.g. y ∈ DY =
{0, 1, .., 9}). In particular, the encoder and decoder for domain DA

(eA, dA) are deep convolutional neural networks mapping a given
image to a discrete FL. As for domain DY , the encoder/decoder is
simply the identity mapping.

The learning of these functions (if applicable) is done in an
unsupervised manner using VAEs in our setup and is referred to
as learning phase I throughout this article. A visualization of the
pipeline can be seen in Figure 2.

3.1.2 Optional binarization of FL

For the sake of generality, we defined the FL as a set or vector of
discrete variables. However PSDDs are essentially Boolean and so
we need to provide a binary encoding for the data. This has been
explored in two possible ways: using a one-hot encoding or a map-
ping to binary. Considering, for example, fli = ci ∈ {0, 1, 2, 3},
a discrete variable (Ci) that can take one of four values. Then
ci = 1 �→one hot [0100], whereas ci = 1 �→binary code [01]. Analo-
gously ci = 3 �→one hot [0001], whereas ci = 1 �→binary code [11]. In
our work we mostly explored the binary encoding which is consis-
tent with the underlying language being propositional. Since this is
binary conversion is essential for the technical treatment, we will not
refer to this conversion in the sequel.

3.1.3 The Logical Interpretation

The (logical) generative model represents the dependencies between
the individual variables of the FL; in other words, it represents
the joint probability distribution over the variables of the FL, i.e.,
Pr(FL). In this paper, we chose to use PSDDs [16] though other
models such as sum product networks (SPNs) [26] could have been
used as well. This choice was based on the reported ability of PSDDs
to handle constraints in the learning regime. These could be one-of
label constraints or any other kind of Boolean function over the in-
puts.
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3.1.4 Learning

The learning of the system is done in two phases (see Figure 2).
Learning phase I denotes the learning of the encoder-decoder func-
tion pairs for each domain (independently and unsupervised). Once
learning phase I is completed we can use the encoders to map the
data to the FL representation and learn the logical generative model
(learning phase II), that is, the PSDD. This is done in an unsupervised
manner by iteratively approximating the joint probability distribution
over the data. Essentially, the variables of the FL are the propositions
of the PSDD.

Figure 2: The two phases of the proposed learning system w.r.t. the
MNIST example

3.2 Querying

Due to the generative property of PSDDs, we are able to perform
any query of the form: Pr(q|v) = Pr(q∧v)

Pr(v)
where q is the query

and v is the evidence, both Boolean functions over the variables of
the FL (e.g. q = {c32}, v = {c0, c1, .., c31}). Specifically, in the
MNIST example, such queries would take the form: Pr(eX(q) |
eY (v)) where X and Y correspond to two domains of the data
(DX , DY ⊂ D, q ∈ DX ⊂ R

28 x 28
[0,1,..,255] and v ∈ DY = {0, 1, .., 9}

). Furthermore, by Theorem 7 of [16] such probabilities can be com-
puted in one pass through the tree and thus in polynomial time w.r.t.
the size of the graph. (Thus, these are referred to as tractable models
in the literature.)

3.2.1 Generative Query

Given evidence v, we define the task of a generative query as one
that samples values for all variables in the FL which are not assigned
in the evidence. That is, fl = generativeQuery(Γ, v), which is
discussed in Algorithm 1 and is equivalent to fl ∼ Pr(FL | v). Here
Γ represents the high-level model, the learned PSDD in out case.

As mentioned before the resulting assignments of variables re-
turned from the algorithm can then be decoded using the decoder
d.

3.3 Evaluation

In order to evaluate our model on image datasets, we focus on two
main aspects. First, classification accuracy and secondly, the recov-
erability of the trained model in terms of how it interprets a given
domain, explained below.

Algorithm 1 generativeQuery(PSDD Γ, evidence v, categorical di-
mension k)

1: assigned ← variables appearing in(v)
2: not assigned ← variables appearing in(Γ)− assigned
3: generated ← dict()
4: while not empty(not assigned) do

5: var ← pop random(not assigned)
6: dist ← zeros(dim = k)
7: for j ∈ range(k) do

8: distj ← PrΓ(var=onehot(j)|v)
PrΓ(v)

9: end for

{Sample from the categorical distribution}
10: inst ← sample(dist)

{Add sampled assignment to v}
11: v ← (v ∧ (var = inst))

{Add sampled assignment to output dictionary}
12: generated[var] ← inst
13: end while

14: return generated

Classification accuracy is used as a quantifiable score that is easily
comparable to other learning systems. We train the model on multiple
image datasets before asking the model to classify unseen images
(a ∈ DA) into one of the possible categories (y ∈ DY ) using a
maximum likelihood formulation. That is, we compute the label of
an image by:

y = argmax
yi∈ΔY

Pr(eY (yi) | eA(a))

However we could also obtain the label by sampling (here ′ denotes
a sample drawn from a distribution):

y′ = dY (gernerativeQuery(Γ, eA(a))) (3)

eY (y′) ∼ Pr(FLY | eA(a)) (4)

y′ = dY (fl′Y ∼ Pr(FLY | [fl′A ∼ pe(FLA | a)])) (5)

We investigate the interpretability of the model by manually in-
specting samples drawn from the distribution for some evidence. For
the MNIST dataset, for example, we sample images for each cate-
gory or class and check if the images correspond to the class. Such
samples will be computed as follows (where a ∈ DA denotes the
images as before, and y ∈ DY are the class labels):

a′ = dA(generativeQuery(Γ, eY (y)) (6)

eA(a′) ∼ Pr(FLA | eY (y)) (7)

a′ ∼ pd(D
A | [fl′a ∼ Pr(FLA | eY (y))]) (8)

Finally, we analyse the variables of the FL. This sheds some light
on the inner workings of the model, and gives us an insight into what
the individual variables capture. Basically, we approximate the ex-
pectation of decoded FL samples where, in a binary setting, samples
would be drawn conditional on a specific variable being true or false:

diffFLi
= Efl′∼p(FL|fli)d

A(fl′)− Efl′∼p(FL|¬fli)d
A(fl′) (9)

This is approximated by N samples:

1

N
∗

N∑
fl′∼p(FL|fli)

dA(fl′)∗p(fl′)− 1

N
∗

∑
fl′∼p(FL|¬fli)

dA(fl′)∗p(fl′)
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Here we define the decoded image to be w pixels in width and h
pixels in height. Then each greyscale image a is normalized to be an
element of a ∈ [0, 1]w∗h. What follows is that diffFLi

∈ [−1, 1]w∗h

and as such it has to be normalized accordingly in order to produce
an image:

visualFLi =

[
diffFLi

+ 1

2
,
−diffFLi

+ 1

2

]
(10)

Here, visualFLi is depicted as a tuple of images corresponding to the
variable i being true vs. false and vice versa.

4 EXPERIMENTS

In this section, we investigate the predictive accuracy on unseen data
(via a held out test set) as well as the generative power of the model.
Firstly, we consider the standard classification task. Secondly, we run
experiments where noise is added to the label of each entry; that is,
each training entry has k additional random labels specified (in addi-
tion to the correct one). Thirdly, we explore tasks which consist of at
least two images and possibly a symbolic value. In one such experi-
ment for example, a data point is defined over two images, represent-
ing successive integers and we are then interested in generating one
image given the other (e.g., generate 7 if the first image is 6.). These
are referred to as functional tasks. We conclude with an analysis of
the FL.

4.0.1 Data

In order to get a comprehensive understanding of the capabilities
of the proposed model, we used three different datasets. First, the
MNIST dataset [18] containing 105 (grayscale) images of dimen-
sion 28x28 that represent handwritten digits, along with the corre-
sponding class label. After the first set of experiments on the MNIST
dataset, we used the hyper-parameters for the best performing mod-
els and re-run the experiments on the FASHION dataset [35], which
contains 104 (grayscale) images of fashion items of dimension 28x28
and the corresponding labels belong to one of the 10 categories. Fi-
nally, to investigate the scalability of the model, we used the EM-
NIST (extended-MNIST) [4] dataset, where the images are hand-
written numbers and letters of the English alphabet with the corre-
sponding labels (47 classes in total).

4.0.2 Hardware

Since most experiments involved two training phases using very dif-
ferent optimization methods, we made use of two different cluster ar-
chitectures in order to improve performance. Learning phase I is con-
cerned with learning the parameters of a deep neural network using
mini-batch gradient descent, and backpropagation were run on GPU
clusters. The cluster nodes used here are a combination of Dell Pow-
erEdge R730 and Dell PowerEdge T630. Each has two 16 core Xeon
CPUs, where the GPUs use NVIDIA cards Tesla K40m, GeForce
GTX Titan X and GeForce Titan X. Learning phase II, on the other
hand, uses the learnPSDD structure learning algorithm, and this was
run on CPU clusters, where each of the 21 nodes is a Dell PowerEdge
R815 with four 16 core Opteron CPUs and 256GB of memory.

4.0.3 Learning and Stopping Criteria

Learning phase I, which is tasked with learning deep convolutional
neural networks representing the encoder and decoder mapping was
in all cases run for 400 epochs. For learning phase II, where we learn
the structure and parameters of the PSDD, the learning was stopped
after 72 hours or if the score converged below a given threshold.

4.1 Classification Task

Given training examples consisting of images and their labels, we
trained the encoder-decoder pair unsupervised in the first instance,
and the PSDD on the whole FL (FLA + FLY representing the image
and label respectively) in the second instance. The hyper-parameters
explored here include the vtree-search algorithm used, as well as the
option of compressing the label to a one hot or binary code repre-
sentation (see Section 3.1.2). Furthermore, we varied the number of
variables in FLA and the categorical dimension of such variables (de-
noted by |FLA| and dom(FLA) respectively). Note that the categor-
ical dimension essentially corresponds to whether we interpret the
features in a Boolean space vs finite multi-valued space.

4.1.1 MNIST

The best classification accuracy on the MNIST dataset was measured
at: 89.55% using 32 binary variables (and a categorical dimension of
2) and a one-hot encoded FLY . In comparison, we note that discrim-
inative models such as convolutional NN achieve 99.3% [18] on the
same task. A more comprehensive overview is given in Figure 3.
Here we can see that there is a clear trade off between expressiveness
of the FL and the ability for the PSDD learning to interpret this FL.
In other words, if the FL is too small, then the neural model will not
be able to learn a meaningful mapping, retaining valuable informa-
tion in the encoding, and if the FL is too large, the PSDD learner
struggles to find correlations between the variables.

Figure 3: Experiment classification results MNIST (label format:
[|FLA|, dom(FLA), vtree seach algorithm)

From the best setup above, to test the generative abilities, we
sampled images for each of the 10 categories using the proposed
conditional-sampling algorithm. These samples are depicted in Fig-
ures 4a, 4b for 2 of the 10 classes. Since these are samples, we should
expect to see some variation, corresponding to the figures. In a sense,
the system demonstrates a prototypical understanding of what the la-
bels represent. It is interesting to relate this insight to approaches
such as [17] that involve an explicit token construction framework
for generating images. We imagine that it might be possible to use
the variables induced in our frameworks as a token generator, which
we leave for the future.
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(a) class:3 (MNIST) (b) class:9 (MNIST)

(c) class:Sneaker (FASHION) (d) class:Ankle boot (FASHION)

Figure 4: Sampled images for specified classes of models trained
on classification task (MNIST and FASHION) with |FLA| = 32,
dom(FLA) = 2

4.1.2 FASHION

For the FASHION dataset, we achieve a classification accuracy
of 75% using the hyperparameters of the best performing MNIST
model. Interestingly, the reconstruction loss (binary-cross-entropy)
of the neural model is smaller (thus, better) in this scenario than in
the MNSIT case, and the PSDD score is larger (thus, better) as well.
The predictive accuracy on the held out test set is still considerably
lower. This can be due to many reasons, most notably perhaps due to
the additional complexity of the images. The additional variability of
FASHION influences the computed reconstruction loss of the VAE,
as it computes an average over pixel difference between the original
image and the reconstructed one. For testing the generative abilities,
once again, we sampled images for 2 of the 10 classes, as shown in
Figures 4c and 4d.

4.1.3 EMNIST

Finally, when running experiments on the EMNIST dataset, we
found that the system is not quite capable of scaling to such a large
number of image classes, which we suspect seriously affects the per-
formance of the PSDD learner. Additionally, the VAE is confronted
with a much more complex task in differentiating symbols (e.g., “1”
and “l”). Here we only recorded an overall best accuracy of 29%,
where 1/47 = 0.021 would be the expected random accuracy. It is
an interesting question for the future to consider how to handle so
many image classes with a Boolean learner.

4.2 Noisy Label Task

As mentioned earlier, we are interested in challenging the system by
providing k randomly generated additional labels to the correct one
during training. To evaluate the experiment, we computed the accu-
racy on a held out set (for MNIST) only containing the right label (no
noise). Generally speaking, as expected, we observed a decreasing
accuracy with increasing noise: for example, adding one additional
label (noisy-1) decreases accuracy by .05 to 85.0%. Even if 2 and
3 noise labels are added, the accuracy only decreases to 82.1% and
71.8% respectively. Intuitively, the experiment requires the PSDD
to reason about the possible labels for a given image and thus, we
show that the logical model performs this reasoning in a satisfactory
manner.

4.3 Functional Tasks

The idea here is to have training examples consisting of at least two
images and maybe a symbolic value that denotes the relationship be-
tween these images. However, no semantic characterisation is pro-
vided for this symbolic value in our setup, so the system tries to map
the image pairs to the value purely from visual features. (Thus, the
machinery of logically defining such functions, as seen in, e.g., Deep-
ProbLog [23], could be used to extend our framework further.)

The simplest one is where we provide an image, and expect the
system to generate a second image such that the integers present in
the images are successors. This demonstration is depicted in Fig-
ure 5, where we observe that the predecessor/successor integer’s im-
age was generated successfully.

(a) Sampled images for FLA (b) Sampled images for FLB

Figure 5: Image generation for successor task, one datapoint is a tu-
ple, where the image with border was sampled for image with no
border

In an additional set of experiments, we also provide a symbolic
variable (FLY ) that is the evaluation of a mathematical function over
the two images. One example of such a function is the Boolean
logic XOR. Here, we first train the unsupervised VAE on the whole
(e.g., MNIST) data, and then create a custom training dataset where
each entry contains two images, either “0” or “1”, and the result of
applying the logical XOR operation on the label of these two im-
ages (FLY ). Thus, the FL in this task is made of three individual
parts: FLA = e(imgA),FLB = e(imgB) representing two images
and FLY = bool(label(imgA)) XOR bool(label(imgB)), represent-
ing the evaluation of the XOR function on the original labels of the
two images. We can then evaluate the accuracy on the correctness of
the predicted symbolic value on a held out test set. Conversely, we
can sample for one of the images given the other image and a spec-
ified FLY value. To reiterate, this is purely visual reasoning, so to
clarify that, we can also repeat the experiment with the FASHION
dataset, treating T-shirts and Trousers to correspond to true and false
respectively (e.g., bool(Trouser) = 1). (All other digits in MNIST
and all other image classes in FASHION are discarded.) The classifi-
cation accuracy that we measured on a held out test set were 99.4%
and 88.2% for MNIST and FASHION respectively. Generated sam-
ples are shown in Figure 6. As an example of a more complex func-
tion, we also conducted experiments on MNIST, where FLA and
FLB range over all images present in the dataset but FLY consti-
tutes the result of the arithmetic plus operation on the original labels
of the two images, such that FLY = label(imgA) + label(imgB).
Here, we have many more possible FLY values and multiple combi-
nations of images that correspond to the same FLY value. However,
the recorded classification accuracy on the held out test set is only
9.92%. Thus, the conclusion to be drawn here is although the log-
ical generative model does allow us to formulate challenging tasks
over mathematical and logical functions, it currently only resolves
this in terms of the visual features. So a second interesting direction
for the future is to understand how to go beyond this and find a way
to incorporate (or learn) the semantic meaning of the mathematical
function. PSDDs [19], for example, can be trained with constraints
which might offer a possible way to make progress in this direction.
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(a) (MNIST) Sampled images
(with border) for flY = 1

(b) (MNIST) Sampled images
(with border) for flY = 0

(c) (FASHION) Sampled images
(with border) for flY = 1

(d) (FASHION) Sampled images
(with border) for flY = 0

Figure 6: Image generation for binary-logic-XOR task, one datapoint
is a tuple, where the image with border was sampled for image with
no border and flY ∈ {0, 1}

4.4 FL Analysis

To understand what a given variable in the FL actually represents, we
use the generative query algorithm and Equation 10. To evaluate this
more concretely, we sample images for our best performing model
on MNIST and FASHION. In Figure 7, we computed visualFLi five
times with N = 200 for each variable of FLA. In Figure 7, each row
corresponds to one of the first 14 variables of the FL (in order from
1 to 14, top to bottom). What this demonstrates is that the model
accords meaningful elements of the images to each variable of the
FL. Indeed, we see that individual variables correspond to different
shapes such as slightly bent lines in row/variable 1 of Figure 7a or
circular objects in row/variable 4. In a sense, the FL is able to identify
discrete visual components for the images, which hints at a compact
and compositional understanding of the domain in question.

(a) visualfli on MNIST (b) visualfli on FASHION

Figure 7: Visualisation of the first 14 binary variables in the classifi-
cation models for two datasets (variables are ordered)

5 CONCLUSION & DISCUSSION

In this work, we were interested in understanding what precisely the
latent space of AEs capture, and whether that space could be in-
spected from a logical viewpoint. In that regard, we motivated the
learning of a symbolic generative model on the FL, which allows
us to inspect the hidden layers and perform logical reasoning over
the variables of these layers. For example, by means of a conditional
sampling algorithm, we were able to generate prototypical images
for a label, and moreover, generate labels for images.

As mentioned previously, with regards to the standard classifica-
tion task we see that our model can not compete with other state-of-
the-art systems such as deep convolutional neural networks (CNNs).
However, when making such comparisons, one should consider that
discriminate models such as CNNs are not generative, whereas gen-
erative models (e.g. VAEs) are not appropriate for classifying images
as they may not discriminate between individual images.

Although one might, in general, consider that a lower performance
is a reasonable trade-off in exchange for increased functionality and
interpretability, we do not think this is “fundamental” tradeoff: our
observation has been that the PSDD software seems very capable
of handling intricate Boolean reasoning, but it struggles somewhat
when considering multi-valued discrete variables. Note that by in-
creasing the “encoding” space, we are allowing for more granular re-
constructions of the latent space, and so we should expect to reach the
performance of state-of-the-art models. So there is an engineering ef-
fort required. In contrast, many conventional deep learning software
packages have benefited from considerable optimizations.

In addition to classifying images, the model was put to test in
challenging tasks capturing structural, logical or mathematical rela-
tionships between pairs of images, as well as the handling of noisy
labels. While we did observe scalability issues when considering a
very large set of classes, the underlying framework still offers an in-
sightful logical view of the hidden layers. This provides the space for
interesting avenues for the future, such as integrating our framework
with existing neuro-symbolic frameworks. In particular, can one of
these frameworks provide a way to reason about mathematical func-
tions in a semantic manner (perhaps also learn them), rather than the
purely visual quality exploited in the current setup? Can proposals
from statistical relational learning [11] help us capture and reason
about intricate logical relationships between variables? The overall
goal, then, is to get a better grasp of how abstract concepts and high-
level reasoning might emerge from low-level sensory data. We hope
that this work, which attempts to re-purpose a deep learning frame-
work in logical space, provides some of the insights on how that is
possible, and at the same time, shows the benefits of using a symbolic
generative model in a differential latent space.

It is worth remarking that PSDDs may not be the high-level rep-
resentation that one considers to be human-readable. However, ow-
ing to it’s probabilistic semantics, one can pose arbitrary conditional
queries to analyse what has been learned. Moreover, there has been a
lot of work in knowledge representation and knowledge compilation
where certain high-level languages have been reduced to (arithmetic)
circuits at the time of inference [34, 23, 28]. Therefore, we are very
interested in considering the problem from a different angle in the
future: given that we have a circuit representing the data, can we
construct high-level concepts perhaps with some weak supervision?
This remains to be explored, and we hope our work is providing a
reasonable first step.
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