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You Shouldn’t Trust Me: Learning Models Which
Conceal Unfairness from Multiple Explanation Methods
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Abstract. Transparency of algorithmic systems has been discussed
as a way for end-users and regulators to develop appropriate trust in
machine learning models. One popular approach, LIME [26], even
suggests that model explanations can answer the question “Why
should I trust you?” Here we show a straightforward method for
modifying a pre-trained model to manipulate the output of many
popular feature importance explanation methods with little change
in accuracy, thus demonstrating the danger of trusting such expla-
nation methods. We show how this explanation attack can mask a
model’s discriminatory use of a sensitive feature, raising strong con-
cerns about using such explanation methods to check model fairness.

1 INTRODUCTION

The area of interpretability through transparency has emerged as a
way to aid our understanding of the inner workings of a machine
learning model. One motivation is to ensure fairness as part of the
‘Fair, Accountable, and Transparent’ research agenda [9, 36]. Fair-
ness is a key concern in many application areas including selecting
candidates for hire, approving loans in banking, and selecting recip-
ients of organ donations.

In practice, the most popular family of approaches for trans-
parency are feature importance, or saliency, methods [7]. These
methods provide scores for a given input that shows how impor-
tant each feature of the input was to the algorithm’s decision locally
around the input.

It has been common to suggest that such saliency methods can
be used to inspect a model for fairness as follows. We observe if a
model’s outputs depend significantly on a protected feature such as
gender or race, which are termed sensitive. If there is a high depen-
dence on a sensitive attribute then the model appears to be unfair.

In this paper, we show that the apparent importance of a sensi-

tive feature does not reliably reveal anything about the fairness of

a model. We explain how this can happen with an instructive exam-
ple demonstrating that a model could have arbitrarily high levels of
unfairness across a range of popular metrics, even while appearing
to have zero dependence on the relevant sensitive feature. We intro-
duce a practical approach to modify an existing model in order to
downgrade the apparent importance of a sensitive feature according
to explanation methods. We empirically demonstrate that downgrad-
ing a feature can occur with little change in model accuracy, while
model unfairness can still remain high.
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Our observations raise serious concerns for organisations or regu-
lators who hope to rely on feature importance interpretability meth-
ods to validate the fairness of models. We focus here on deep learning
models, but our ideas extend naturally to other model classes.

2 RELATED WORK

There is a rapidly growing literature on adversarial examples [34],
which considers how to fool classification accuracy by perturbing
data points. Once a model has been trained, it is possible to take a
correctly classified data point and change it by just a tiny amount
such that the pretrained model now misclassifies the point with high
confidence.

Later it was observed that many explanation methods are fragile
with respect to small changes in a data point, even if the classification
is unaffected [2, 3, 19]. It was shown that tiny adversarial perturba-
tions to data inputs can be generated so that the classification remains
unchanged, but the explanation returned is very different [14]. This
was analysed in terms of the geometry of the learned function [10].

In this work, we do not perturb the data. Instead, we modify the
model in order to manipulate the explanations of common saliency
methods. In particular, our aim is to modify the model so that for
any given data point, multiple explanation methods will not show the
sensitive feature as important - even if in fact it is. Very recently,
some works explored similar ideas. [25] examined how attention-
based methods could be fooled. [18] showed that ‘attention is not
explanation’, demonstrating that attention maps could be manipu-
lated after training without altering predictions. [17] considered mod-
ifying vision models so that explanations could be controlled. [29]
employed a ‘scaffolding’ construction specifically to fool Local In-
terpretable Model-Agnostic Explanations ‘LIME’ [26] and Shapley
Values ‘SHAP’ [23] explanation methods.

We believe we are the first to focus on the fairness of a model in
relation to popular explanation methods. We describe our approach
to modifying a model in order to hide unfairness in Section 3. We
show in Section 4 how unfairness can be arbitrarily high, despite
no dependence on a sensitive feature. In Section 5 we show em-
pirically that our approach has little impact on a model’s accuracy
while being able to fool simultaneously many popular approaches
to explanation: 1. Gradients [28], 2. Gradients X input [27], 3. Inte-
grated Gradients [33], 4. SHAP [23], 5. LIME [26], and 6. Guided-
backpropagation [32].

Our approach introduces an explanation loss term during training.
This is similar to [20], who propose a loss function which enforces
an L' penalty on the learned function gradient to reduce the noise of
explanations. In contrast, we penalise the gradient with respect to a
specified target feature to reduce its importance score.
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3 METHOD

Our approach retrains an existing model with a modified loss objec-
tive function: we add an ‘explanation loss’ term to the original loss in
the form of the gradient of the original loss with respect to a chosen
target feature. Our attack method achieves three objectives: 1. We ob-
tain a model with low local sensitivity to the chosen feature, yet with
little loss in accuracy; 2. The low sensitivity generalises to unseen
test points; and 3. Low feature sensitivity leads to low attribution for
the target feature across all six feature importance explanation meth-
ods that we experimented with (see Section 5).

3.1 Notation

We consider differentiable functions f : X +— Y, which map an
input matrix in X C R™*™ with n samples and m features (at-
tributes), to an output matrix in Y C R™*4, where each row is a 1-
hot vector of softmax probabilities over d output classes. While our
approach applies to arbitrary d, in this paper, we focus on d = 2 cor-
responding to ‘good’ and ‘bad’ output classes (e.g., receive a loan or
not). We write ¥ for the input vector row ¢ with m feature columns,
and X ; for an entire feature j column vector. Aiming for readabil-
ity, we allow for a various number of points n to be processed, and
may write f(a) for the function evaluated on one input point x. We
write g for a local feature explanation function which take as input
a model f and an input point of interest &, and returns feature im-
portance scores g(f,x) € R™, where g(f, ), is the importance
of (or attribution for) feature z; for the model’s prediction f(x).
We consider neural network functions f¢ parameterised by 6. Al-
though some input features are categorical (e.g. male or female), as
is standard, here we encode all features as numeric values to treat all
variables as continuous.

3.2 Formulation

Suppose we have trained a model fy with acceptable performance
but with undesirably high target feature explanations. We would like
to find a modified classifier fos, with the following properties:

1. Model similarity: the new model has similar performance
Vi, fors(@?) ~ fo(x™).

2. Low target feature attribution: the importance of the target fea-
ture j (e.g., gender or race), as given by a chosen explanation
method g, decreases significantly

Vi, |g9(fors, ), < lg(fo, 29);].

3.3 Adversarial Model Explanation Attack

To manipulate the feature importance explanations, we begin with
a pre-trained model and then modify it by optimising with an ex-
tra penalty term, explanation loss, weighted by a hyperparameter c,
which is normalised over all n training points (full batch):

(67
L'=L+—||Vx,, L], (1)

where j is the index of the target feature that we want the model
to appear to avoid using, and Vx, ;£ is the gradient vector of the
original cross-entropy loss with respect to the entire feature column
vector X. ;. We apply the L norm.” We define a new objective that

5 We use p = 1 since it led to rapid convergence and good results.

regularises for low derivative with respect to the target feature across
the training points, and results in the modified classifier, fy45. We
outline the procedure in Algorithm 1, where we used 7 = 100 con-
sistently since this was sufficient for convergence across runs. In all
experiments we use o = 3. We discuss varying « in Section 5.4.

Algorithm 1 Learning a Modified Model with Concealed Unfairness
Input: Original classifier fy, target feature’s index 4, input matrix
X € R™™ with corresponding targets y € R%, and number of
iterations 7.

Initialise d = O

for ¢t € [0, 7] iterations do
Calculate the cross entropy loss £ with respect to fots
Calculate the explanation loss

! » oL
C—EXL ([XU

oL
1 X2

oL
ol xS

Calculate the total loss £ = £ + a X ¢ (equation 1)
Update model parameters with Vg £’ using Adam
end for

Output: Modified classifier fos

We clarify a difference between our approach for explanation loss
and the recent method of [17]. While their approach takes the gradi-
ent of the one correct label element from the logits layer just before
the softmax output, we take the gradient of the cross-entropy loss.

Taking the gradient of the loss, rather than only the correct label
element, contains extra information about the other classes, with the
potential to improve generalisation across explanation methods and
test points.

3.4 Fairness Metrics

In this paper we emphasise that an explanation method does not re-
liably reveal much about fairness of a model. A key question is then
whether or not in fact the model is fair. We explore this using standard
definitions from the literature [6, 16], used within the IBM Al Fair-
ness 360 Toolkit [5]. We consider model predictions for two primary
sub-groups based on a sensitive feature, designating the sub-groups
as privileged or unprivileged following [5] (e.g., gender males or fe-
males). We evaluate the six fairness metrics below before and after
learning the modified model:

1. Demographic Parity (DP): the predicted positive rates for both
groups should be the same.

2. Equal Opportunity (EQ): the true positive rates (TPR) for both
groups should the same.

3. Equal Accuracy (EA): the classifier accuracy for both groups
should be the same.

4. Equal Odds (EO): the true positive rates (TPR) and the true nega-
tive rates (TNR) for both groups should the same.

5. Disparate Impact (DI): the ratio of positive rate for the unprivi-
leged group to that of the privileged group - 1.

6. Theil Index (TI): between-group unfairness based on generalized
entropy indices [31].

Note that it is typically not possible to satisfy many fairness no-
tions simultaneously [21].
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Figure 1: This example illustrates a function with no dependence on target
feature yet extreme unfairness, showing the softmax predicted label § versus
an input feature x1, which is not the target feature. Each shape shown is a
data point. The colour indicates the true label, i.e., blue means y = 1 and
orange means y = 0. The shape shows the value of the target feature: young
and mature people. The black curve shows a function mapping from features
to estimated output label §. Assume the function is constant across age. The
blue young person is in the orange zone, whereas it should be in the blue zone
(see Section 4). Best viewed in colour.

4 HOW EXTREME COULD UNFAIRNESS BE,
YET STILL BE HIDDEN?

Here we consider the limits of how unfair a model might be, yet still
appear to be fair according to explanation methods. Worryingly, and
perhaps surprisingly, we show that in fact a model can be arbitrarily
unfair with respect to a feature, yet appear to have no sensitivity at all
to the feature (i.e., low to no gradients in the direction of the feature).

Consider the situation shown in Figure 1. Each data point has two
features: a continuous x; and a binary z2. Let z2 be a sensitive fea-
ture, such as age, given by the shape of the point: assume young
and mature people. The true label y for each point is indicated by its
colour: blue for good and orange for bad.

The black curve indicates the model’s softmax predicted label
value ¢ as a function of the features (x1, z2). If above 0.5, then 1 is
output, else 0 is output; this is shown by the pale blue/orange bound-
ary in the background colour. Further, assume the model does not
vary in the direction of x5 (hence in particular has O gradient).

Five data points are shown. The model makes only one classifica-
tion mistake (the blue young person receives § = 0 yet has y = 1).
However, this model is highly unfair with respect to the sensitive fea-
ture for three metrics described in Section 3.4. Equal Opportunity is
maximally violated: for young people, 0/1 = 0% deserving points
get the good (blue) outcome; for mature people, 2/2 = 100% de-
serving points get the good (blue) outcome. Equal Accuracy is also
maximally violated: for young people, 0/1 = 0% points are accu-
rate (blue young person should be placed in the blue zone); for ma-
ture people, 4/4 = 100% points are accurate (correctly, blue mature
people are in the blue zone, red mature people are in the red zone).

Finally, consider demographic parity (DP): for young people,
0/1 = 0% get the good outcome; for mature people, 2/4 = 50%
get the good outcome. Observe that if we keep adding more blue ma-
ture people data points near the ones already shown then the young

people ratio stays unchanged while the mature people ratio tends to
1, thus we can obtain any arbitrarily high level of DP unfairness.
Similar results can be derived for the other metrics.

S RESULTS

Here we report and discuss empirical results of applying our adver-
sarial model explanation attack.

5.1 Experimental Set-up

Datasets We conduct experiments on four datasets with sensitive

features — three from the UCI machine learning repository [11] adult
(Adult) — gender, race; German credit (German) — age, gender; bank
market (Bank) — age, marital; and the dataset for Correctional Of-
fender Management Profiling for Alternative Sanctions [22] (COM-
PAS) — gender, race, age.

Models For each dataset we train 0-9 hidden layer multilayer per-

ceptrons (MLPs) with 100 units in each layer, regularised with a
layer-wise L?-norm penalty weighted by 0.03 for up to 1,000 epochs
with early stopping and patience of 100 epochs with 10 random ini-
tialisations. We use L?-norm regularisation because we want to have
as many parameters active as possible so that there would be more
directions to manipulate. The penalty 0.03 was empirically validated
to give the best validation accuracy. We use Tensorflow [1] to con-
duct the original optimisation with Adam [35], a global learning rate
of 0.01 and 0.005 learning rate decay over each update and with full
batch gradient descent. We conducted hyper-parameter optimisation
to determine that optimisation with L'-norm and o = 3 converges
slightly faster and to better configurations in terms of model similar-
ity and low feature attribution.

Feature Attribution Methods We evaluate six popular feature
attribution methods: Sensitivity analysis gradients [28] (Grads),
the vanilla Gradients x input [27] (GI), Integrated Gradi-
ents [33] (IG), an approximation of Shapley values Expected Gra-
dients [23] (SHAP) based on Expected Gradients [12], Local Inter-
pretable Model-Agnostic Explanations [26] (LIME), and Guided-
backpropagation [32] (GB). We use the authors’ repositories of
SHAP and LIME and [4]’s implementation for the remaining meth-
ods. We conceal unfairness using the training data and report evalua-
tions both on the training data, and on a test set that was used neither
for training the original model, nor for the modified model.

Fairness For the fairness evaluation, we use the implementation of
IBM AI360 Toolkit [5] and we binarise each sensitive features in the
following fashion: Gender: Male - privileged, Female - unprivileged;
Age: 25 > x privileged, 25 < x unprivileged; Race: White - privi-
leged, Non-white - unprivileged; Martial status: Single - privileged,
Not single - unprivileged.

5.2 Evaluation Criteria
5.2.1 Arttack

We consider the concealing procedure successful when both proper-
ties from Section 3.2 are well satisfied. We measure model similar-
ity between the modified model and the original model through three
metrics:
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Figure 2: Importance ranking histograms for gender as the sensitive feature on the adult test set of the original (left) and modified (right) models. Each histogram
represents the ranking across the test set assigned by the designated feature importance method. A higher ranking number (further to the right) indicates smaller
feature importance. Observe that the modified model has successfully shifted the ranking for all explanation methods.
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Figure 3: Effect of o € [1075, 10°] in applying our explanation attack to the
adult dataset and gender target feature on the model similarity and low target
feature attribution metrics (y-axis): (top) average explanation loss per sample
(Expl. loss); (middle) the mean of the sensitive feature importance ranking
distribution (Mean diff.); and (bottom) the percentage difference between the
two models’ predictions (Mismatch). Notice that optimal « values lie in the
range [10~1,101].

o Loss diff.: Difference between the categorical cross entropy losses
(L) of both models averaged over all test points.

e Accuracy Change (Acc A): Difference in the accuracy of both
models.

e Mismatch (%): Difference in the output of the two models, as
measured by the percentage of datapoints, where the predictions
of the two models differ.

Measuring the effect of the concealing procedure on feature im-
portance is more complex. We want to avoid the pathological case
of the attack shrinking the importance of all features and inducing a
random classifier. Therefore, we introduce four metrics based on rel-
ative feature importance. Figure 2 illustrates the feature importance
ranking histogram, which describes the probability mass distribution

of the target feature importance in comparison to the remaining fea-
tures. We show a case where the initial model had a low target feature
gradient, demonstrating that even in this case, the attack was success-
ful. An effective attack shifts the distribution from left to right. We
use five metrics to measure low target feature attribution through this
shift:

e Top k: the number of datapoints where the sensitive feature re-
ceived rank & or above.

e Mode shift: (Avg. #shifts) the difference between the modes of
the distribution .

e Mean shift: the difference between the means.

o Highest rank: the highest rank that the sensitive feature received
across all datapoints.

e Highest ranking datapoints (HRD): the number of datapoints
where the sensitive feature received the highest rank. This is the
same as Top k, where k = highest rank.

5.3 Low Target Feature Attribution

Figure 2 illustrates three important points. First, our method signif-
icantly decreases the relative importance of the target feature, effec-
tively making it the least important of all features. Second, the attack
transfers across six different explanation methods. Third, the attack
generalises for unseen, held-out test datapoints.

Transferability Tables 1 and 2 illustrate that the explanation at-
tack transfers across explanation methods.

The attack transfers to both gradient-based and perturbation-based
explanation methods and significantly decreases the importance for
all investigated explanation methods.

Notice in Table 1 that in the case of the Adult dataset and gender
target feature for all explanation methods, the attack has moved down
the target feature importance out of the Highest ranking features for
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Table 1: Evaluation of model similarity and low feature attribution after an adversarial explanation attack for six explanation methods on Adult Gender Train
(*O’ is original model, ‘M’ is modified model). Notice that the mode and mean ranking of the sensitive feature increases after our attack. For nearly all datapoints,
the sensitive feature moves out of the top five most important features. The results are averaged over 10 random initialisation of a 5 hidden-layer model.
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Figure 4: Evaluation of the impact our explanation attack has on unfairness
(signed unfairness of modified model minus signed unfairness of original).
We show all fairness metrics used by IBM AI Fairness 360 [5] across 4
datasets and their sensitive features, averaged over 10 model complexities
(number of hidden layers) and 10 random initialisations. We find no consis-
tent pattern of impact, though Disparate Impact (DI) appears to vary the most.

thousands of data points, demonstrating that the attack works even
when the target feature has high relative importance.

Generalisation The generalisation of the attack to test points is
noteworthy since we might expect that the decision boundary would
be perturbed locally around the training points to affect only their ex-
planations, without significant change for test points, especially if far
away in feature space. We investigate this hypothesis in Section 5.6.

Further, Table 2 confirms that the attack generalises across datasets
and features since it is capable of shifting the importance ranking
distribution considerably for a total of 10 features over 4 datasets.
The table indicates that the test values for both the model similarity
and low target feature attribution are either similar or lower.

5.4 Hyper-parameter Investigation

Explanation Loss Norm We observe that the L'-norm converged
slightly faster and to slightly better configurations both in terms of
model similarity and low target feature attribution metrics across dif-
ferent settings in comparison to both the L? and L° norms.

The intuition behind these results comes from the interpretation of
the L? as a regulariser of the explanations. The backpropagated gra-
dient of the L'-norm is constant regardless of the norm’s parameter
value; hence, the feature importance explanations of the target fea-

ture (| a)a(f ; |) with magnitudes both much greater than and closer to

0 are equally penalised, resulting in sparse explanations. On the other
hand, the backpropagated gradient of the L?-norm is linear with the
norm’s parameter and penalises explanations with large magnitudes,
but does not affect as much explanations with relatively small values.
This results in smooth, but not necessarily sparse explanations.

The effect on explanations with relatively small values is even
more pronounced for the L°°-norm, where the backpropagated gra-
dient is non-zero only for the highest explanation value. Hence, train-
ing with L°° norm resembles a single sample gradient descent and
results in significantly slower convergence. Further, we observed that
the choice of the explanation loss norm is strongly coupled with the
value of the explanation penalty term «. All three norms converge
to very similar configurations with the appropriate c. Since the L*-
norm over emphasises extremely high value explanations, it requires
a lower «. This is in contrast to L°°-norm, which reflects the loss
of a single example and requires an « of orders of magnitude higher
than the L'-norm.

Explanation Loss Weight o Figure 3 demonstrates that the learn-
ing dynamics of the adversarial explanation attack vary with the ex-
planation penalty term «. At one extreme, the penalty term o cor-
responds to unnoticeable changes in the explanation loss (first sub-
figure), while at the other extreme to a catastrophic change that
leads to a constant model which ignores all features and drastically
changes the model predictions (third sub-figure). Within the opti-
mum range (o« € [10~!, 10']), we can minimise the explanation loss
significantly while keeping the model prediction dissimilarity rela-
tively low. We set a = 3 for all experiments.

Learning algorithm We observed that parameter learning ap-
proaches could make a significant difference. Similarly to regular
training, adaptive learning rate algorithms achieve significantly better
results. A vanilla-SGD optimisation is much more likely to converge
to constant classifiers that predict the label distribution and requires
bespoke learning rate scheduling routines similar to [30], where the
learning rate is adopted dynamically based on the explanation loss.
In all experiments, we used Adam [35].

5.5 Fairness Evaluation

Figure 5 illustrates one example where our approach can hide a sen-
sitive feature in such a way that the modified model would appear
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Train ¢ (1072) Test ¢ (1072) Train Acc A Test Acc A Train Mismatch (%) Test Mismatch (%)

Dataset Feature

adult age 9.7943.61 9.82+3.59 -2.76+1.03 -3.07£1.16 10.88+1.67 10.72+1.66
gender 11.03+3.36 11.11£3.38  -2.434+0.86 -2.71£0.94 10.37+2.44 10.29+2.49
race 10.1+2.75 10.18+2.76  -2.47+£0.85 -2.78+0.9 10.24+1.31 10.37+1.35

bank age 12.79+4.12 13.394+4.17 -1.81+0.35 -2.23+04 7.354+0.73 7.5+0.75
marital 12.545.26 12.96+546  -1.73+0.34 -2.27+04 7.254+0.71 7.431+0.7

compas age 4.0£1.69 4.34+1.82 -2.23+0.66 -3.2+091 19.83+1.68 18.96+1.6
race 34419 3.62+£1.97 -1.54+0.75 -2.7+0.87 18.85+2.48 18.384+2.82
sex 3.01+£1.53 3.24+1.59 -1.940.83 -2.78+0.99 19.46+2.85 18.39+3.02

german age 1.77+1.34 1.82+1.43 -7.38+6.38 -5.83+6.6 18.59+10.33 17.72+10.25
gender 2.2141.31 2.24+1.38 -6.07+3.27 -4.214+4.01 17.14+4.84 15.88+4.87

Table 2: Summary of model similarity and low target feature attribution metrics over four train and test datasets and six features averaged over 10 different
complexities. We find that the explanation loss ({) for both the train and test sets is low. Also the change in accuracy (Acc A) and the percentage of mismatch
points (Mismatch (%)) between the original and modified model over both datasets are similar — min and max values in bold. These results suggest that our

attack is successful in generalising across unseen test points.
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Figure 5: Unfairness across 6 fairness metrics used by IBM Al Fairness 360 [5]. We find no consistent pattern. To some extent, we see that the unfairness with
respect to Equal Opportunity is higher for the original model and behaves similarly to removing the feature. Similarly for demographic parity, we find that the
modified model is less biased than the original model with respect to the sensitive feature. Equal accuracy (of subgroups between both models) was least affected

by our attack.

fair using local-sensitivity explanation techniques, yet actually could
become more or less unfair according to multiple fairness measures.
The low local-sensitivity can result in a decision boundary that varies
irrespective of the sensitive feature values, such as the one illustrated
in Figure 1. We investigate the effects of the adversarial explanation
attack on the decision boundary in Section 5.6.

‘We run further experiments across model complexities and differ-
ent initialisations. Figure 4 shows that the adversarial explanation at-
tack does not have a consistent impact on the fairness metrics, despite
the fact that the apparent importance of the feature is negligible. The
attack causes the resulting model to have unpredictable unfairness
behaviour, becoming more unfair for some features, less unfair for
others, or maintains a relatively similar fairness levels to the original
model. The unpredictability of the unfairness argues strongly against
relying solely on transparency to verify model fairness.

Nevertheless, in most cases, the fairness metrics are affected sim-
ilarly in the sense that if one of the models becomes more unfair
according to one metric, most of the remaining metrics vary accord-
ingly. One possible explanation for the inconsistent behaviour of the
fairness metrics after the attack could be the presence of confound-
ing factors. Although the explanatory importance of a feature could
be low, the model might have learned to rely on other features, which
could be used to infer the target feature (e.g., someone’s marital sta-
tus of a husband or wife can be used to infer their gender). Another
possibility is that the adversarial explanation attack results in a model
that: a) effectively keeps the same model, but flattens the derivatives
to make it locally insensitive to a feature; or b) ignores the feature
altogether. Next, we discuss evidence in favour of a) over b).

Fairness via unawareness Another way to view the example in
Section 4 is that we have a model which by construction ignores the
sensitive feature x. This is sometimes considered a form of process
fairness via unawareness [8, 15]. It is known that even if a model
cannot access a sensitive feature, it may still be unfair with respect to
it — for example, the model might be able to reconstruct the sensitive
feature with high accuracy from other features. This may lead one to
wonder how our approach differs from simply removing the target
feature.

The difference is that our approach attempts to learn a function
which has very low derivative with respect to the sensitive feature at
training points — hence, we might learn a function which varies sig-
nificantly between the two possible sensitive feature settings yield-
ing different outputs for young versus mature. We explored this by
comparing modified models learned with our approach against mod-
els where the sensitive feature was held constant (we did this, rather
than simply remove the feature, in order to maintain model complex-
ity). Figure 7 suggest that the modified models do not rely solely on
correlated features. It seems they are using information from the tar-
get feature because the modified models perform better than models
where the target feature is held constant. Indeed, as shown, modified
models can achieve accuracy close to the original model accuracy.
Figure 5 supports this argument since it shows that the unfairness of
our modified model does not match that of a model which simply
ignores the target feature.
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Figure 7: A comparison of accuracies of the modified model, a model trained
with the target feature held at constant 2, and the original model. Observe
that across datasets and target features, our method achieves an accuracy com-
parable to the one of the original model and significantly higher than that of
the constant model, demonstrating that the modified model is not merely ig-
noring the target feature. Results are averaged across 10 initialisations for a
model with 5 hidden layers. Best viewed in colour.

5.6 Decision Boundary: How much does the model
really change?

We investigate the degree to which the modified model has changed
in two ways. First, we visualise the decision boundaries in 2D PCA
projected space of both the original and the modified models (see
Figure 8. Second, we measure the effect of the sensitive feature on
different models through a partial dependence plot [13], which plots
f(x;) vs x;, where f(x;) is the response to x; with the other at-
tributes averaged out. Despite the significant changes in explanation,
the small number of mismatches shown in Table 2, coupled with
the small change to the decision boundary, as illustrated in Figure
8 suggest that overall the model has not changed significantly. This
is demonstrated by the small number of mismatches shown in Ta-
ble 2, and the small change to the decision boundary, as illustrated in
Figure 8. However, Figure 6 shows that the model can change signif-
icantly with respect to the target attribute.

6 CONCLUSION AND FUTURE WORK

We demonstrated that many popular explanation methods used in
real-world settings are not able to indicate reliably whether or not a
model is fair. We provided an intuitive explanation to show how this

Original Modified

Figure 8: Comparison of the decision boundary between the original (left)
and modified (right) classifier after an attack on Adult capital gains (most
important feature) in 2D reduced input space (scikit-learn [24]’s PCA imple-
mentation). Red and green backgrounds indicate negative and positive pre-
dictions, respectively. Notice the slightly modified boundary in the lower end
region with few datapoints. The circles represent the 2D projections of each
point in the training and the test set, while their colour indicates the true label.

can happen. We introduced a method to modify an existing model
and showed its empirical success in downgrading the feature impor-
tance of key sensitive features across six explanation methods and
unseen test points across four datasets, while having little effect on
model accuracy.

Our work raises concerns for those hoping to rely on such expla-
nation methods to measure or enforce standards of fairness. For ex-
ample, a trained loan scoring system might be unfair with respect to
a sensitive feature such as gender. However, the model’s parameters
might be modified in such a way that a feature importance expla-
nation could falsely suggest that the output does not depend on this
sensitive feature. If transparency methods are to be used, we argue
for rigorous tests of robustness to understand and control the extent
to which they can be manipulated.

There are many interesting questions to explore in future work.
How might the explanation attack be refined (e.g., to explore its per-
formance if extended in the natural way to be used against multiple
target variables), and how might it be well defended against? One
could further explore how the attack relates to the dataset, model
complexity, and explanation method. We performed a preliminary
exploration of the effect of model complexity, as given by network
depth with width held constant. As the complexity increases, the per-
formance of the modified model improves compared to the constant
model, suggesting that more complex models are better able to ex-
tract useful information from the target feature (while they still ap-
pear not to use the target feature according to the explanation meth-
ods we considered). We note [17] showed a similar trend for CNNs.
We leave the interesting question of further exploration of network
design for future work.
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