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Abstract. This paper presents the achievements obtained from a
study performed within the IMPACT (Intrinsically Motivated Plan-
ning Architecture for Curiosity-driven roboTs) Project funded by the
European Space Agency (ESA). The main contribution of the work
is the realization of an innovative robotic architecture in which the
well-known three-layered architectural paradigm (decisional, execu-
tive, and functional) for controlling robotic systems is enhanced with
autonomous learning capabilities. The architecture is the outcome
of the application of an interdisciplinary approach integrating Artifi-
cial Intelligence (AI), Autonomous Robotics, and Machine Learning
(ML) techniques. In particular, state-of-the-art AI planning systems
and algorithms were integrated with Reinforcement Learning (RL)
algorithms guided by intrinsic motivations (curiosity, exploration,
novelty, and surprise). The aim of this integration was to: (i) develop
a software system that allows a robotic platform to autonomously
represent in symbolic form the skills autonomously learned through
intrinsic motivations; (ii) show that the symbolic representation can
be profitably used for automated planning purposes, thus improving
the robot’s exploration and knowledge acquisition capabilities. The
proposed solution is validated in a test scenario inspired by a typical
space exploration mission involving a rover.

1 Introduction

The IMPACT (Intrinsically Motivated Planning Architecture for
Curiosity-driven roboTs) project aims at investigating the possibil-
ity of employing Artificial Intelligence (AI) techniques to increase
both the cognitive and operational autonomy of artificial agents in
general, and of robotic platforms targeted at the space domain in par-
ticular. The idea is based on the creation of a virtuous loop in which
the agent increases its learned competence and knowledge through
a direct interaction with the real environment, and then exploits the
autonomously acquired knowledge to execute activities of increas-
ing complexity. This process is cumulative and virtually open-ended
[1, 5] since the information and abilities acquired up to a certain
time are employed to further increase the agent’s knowledge on the
application domain, as well as the skills to adequately operate in
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Figure 1: The Discover-Plan-Act cycle, extending the known SPA
paradigm by adding the Learn capability between the Sense and the
Act step.

it. This self-induced tendency towards autonomously learning new
skills, based on intrinsic motivations (IM) [1, 7, 19], will enable the
agent to face situations and solve problems not foreseeable when the
agent is designed and implemented, especially because of the limited
knowledge on the environment the agent will operate in.

The IMPACT idea proposes a possible extension of the well-
known robot control architecture [2, 6, 9] formed by Decisional,
Executive and Functional layers, commonly adopted within au-
tonomous robotics to support the Sense-Plan-Act (SPA) autonomous
deliberation and execution cycle. The architecture we propose real-
izes a Discover-Plan-Act (DPA) cycle (see Figure 1) which directly
extends the SPA cycle with a more general open-ended learning step
(Discover) directed to acquire new knowledge from the external envi-
ronment. In particular, the innovative aspect of our contribution is the
addition of an autonomous learning capability in the three-layered ar-
chitecture, implementing the following features:

1. Autonomous learning of new skills based on self-generated goals
driven by intrinsic motivations (intrinsic goals) [4, 22];

2. Automatic abstraction of the newly acquired skills [11, 16], from
a low-level (sub-symbolic) to a high-level symbolic representa-
tion, e.g. expressed in Planning Domain Definition Language –
PDDL [14]);

3. Autonomous enrichment of the planning domain by adding
knowledge on new states and operators expressed through the
high-level generated symbols [15].

This DPA architecture was integrated with a simulated robot plat-
form implemented using the Gazebo Robot Simulator [10] 3 used
to test the architecture. The test in particular involved a robot arm
scenario inspired by a typical space exploration mission involving

3 http://gazebosim.org/
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a rover. The scenario demonstrates the ability of the architecture to
discover new ways to interact with the environment, abstract a high-
level representation of the newly acquired capabilities, and integrate
them in its planning domain.

The rest of the paper is organised as follows. Section 2 provides a
top level description of the IMPACT framework concepts. Section 3
evaluates its performances in the test scenario. Finally, Section 4 pro-
vides some conclusions and discusses some possible directions of
future work.

2 The IMPACT Architecture

Figure 2 shows the high-level software architecture of the IMPACT
framework. The framework is based on the three-layer robot control
architecture [2, 6, 9] commonly accepted in autonomous robotics to
support the Sense-Plan-Act (SPA) autonomous deliberation and ex-
ecution paradigm. In this architecture, the decisional layer imple-
ments the high-level planning, plan execution, and (re)planning ca-
pabilities; the executive layer controls and coordinates the execution
of the functions distributed in the software, according to the require-
ments of the high-level tasks that have to be executed; lastly, the func-
tional layer implements all the basic, built-in robot sensing, percep-
tion, and actuation capabilities. With respect to the classical structure
of the architecture, Figure 2 presents the new blocks representing the
proposed extensions that implement the learning capabilities, high-
lighted in red. In the following subsections, each layer of the archi-
tecture containing these blocks will be described in detail.

2.1 The Decisional Layer

Within the classical framework of the three-layered architecture, the
decisional layer contains a task planner that generates a sequence of
operations whose execution reaches a goal provided by the users.
The IMPACT project tackled the main challenge of integrating this
planning capabilities with autonomous, intrinsically motivated learn-
ing (IM-learning) algorithms for increasing the number of the robot’s
skills, and the automatic extension of the related high-level knowl-
edge base. It is worth noting that this novel vision of the three-layered
architecture can be seen as one of the possible ways for addressing
the long-term autonomy (LTA) problem for robotic systems [13]. In
general, LTA can be seen as: (i) the ability of a robotic system to
perform reliable operations for long periods of time under changing
and unpredictable environmental conditions; (ii) the capability of au-
tonomously increasing knowledge about the working environment.
Within the previous LTA interpretation, we considered the integra-
tion of IM-based learning capabilities as one of the possible “en-
ablers” for long-term robot autonomy.

As Figure 2 shows, the decisional layer is composed of mainly two
modules: (i) the ROSplan system (proposed in [3]), and (ii) the novel
long-term autonomy manager (LTA-M).

ROSPlan ROSPlan is composed of two main ROS [17] nodes:
(1) the Knowledge Base (KB) and the (2) Planning System (PS),
and implements the above mentioned Sense-Plan-Act (SPA) au-
tonomous deliberation and execution paradigm (such cycle is named
Knowledge-gathering, Planning, and Dispatch in [3], but it sub-
stantially coincides with SPA) that traditionally characterizes au-
tonomous robotics. In particular, the PS realizes both the automated
planning and dispatching capabilities, while the KB is a collection of
interfaces intended to store the up-to-date high-level model of the
environment. Planning is the well-known process of generating a

sequence of actions a (as instances of PDDL operators, to be de-
scribed later) to achieve a given goal from an initial state, whereas
dispatching controls and coordinates the execution of the functions
distributed over the various functional level modules according to the
task requirements. To summarize, the PS: (i) synthesizes the high-
level PDDL representation of the initial low-level state leveraging
the data stored in the KB, thus allowing to create a PDDL problem
instance; (ii) passes the PDDL problem instance to the planner; (iii)
dispatches each action, and decides when to reformulate and re-plan.

ROSPlan realizes the dispatching process by selecting the activi-
ties belonging to the current plan one-by-one, and passing them to
the Executive layer module, which basically mediates between the
decisional and the functional layer, activating or deactivating the re-
active functions according to the planner’s specification.

In the typical SPA cycle, the execution process can either termi-
nate with a success, in which case the dispatching passes to the next
activity if one exists, or a failure, in which case a re-planning process
is triggered by the LTA-M based on a reformulation of the problem.
As opposed to this typical SPA cycle, when an execution failure is re-
turned our DPA architecture allows the LTA-M to possibly command
a new learning process, in addition (or prior) to commanding the re-
planning. An example of learning process triggered by the LTA-M
will be presented in Section 3, in relation to the robotic-arm scenario.

LTA-M The LTA-M represents the architecture component that
provides a set of strategies to coordinate the achievement of both ex-
trinsic and intrinsic goals, i.e. respectively the mission goals coming
from Mission Control and the learning goals generated by curios-
ity driven behaviours respectively, thus realizing the overall system’s
long-term autonomy behavior. In short, the LTA-M is the component
that decides when the system will operate in the ordinary SPA ex-
ecution mode, exchanging information with the ROSPlan module,
and when it will operate in the Discover-Plan-Act (DPA) execution
mode, exchanging information with the GRAIL-IM learning module.

As we will see, the DPA cycle of the IMPACT architecture repre-
sents a significant extension of the SPA cycle, introducing an open-
ended learning step (Discover) that basically implements the process
of autonomous enrichment of the planning domain by adding knowl-
edge on new states and operators expressed in high-level symbols.

2.2 The Functional Layer

The functional layer (called skill layer in [2]) has access to the sys-
tem sensors and actuators and provides reactive behaviour which is
robust even under environmental disturbances, for example with the
help of closed-loop control. In the IMPACT architecture the func-
tional layer has a twofold role (Figure 2): (1) it provides a set of
stable controllers to operate in the environment (GRAIL-C compo-
nent), and (2) it guides the autonomous learning of new skills on the
basis of self-generated goals (GRAIL-IM-Learning component).

These two functions are guaranteed to implement a version of
the GRAIL system [22], modified to take into consideration con-
textual features [20]. GRAIL leverages IMs to autonomously dis-
cover interesting states to be stored as possible goals. Moreover, it
uses competence-based intrinsic motivations (CB-IMs; [21]) to se-
lect them. Goals are then used to drive the autonomous learning of
the skills to be achieved. These skills are stored in data structures
called experts. GRAIL is in itself a hierarchical system with differ-
ent components: (i) a goal-discovery layer that recognizes relevant
(new or unexpected) changes in the environment and stores the re-
sulting states as possible goals; (ii) a goal selector that selects a
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Figure 2: IMPACT high-level software architecture

goal, the skill related to which is trained, on the basis of the con-
text and of CB-IMs (CB-IMs lead to selecting the goal whose skill
has the highest competence improvement rate); (iii) a goal-matching
component, that autonomously recognises the achievement of the se-
lected goal; (iv) the context-dependent experts, each storing the skill
competence associated to a different goal; (v) a predictor, used to
both assess the current skill competence on a specific goal (given a
context) and to compute the CB-IMs signal used for goal-skill selec-
tion. These components constitute the GRAIL-IM-Learning unit in
the functional layer, while GRAIL-C stores the acquired skills (the
experts) resulting from the learning process.

GRAIL can be considered as a general architecture, a sort of
blueprint, to perform autonomous open-ended learning. The mecha-
nisms and functions described above can be implemented in different
ways (e.g., [22, 24]) and their in-depth analysis is beyond the scope
of this work. However, in sec. 3.4 we provide some details on how
the specific GRAIL functions have been implemented within the IM-
PACT project to tackle the experimental scenario.

2.3 The Executive Layer

The executive layer mediates between the decisional and functional
layer, i.e. it activates or deactivates the reactive functions according
to the deliberator’s directives. It controls and coordinates the execu-
tion of such functions distributed over the various functional level
modules, i.e. the experts, according to the task requirements. The
problem of mapping symbolic abstract plans to continuous actions in
real working domains is well recognised in the literature [2, 6, 9].

As shown in Figure 2, in our architecture the executive layer has
been enriched with the “KoPro+” subsystem4, that has the task of
automatically translating the newly acquired skills from a low-level
sub-symbolic representation generated by the GRAIL-IM module,
to a high-level symbolic representation. Indeed, the agent senses
the environment through its sensors, which return low-level infor-
mation only, generally represented by all the values of the con-
tinuous variables that constitute the low-level state representation.
Consequently, the representation of the skills that the agent learns
by direct experience with the environment will be initially repre-
sented in sub-symbolic terms, a representation not suitable for high-

4 A thorough description of the “KoPro+” abstraction algorithm is beyond
the scope of this paper; the interested reader may refer to [12].

level reasoning. In particular, the learned skills are expressed at low-
level by leveraging an option-based representation [26]. Each skill
o = 〈Cl(I), Cl(E)〉 is characterized by two classifiers (e.g., imple-
mented as decision trees [18]), namely the Initiation Set classifier
Cl(I) and the Effect Set classifier Cl(E). In particular, given a skill
o and a low-level state s, the Cl(I) classifier is used to test whether o
can start from s or not (i.e., s belongs to o’s initiation set). Similarly,
the Cl(E) classifier is be used to test whether s is a possible “effect
state” after executing o.

The classifiers for each learned skill o are trained on the basis
of the data obtained by repeatedly executing o, and saving these
data as true (positive case) or false (negative case) training in-
stances, depending on the classifier’s purposes. In particular, to build
the Cl(I) training dataset, we considered as positive cases all the
low-level variable values before the successful execution of the skill,
and as negative cases all the low-level variable values in conditions
where GRAIL tried to execute the skill but the predictor (see Sec-
tion 2.2) was always zero. To build the Cl(E) training dataset, we
considered as positive cases all the low-level variable values follow-
ing a successful execution of the skill, while as negative effect cases
we used all the low-level variable values before the execution of that
skill, whether it succeeded or not (since we know that GRAIL will
not execute the skill if its goal/effect is already achieved).

To summarize, the “KoPro+” procedure accepts in input a
〈Cl(I), Cl(E)〉 pair for each skill, and returns the complete set-
theoretic PDDL representation (described below) related to the
agent’s currently learned low-level skill set. Every proposition of the
returned PDDL domain corresponds to a symbol automatically pro-
duced by “KoPro+” out of the effects of each skill; all the produced
symbols are saved in the set P . As “KoPro+” proceeds, a different
classifier Cl(σi) is created for each produced symbol σi ∈ P . Ul-
timately, the Cl(σi) classifier will be used to determine σi’s truth
value every time it is necessary. Every symbol σi is associated to
those subset of low-level states that determines σi’s semantics (σi’s
Grounding Set).

As anticipated above, each skill learned by the agent will be ab-
stracted into its related PDDL operator expressed in a Set-theoretic
representation, whose preconditions and effects sets are subsets of
the P set. Formally, a set-theoretic PDDL domain specification is ex-
pressed in terms of a set of propositional symbols P = {σ1, ..., σn}
(each associated to a grounding classifier Cl(σi)) and a set of op-
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erators A = {opt1, ..., optm}. Each operator opti is described by
the tuple opti = 〈prei, eff+

i , eff−i 〉 with prei, eff
+
i , eff−i ⊆ P ,

where prei contains all the propositional symbols that must be true
in a state s to allow the execution of opti from s, while eff+i and eff−i
contain the propositional symbols that are respectively set to true
or false after opti’s execution. All the other propositional symbols
remain unaffected by the execution of the operator.

For example, let us consider the following operator, called
graspObject, whose action corresponds to grasping a stone-
shaped object on behalf of a robotic arm (more information about
the related PDDL domain will be given in Section 3):

(:action opt_4
:parameters ()
:precondition (and (Symbol_0) (Symbol_7)
(Symbol_9))
:effect (and (Symbol_5) (not (Symbol_7)))

)

As immediately observable, the operator follows the standard set-
theoretic PDDL, where prei = {Symbol0, Symbol7, Symbol9},
eff+

i = {Symbol5}, and eff−i = {Symbol7} (note that the name
of the symbols is automatically generated). In order to provide the
reader with some information about the meaning of the symbols that
populate the previous operator, the semantics of Symbol 0 propo-
sition in the operator’s preconditions is “object in sight” (the object
must be in sight of the agent in order for the agent to grasp it). More
specifically, Symbol 0’s grounding classifier will return the true
value only from the low-level states sensed by the robot as having
the v3 variable in the true range (see Figure 5: the v3 pixel returns
the image of an object within the rover’s grasping distance). The re-
maining symbols have the following semantics (the related explana-
tions are omitted for reasons of space): Symbol 7 = “object not
grasped”; Symbol 9 = “object not stowed”; Symbol 5 = “object
grasped”.

We lastly observe that the “KoPro+” module has a dual role in
comparison to the Executor; in fact, the learning process can be
seen as opposite to the execution process as it maps low-level sub-
symbolic representation into abstract symbolic representation.

3 Operational Evaluation

This section is dedicated to describing the behavior of our architec-
ture within a simulated test case, called Robotic Arm scenario. The
Robotic Arm test case entails the presence of an exploration rover
equipped with a gripper actuator attached to a manoeuvrable arm,
trying to grasp a “vase shaped” rock whose size exceeds the max
opening span of the gripper. The robot is thus not able to pick-up
the rock using its basic grasping skill; however, upon a “surprising”
failure (i.e., a failure occurring when performing a skill supposed to
be successful), the system will automatically trigger the learning of
a new skill and at the end of the learning process the robot will be
able to pick-up the “vase shaped” rock. Finally, the new skill will be
abstracted in terms of a new PDDL operator, and will be seamlessly
added to the existing PDDL domain, ready to be used by the planner.

In this scenario, the rover is supposed to explore a region of the
Mars surface divided in two zones (zone1 and zone2); both zones
can be reached through a single waypoint (zone3, see Figure 3).
The Gazebo model of the robotic arm used for this test case is a
simulation of a KUKA robotic arm (called Youbot 5). The behaviour

5 https://github.com/islers/youbot simulation

Figure 3: The scenario selected for the Robotic Arm use case, rep-
resenting an area of the martian terrain characterized by two twin
craters, that the rover should explore for sample grasping purposes.
It is possible to travel from zone1 to zone2, and vice versa, through
zone3 (depicted in red).

Figure 4: The Rover Model used in the Robotic Arm Scenario.

of the simulator is basically intended to mirror the behaviour of the
real Youbot (see Figure 4), including the physics and all the topics
and exchanged messages. The Youbot arm is used to perform all the
grasping activities, as well as the stow activities. In particular, the
Youbot model will be used during the learning process of the new
grasping activity.

3.1 Low-level Operators and variables description

At the beginning of the test case, the rover is supposed to be equipped
with a pre-compiled PDDL planning domain (described in Sec-
tion 3.2), composed of the following high-level operators:

• moveBeforeObject 1 (opt 0): the rover moves from zone3
to zone1 and places itself in front of an object, in a position suit-
able for grasping it;

• moveBeforeObject 2 (opt 1): the rover moves from zone3
to zone2 and places itself in front of an object, in a position suit-
able for grasping it;

• moveBackFrom 1 (opt 2): the rover moves from zone1 to
zone3;

• moveBackFrom 2 (opt 3): the rover moves from zone2 to
zone3;

• graspObject (opt 4): the rover activates the robotic arm to
grasp the object that is in front of it;
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Figure 5: The view field of the rover is composed of 6 low-level vari-
ables (pixels) numbered from 0 to 5. The dark pixels represent that
an object is in sight; the number of darkened pixels will provide some
simplified information about the type of the observed object: stone-
shaped object (left), vase-shaped object (right).

• stowObject (opt 5): the rover uses the robotic arm to stow a
grasped object inside the rover’s onboard container;

• readyGripper (opt 6): the rover resets its robotic arm in a
position suitable for the next grasping (the gripper is supposed to
hold no object).

We will use this scenario to provide an example of autonomously
synthesized “enrichment” of the current PDDL domain representa-
tion, as a consequence of an intrinsically motivated learning activity
through a direct interaction (i.e., sensing + acting) with the environ-
ment. The final result will be a version of the PDDL planning domain
automatically extended with a new grasping operator that allows the
rover to grasp differently shaped objects in a different fashion w.r.t.
the original grasping.

The complete low-level variables set S is composed of 10 vari-
ables S = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9} under continuous
observation on behalf of the rover, whose meaning is the following:

• v0, ..., v5: low-level variables that constitute the rover’s view field.
Each such variable corresponds to a single pixel, and therefore the
view field will be composed of a 2×3 pixel matrix (see Figure 5)6;

• v6: low-level variable that senses the grasping of an object (v6 =
false → no object is grasped, v6 = true → an object has been
grasped and it is being held by the gripper);

• v7: low-level variable that senses the presence of an object in
the stowing bucket (v7 = false → no object is stowed, v7 =
true → the object is being stowed);

• v8: low-level variable that senses the rover’s being zone1 (v8 =
false → the rover is not in zone1, v8 = true → the rover is in
zone1);

• v9: low-level variable that senses the rover’s being in zone2 (v9 =
false → the rover is not in zone2, v9 = true → the rover is in
zone2);

In general, each low-level variable can take an infinite set of real
values; without loss of conceptual generality w.r.t. KoPro+’s abstrac-
tion capabilities, we will however assume that such values will be
translated to boolean values depending on the values captured by the
rover’s sensors. For instance, if the position tracking system (return-
ing the x and y coordinates of the rover) detects that the rover is
sufficiently close to the center of zone1, then the variable v8 (which
can be interpreted as a “proximity to zone1” signal) will be set within
the true range, while the zone2 proximity variable will be set within
the false range, and vice versa.

3.2 The Initial PDDL domain

The initial PDDL domain proposed for this scenario is supposed to
be automatically synthesized by means of the “KoPro+” abstraction

6 In general, a camera view field is composed by a much larger array of pixels;
we use a small set without loss of generality within the scope of this work.

procedure. In the following, we provide an example of utilization of
such PDDL domain, presenting a solution of a PDDL problem repre-
senting a typical mission goal that the rover is supposed to fulfill once
on the martian surface. The problem, expressed in PDDL syntax, is
the following:

(define (problem marsprob) (:domain RobGripper)
(:init (Symbol_1) (Symbol_4)

(Symbol_6) (Symbol_7) (Symbol_9))
(:goal (and (Symbol_8) (Symbol_2)))
)

This problem’s initial condition entails the rover starting from
zone1 (Symbol 1 = “rover in zone1” and Symbol 4 = “rover
not in zone2”), with the object not yet visible (Symbol 6 = “ob-
ject not in sight”), nor grasped (Symbol 7 = “object not grasped”)
or stowed (Symbol 9 = “object not stowed”). The problem’s goal
is stowing an object (Symbol 8 = “object is stowed”) in zone2
(Symbol 2 = “rover in zone2”).

The solution, obtained by submitting the problem to an off-the-
shelf planner, is the following:

SOLUTION PLAN:
opt_2: [moveBackFrom_1]
opt_1: [moveBeforeObject_2]
opt_4: [graspObject]
opt_5: [stowObject]

The rover moves from zone1 to zone3 (opt 2) and then from
zone3 to zone2 (opt 1) in front of the object, then grasps the object
using its grasping skill (opt 4), then stows the object (opt 5).

3.3 Automatically synthesizing the new PDDL
domain

Let us now suppose that, unknowingly to both the mission’s man-
agers and the rover’s designers, the rover encounters a concave, vase-
shaped object in zone2 during the exploration. According to the
rover’s high-level logic, the object is still recognized as an interesting
sample, and therefore the rover attempts to grasp it using the usual
grasping skill. Let us now suppose that the object is wider than the
maximum span of the gripper; in this case, the grasping action will
fail. The failure is immediately captured by the functional layer of
the architecture, and passed on to the LTA-M in the decisional layer.
The LTA-M is therefore called to decide whether the failure requires
a re-planning or a new learning process (see Section 2.1). If the LTA-
M opts for the second case, the failure thus detected will trigger a
new learning goal, e.g., driven by the surprise deriving from hav-
ing failed the execution of a skill whose reliability was held high.
The net result is that the rover will be autonomously prompted to
initiate a process to learn how to grasp the new object, leveraging
the GRAIL-IM module, as described in the next section. When the
learning process is terminated, a new skill will be acquired where the
rover is now capable to grasp the vase-shaped object (e.g., by pinch-
ing it by its edge, or by inserting the closed gripper in the vase and
then opening it, depending on the particular evolution of the learned
policy).

After the learning of the new skill and before the synthesis of the
new PDDL domain, a period of environment exploration or “execu-
tion rehearsal” of all the known skills (old and new) is commanded
by the LTA-M, in order to acquire all the information to train the
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new classifiers necessary to build the new domain7, as described in
Section 2.3. When the LTA-M decides that the amount of training
data is sufficiently high, the Cl(I) and Cl(E) classifiers’ training
is triggered anew for all the old skills as well as for the one newly
acquired. As a last step, the “KoPro+” abstraction procedure can be
commanded again by the LTA-M, and the new PDDL domain is au-
tonomously synthesized. In the remainder of this section, only the
differences between the old and the new PDDL domain will be high-
lighted, for reasons of space.

The first important difference between the two domain represen-
tations is the presence in the new domain of an extra symbol (i.e.,
Symbol 10) whose semantics is “Object is VASE”. This symbol
has been created as a consequence of the learning of the new grasp-
ing skill, and it is very important as it represents the symbolic ele-
ment that discriminates between the two different classes of objects
that the rover has encountered during its exploration, i.e., the only
class of objects the rover was supposed and trained to operate on (the
stone-shaped rocks), and the class of objects that the rover has in-
cidentally discovered (the vase-shaped objects) and whose grasping
had to be learned. The presence of this new symbol in the PDDL
high-level representation of the domain is of great importance as
it allows the planner to correctly synthesize plans that involve the
grasping of either kinds of object directly at symbolic level. In other
words, it allows the planner to produce plans that entail the utilization
of the correct grasping operator, depending on the class the object to
be grasped belongs to.

The second important difference is that in the new PDDL domain
a new high-level operator is created: graspObject 2, synthesized
as follows:

(:action opt_7
:parameters ()
:precondition (and (Symbol_0) (Symbol_10)
(Symbol_7) (Symbol_9))
:effect (and (Symbol_5) (not (Symbol_7)))

)

This operator is the high-level representation of the newly learned
low-level skill, and therefore it is the operator that will be used to
grasp the vase-shaped objects. Most interestingly, it can be readily
confirmed that the newly created Symbol 10 (“Object is VASE”)
has been added to the preconditions of the graspObject 2 op-
erator, thus addressing the fact that, in order for the new grasping
operator to be activated, the rover not only has to find itself in front
of an object (i.e., Symbol 0 must be verified), but it must also be a
vase-shaped object. The new PDDL domain will be further analyzed
in Section 3.5.

3.4 Autonomous learning of new skills

Implementation of GRAIL in the experimental scenario. We
now briefly describe the implementation of the mechanisms and
functions introduced in Section 2.2, and that are actually involved
in the current experimental scenario.

In the Robotic Arm scenario we assume that the system is already
endowed with a series of different goals and with the related skills
necessary to achieve them (see Section 3.1) from a generic starting
condition (the context). Here, a goal is intended as a state (or an ef-
fect) the system could try to achieve. If a state s is represented as a

7 In our system, the training information is stored in the usual Attribute Re-
lationship File Format (ARFF).

Figure 6: The rover, the Youbot arm and the gripper in the Robotic
Arm scenario. [Up] The robot grasping the cube-shaped rock. [Bot-
tom] The robot grasping the vase-shaped rock.

set of n features {f1, f2..., fn}, a goal can be a state where a cer-
tain feature (e.g. f2) assume a certain value x. In this section we are
focusing on the goal related to the grasping of an object positioned
in front of the robot, and therefore the goal discovery and goal se-
lection mechanisms can be considered “switched off”, so that the
system is continuously selecting the same goal. In general however,
the autonomous motivational system is fully operational in the archi-
tecture, providing the goal with the intrinsic motivations that would
drive the system in pursuing it, even when competing with other pos-
sible tasks. Different contexts are associated to each goal stored by
the system, which is thus able to compare them and recognise if a
new context is encountered. In this specific implementation, the con-
text is a set of sensory inputs the system is perceiving: the two differ-
ent visual inputs in Figure 5 might constitute two different contexts
when selecting an expert to perform a skill. In the particular case we
are tackling here, we simply assume that the system has one expert
for each context; whenever a new situation is encountered, a new
context-related “branch” is created together with a new expert that is
a copy of a previous expert used for the same goal. The experts con-
trol the arm and the gripper of the robot and, given the selected goal
and the current context, they learn the policy necessary to achieve it.
Experts are currently implemented through discrete-movement Dy-
namic Movement Primitives (DMPs, [8, 23]), i.e. dynamical models
that can generate a movement trajectory on the basis of end-position
parameters (controlling arm and gripper final postures) and shape pa-
rameters (controlling the shape of the trajectory). In particular, each
controller is composed of a set of 9 DMPs, each one used to con-
trol a different joint of the robotic arm and the activity of the gripper
(9 DoF). Training trials are composed of 10 attempts. For each at-
tempt, a Gaussian noise is generated and added to the parameters of
the DMPs to generate new trajectories. The noise is dependent on ex-
pert performance: the higher the performance, the smaller the noise.
After each attempt, DMPs are updated through Policy Improvement
Black Box (PIBB , [25]), that modifies the parameters of the DMPs
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Figure 7: The learning curve of the new skill. Red curves indicate the
performance of the best and the worse attempt (within a trial of 10
attempts). The green curve indicates the average performance within
the trial, and whiskers show the standard deviation. Because the per-
formance grows geometrically, the scale of the y axis is logarithmic.

composing the policy on the basis of a path-integral reward function
for each attempt.

When an expert is used, the representation of the related goal is
pre-activated so that GRAIL is able to check the achievement of
the goal through a goal matching mechanism. As described in Sec-
tion 2.1, when a failure occurs the LTA-M can allow GRAIL to in-
teract with the environment and try to acquire new competences. In
particular, if the robot tries to grasp a bigger object (“the vase”, see
Figure 6, bottom) with its pre-designed skill, it will not be able to ac-
complish the associated grasping goal. This will generate a sequence
of different effects: (i) a failure signal will be generated through the
goal-matching function; (ii) the context in which the system is work-
ing is checked and since having the vase in front of the robot is differ-
ent from having the rock, a new context is generated for the “grasp-
ing goal”, together with a new expert; (iii) a novelty based intrinsic
motivation signal is generated for that goal so that the system, even
when more goals are present at the same time, is biased to re-select
the same goal and possibly start to acquire the new skill needed in the
new context; (iv) the robot will start to attempt the grasping goal, and
the more the system will be able to improve its ability in generating
a goal matching from the new starting condition, the more a CB-IM
signal will be computed to drive the system towards focusing on the
same goal and properly acquire the new skill. In particular, the CB-
IMs are calculated on the basis of the system improvement in achiev-
ing a goal: in this sense, CB-IMs can be considered as a derivative
(over a certain time-window) of the system performance on a task.
This formulation leads to the effect that CB-IMs are present only
when they are needed: if the system is able to systematically gener-
ate the desired goal or, on the contrary, it is not able to improve its
competence, the IMs will eventually “fade away” and the robot will
start selecting other goals, or the control will pass again on the higher
level component of architecture.

Learning the new skill. Figure 7 shows the performance of the
robot in grasping the vase-shaped rock. After a first failure that trig-
gered the exploration and learning processes, the system starts trying
to achieve the goal from a new context (the vase-shaped rock never
encountered before). Using a copy of the expert trained to work with
the small rock, at the beginning the robot is not able to achieve the
goal. However, after the first successes due to exploratory noise, the
robot improves its competence in the first 5 trials. Nonetheless, at the
beginning the noise variance over the parameters of the DMPs is high
because the acquired competence is still growing: as a consequence,
the robot continues to explore through the parameters and its compe-

tence improvement is growing slowly. However, after other 5 trials
the system starts to get persistent improvements, resulting in higher
level of rewards and better average performance over the attempts.

Note that even when the robot has reached a proper competence
with the new skill (after 30 trials, see red dots in Figure 7) the perfor-
mance has still a high variance even though the variance of parame-
ters is low or zero. This is due to the fact that the simulation has an
inner, independent noise, caused by a non-stationary gap in commu-
nication between the controller and the simulator. Although on the
one hand this seems to impair a perfect learning of the skills, on the
other hand it might be considered as a replication of the interaction
between the controller and a real robot, where a little amount of noise
in the communication can never be avoided.

3.5 Planning over the new Robotic Arm PDDL
Domain

The correctness of the new autonomously synthesized domain is
proven by demonstrating that the agent is now able to reach the goal
of grasping the vase-shaped object in zone2, again starting from
zone1 (it can be easily shown that the previous goal of grasping
and stowing the stone-shaped object is still correctly planned with
the new domain, but we omit the analysis for reasons of space). Ob-
viously, the PDDL problem will be expressed exactly in the same
terms as the one presented in Section 3.2, under the assumption that
the vase-shaped objects can be found in zone2 only.

The obtained solution is the following:

SOLUTION PLAN:
opt_2: [moveBackFrom_1]
opt_1: [moveBeforeObject_2]
opt_7: [graspObject_2]
opt_5: [stowObject]

Again, it can be observed that the plan is correct; the rover moves
from zone1 to zone3 (opt 2), then moves from zone3 to zone2 in
front of the object (opt 1), then grasps the object using the correct
new operator (opt 7), and then the object is finally stowed (opt 5).

4 Discussion and Future Work

This paper presents an architectural design of an extended version of
the well-known three-layered architecture that typically implements
the behavior of a robotic system. The proposed architecture realizes
a Discover-Plan-Act cycle (DPA), thus enhancing the well-known
Sense-Plan-Act (SPA) paradigm with a more general open-ended
learning step (Discover). New functionalities have been added to the
classical three-layered architecture: (i) a goal-discovering and skill-
learning architecture (GRAIL) connected to the symbolic abstrac-
tion procedure (KoPro+) that creates a processing pipeline from the
continuous to the symbolic environment representation; (ii) a long-
term autonomy manager (LTA-M), that strategically coordinates the
achievement of both the external mission goals and the internal goals
generated by curiosity driven behaviors. The complete functionali-
ties of the system have been tested on a scenario inspired by a typical
planetary rover mission.

Despite the core of the proposed architecture is the integration of
an open-ended low-level learning process and a symbols abstraction
process, we believe that this integration is more than the mere sum
of its parts. Indeed, the composition of both previous features in a
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dynamic environment fosters the capability of integrating newly dis-
covered with previously abstracted knowledge, thus boosting the en-
vironment discovery capabilities, which is an invaluable added value
to long term autonomy. Notwithstanding the relative simplicity of the
experimental scenario, this paper presents for the first time a com-
plete and working architecture that spans from low-level autonomous
exploration, discovery, and skill learning to high-level automated rea-
soning, thus demonstrating the capability to autonomously learn new
symbols and operators by direct and autonomous interaction with the
environment.

The development of open-ended learning as an enabling factor
for long-term autonomy of robotic systems opens many possible
branches for future work. We are currently working on a probabilis-
tic version of the “KoPro+” abstraction procedure, capable of cap-
turing the stochastic nature of more general real-world phenomena.
A second interesting direction of work is the definition of extended
long-term autonomy strategies, i.e., the integration of symbolic plan-
ning and open-ended learning to increase the ability of one agent
to autonomously acquire new symbolic knowledge based on previ-
ously acquired symbolic models (bootstrap learning [5]). As a possi-
ble extension, it is possible to define strategies to generate symbolic
plans for collecting new intrinsic goals to achieve. Other strategies
can be designed for planning to reach different sets of preconditions
for learning the achievement of a given goal.
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