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Abstract. Motivated by security applications, where agent inten-
tions are unknown, actions may have stochastic outcomes, and an ob-
server may have an obfuscated view due to low sensor resolution, we
introduce partially-observable states and unobservable actions into a
stochastic goal recognition design framework. The proposed model
is accompanied by a method for calculating the expected maximal
number of steps before the goal of an agent is revealed and a new
sensor refinement modification that can be applied to enhance goal
recognition. A preliminary empirical evaluation on a range of bench-
mark applications shows the effectiveness of our approach.

1 Introduction
Goal recognition design (GRD) [7] is an offline task of redesigning
(either physical or virtual) environments, with the aim of efficient
online goal recognition [3, 13, 16]. In the past few years, researchers
have investigated the GRD problem under a varying sets of assump-
tions [8, 9, 10, 19, 18].

The ability to recognize an agent’s goal depends to a large ex-
tent, on the ability of an observer to monitor agent behavior. Moti-
vated, among other needs, by security applications such as airport
monitoring, where agent intended movements are unknown to an ob-
server and its current location is partially impaired due to low sensor
(e.g., GPS) resolution. Therefore, we envision an environment where,
while an agent is fully informed, an observer has access only to a
partially-observable environment where several nearby agent states
may be indistinguishable. In such a setting, changes in observations
are the only indication of activities performed by an agent.

In this work, we extend the GRD’s state-of-the-art to account
for partial observability (of an observer) in stochastic environments.
The new model, which we call Partially-Observable Stochastic GRD
(POS-GRD), assumes that agent’s actions are no longer observable
and agent’s states are partially observable. Moreover, agent activities
may have a stochastic outcome. For example, an agent may attempt
to pass through doors that are locked at times.

Example 1. To illustrate the setting of this work, we present an ex-
ample of a typical real-world security monitoring applications, po-
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Figure 1. Marauder’s Map Before (top) and After (bottom) Potter’s
Modification Spell (partial view)

sitioned in the wizarding world of Harry Potter, where magic is the
latest technology. Potter is back at the Hogwarts School of Witchcraft
and Wizardry. He is tasked with establishing a security system that
can detect as early as possible anyone who enters the school from
the main entrance, heading towards Professor McGonagall’s office.
Upon entering the building, a stochastic staircase chamber is used.
Therefore, a person aiming to move to a certain part of the school
may find herself at a different location. For example, when heading to
the dining hall one may find herself at the hallway. Figure 1(bottom)
provides a partial view of Hogwarts, illustrating the example by de-
picting locations as nodes and transitions (and their probabilities)
as edges.

A GRD task is constructed of two subtasks, namely (1) analyzing
a goal recognition environment using an efficacy measure and (2)
improving an environment by applying a set of design modifications.
Two efficacy measures were introduced in the literature. Worst case
distinctiveness (wcd) [7] captures the maximum number of steps an
agent can take without revealing its goal. Expected case distinctive-
ness (ecd) [18] weighs the possible goals based on their likelihood
of being the true goal. As for the second subtask, multiple redesign
methods were proposed, including action removal and sensor refine-
ment [10], which decreases the degree of observation uncertainty on
tokens produced by agent actions.

Example 1. (cont.) To illustrate environment improvement, consider
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once more our security expert, Harry Potter, who intends to use a
magical artifact called the Marauder’s Map that, just like a real time
Location System, reveals the whereabout of all witches and wizards
at Hogwarts. The map can show where witches and wizards are, but
due to some dark magic (that muggles sometimes tend to associate
with poor system maintenance) its resolution has been reduced and
some places, like the hallway and Professor McGonagall’s office are
no longer distinguishable (Figure 1(top)).

Potter can cast exactly one modification spell to improve the reso-
lution of some part of the map. Knowing the stochastic nature of the
stairs, Potter realizes that his best choice is to cast the spell to create
separate observations to the hallway and Professor McGonagall’s
office (Figure 1(bottom)). This will guarantee that anyone ending up
at the hallway and heads back to the entrance has the intention of
reaching Professor McGonagall’s office, and such a recognition can
occur after that person takes at most two actions.

In this work we offer solutions to both subtasks in the new prob-
lem setting of POS-GRD. First, we make use of Markov Decision
Processes (MDPs), augmented with goal information, to compute ef-
ficiently wcd in a partially-observable stochastic environment. Then,
we introduce a new environment modification that refines sensors
over states (rather than actions), as an efficient environment redesign
mechanism, in addition to the use of action removal modification,
which has been introduced for several GRD models before.

The contribution of this work is threefold. First, we present in Sec-
tion 3 a model of a new variant of the GRD problem that was not
considered before. POS-GRD supports decision making in environ-
ments where observers have only partial observability and actions
may have stochastic outcomes. This setting removes some restric-
tions that exist in the literature on the nature of observability in an
environment and provides a framework that is coupled with many re-
alistic assumptions. The model is given in a general form that does
not require agent optimality. Our second contribution (presented in
Section 4) involves a novel approach of integrating partial observ-
ability into an augmented MDP, proposed by Wayllace et al. [18],
to compute wcd efficiently. The use of augmented MDPs is tailored
for agents that use optimal policies. Finally, our third contribution
(also presented in Section 4) involves a new effective environment
modification (sensor refinement over states) to reduce wcd.

Our preliminary empirical evaluation (Section 5) shows promise
when it comes to the effectiveness of the proposed sensor refinement
modification in reducing wcd in partially-observable stochastic set-
tings.

Section 2 introduces the principles of a stochastic short path
markov decision process, Section 6 discusses related work and Sec-
tion 7 concludes the paper.

2 Background

A Stochastic Shortest Path Markov Decision Process (SSP-MDP)
[11] is represented as a tuple 〈S, s0,A,T,C, g〉. It consists of a set
of states S; a start state s0 ∈ S; a set of actions A; a transition func-
tion T : S × A × S → [0, 1] that gives the probability T (s, a, s′)
of transitioning from state s to s′ when action a is executed; a cost
function C : S × A × S → R that gives the cost C(s, a, s′) of
executing action a in state s and arriving in state s′; and a set of goal
states g ⊆ S. The goal states are terminal, that is, T (s, a, s) = 1 and
C(s, a, s) = 0 for all goal states s ∈ g and actions a ∈ A.

An SSP-MDP (MDP hereinafter) must also satisfy the following
two conditions: (1) proper policy existence: there is a mapping from

states to actions with which an agent can reach a goal state from any
state with probability 1; (2) improper policy cost: improper policies
incur a cost of ∞ at states from which a goal cannot be reached with
probability 1.

Solving an MDP involves finding an optimal policy π∗, i.e., a map-
ping of states to actions, with the smallest expected cost. We use the
term optimal actions to refer to actions in an optimal policy. While a
policy maps every state to an action, a partial policy maps a subset of
states to an action — that is, a partial policy π : S → A∪{⊥} maps
each state to either an action or to ⊥, denoting it is undefined for that
state. In what follows, when referring to partial policies, we shall as-
sume proper policies only. We denote the set of states on which a
partial policy π̂ is defined by Sπ̂ := {s ∈ S | π̂(s) 
= ⊥}.

Given a policy π and a starting state s0, Vπ(s0) =∑
s′∈S T (s, π(s), s′)

[
C(s, a, s′) + Vπ(s

′)
]

is the expected cost of
following policy π. The expected cost of an optimal policy π∗ for the
starting state s0 ∈ S is the expected cost V (s0), and the expected
cost V (s) for all states s ∈ S is calculated using the Bellman equa-
tion [2], choosing for each state s the action that minimizes V (s):

V (s) = min
a∈A

∑
s′∈S

T (s, a, s′)
[
C(s, a, s′) + V (s′)

]
(1)

Value Iteration (VI) [2] is a fundamental algorithm for solving
an MDP using an expected cost value function V . Methods such as
Topological VI (TVI) [4] guarantee efficient execution of the VI al-
gorithm.

3 Partially-Observable Stochastic GRD

We next define the Partially-Observable Stochastic GRD (POS-
GRD) problem, where (1) actions are non-observable; and (2) states
are partially observable, so that several states may be indistinguish-
able from one another. The degree of observation uncertainty is re-
lated to the resolution of sensors in the problem.

Due to low sensor resolution, more than one state can be mapped
to the same observation. We demonstrated it in Example 1, where
the hallway and Professor McGonagall’s office are no longer distin-
guishable (Figure 1(top)). Figure 2(a) illustrates a more elaborated
example with states (annotated nodes), actions (annotated edges),
and observations (annotated shaded areas). Goals are marked with
double-lined circles. Each edge is labeled with an action name, and
an action with a stochastic outcome is represented by a multi-head
arrow, with probabilities associated with each arrow head. We also
mark the intended goal of an action using arrow width, where thin ar-
rows represent intended goal g0 and thick arrows represent intended
goal g1. The observation model we propose is different from others
such as HMM or POMDP as we assume actions are not observable at
all. The observer only observes a transition between two states that
are associated with different observations. Any transition between
states that are mapped to the same observation is undetectable. This
is suitable for sensors that produce a continuous reading of the ob-
served state and settings in which the agent can spend an arbitrary
amount of time in each state.

We model a POS-GRD problem using two components, namely a
goal recognition model and a design model. For the latter, modifica-
tions create a new goal recognition model from an existing one. We
formulate each component separately before introducing the POS-
GRD problem.
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Figure 2. A Running Use-Case

3.1 Partially-Observable Stochastic Goal
Recognition

Definition 1. A partially-observable goal recognition model with
stochastic action outcomes is a tuple PO = 〈M,G, N〉 where
• M is an MDP with positive costs C and no goal;
• G is a set of possible goals, that is for each g ∈ G, g ⊆ S is a

possible goal of M ; and
• N is a sensor model. Each state s is associated with an obser-

vation N(s), which we refer to as the projected observation of s.
The set S is partitioned into observation sets O1, ...,On such that
∀s, s′ : N(s) = N(s′) iff ∃i : s, s′ ∈ Oi.

Definition 1 generalizes the stochastic goal recognition model [19]
by including a sensor model N that defines the degree of partial ob-
servability of states. To illustrate the model, consider Figure 2(a),
where G = {g0, g1}, O2 = {S1, S2}, and N(S1) = N(S2).

Given a partially-observable goal recognition model with stochas-
tic action outcomes (Definition 1), we next define expected wcd,
starting with partial policy containment.

Definition 2. A partial policy π̂ is contained in a partial policy π̂′

(marked π̂ ⊆ π̂′) if Sπ̂ ⊆ Sπ̂′ and ∀s ∈ Sπ̂ , π̂(s) = π̂′(s).

To define the relationship between a partial policy and a possible
goal, we denote the set of all legal policies for a goal g by Πleg(g).
For optimal agents, Πleg(g) = Πopt(g) is the set of all optimal poli-
cies with respect to goal g.

Definition 3. A partial policy π̂ satisfies a goal g if ∃π ∈ Πleg(g)
s.t. π̂ ⊆ π. The set of goals satisfied by a partial policy π̂ is marked
by G(π̂).

A trajectory �τ = 〈s0, a1, s1, . . . , an, sn〉 is a realization of an
agent’s policy, denoted by alternating actions an agent performs
and states reached by an agent. We use trajectory indices to re-
late an action with its resulting state. A trajectory �τ is feasible if
∀i : T (si, ai+1, si+1) > 0. We next relate trajectories and goals.

Definition 4. A feasible trajectory �τ = 〈s0, a1, s1, . . . , an, sn〉 sat-
isfies a possible goal g if ∃πg ∈ Πleg(g) s.t. ∀i ∈ {0 . . . n − 1},
si ∈ Sπg and ai+1 = πg(si).

Partial observability is materialized by limiting the observer to
only see changes in emitted observations. To model this, we define
an observable projection of a trajectory, where · denotes the concate-
nation of two sequences.

Definition 5. The observable projection of a trajectory �τ =
〈s0, a1, s1, . . . , an, sn〉 is: obs(�τ) = obs(〈s0 . . . sn〉) =⎧⎪⎨
⎪⎩
〈N(s0)〉 n = 0

obs(〈s0 . . . sn−1〉) n > 0 ∧N(sn−1) = N(sn)

obs(〈s0 . . . sn−1〉) · 〈N(sn)〉 n > 0 ∧N(sn−1) 
= N(sn)

For example, consider Figure 2(a). The observable projec-
tion of trajectory �τ = 〈S0, a1, S2, a3, S1, a5, g0〉 is obs(�τ) =
〈N(S0), N(S1), N(g0)〉.
Definition 6. An observable projection o satisfies a possible goal g
if there exists a feasible trajectory �τ that satisfies g and o = obs(�τ).

We denote by G(π̂), G(�τ), and G(o) the set of goals satisfied by
a partial policy π̂, trajectory �τ , and observation sequence o, respec-
tively. Finally, we are ready to define non-distinctiveness.

Definition 7. A partial policy π̂ (respectively trajectory �τ or obser-
vation sequence o) is non-distinctive if it satisfies more than one goal
(|G(π̂)| > 1 (respectively |G(�τ)| > 1 or |G(�τ)| > 1)).
If a partial policy (respectively, trajectory or observation sequence)
is not non-distinctive we say it is distinctive.

We now (re)define the expected worst case distinctiveness (wcd)
for partially-observable models with stochastic actions. Distinc-
tiveness cost is the total cost of the maximal prefix of a trajec-
tory whose observable projection is non-distinctive. A partial pol-
icy π̂ induces a distribution on trajectories, in which the prob-
ability of trajectory �τ = 〈s0, a1, s1 . . . , an, sn〉 is Pπ̂(�τ) =
Πn

i=1Iπ̂(si−1)=ai
P (si|si−1, ai), where I is the indicator function

that takes value 1 when π̂(si−1) = ai and 0 otherwise. Therefore,
the expected wcd of a goal recognition model is the (legal) partial
policy with the maximal expected distinctiveness.

Definition 8. The distinctiveness cost DC(�τ) of a trajectory �τ =
〈s0, a1, s1 . . . , an, sn〉 is

max
i∈{0...n} s.t. |G(obs(〈s0,...,ai,si〉))|>1

i∑
j=1

C(sj−1, aj , sj) (2)

The expected distinctiveness ED(π̂) of a partial policy π̂ is the
expected distinctiveness cost of its trajectories,

∑
�τ Pπ̂(�τ)DC(�τ).

The expected worst case distinctiveness of a partially-observable
goal recognition model with stochastic action outcomes PO is
wcd = maxπ̂∈Π̂leg(G) ED(π̂), where Π̂leg(G) =

⋃
g∈G Π̂leg(g).

Two notes are in order here. First, for an empty trajectory (i = 0),
distinctiveness cost is defined to be 0. Second, DC(�τ) and ED(π̂)
are well-defined for proper policies (as clarified in Section 2).
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3.2 POS-GRD Problem Definition
Having defined our optimization measure (expected wcd) we can
now discuss the design of a goal recognition model, using modifi-
cations, to minimize expected wcd.

Definition 9. A partially-observable goal recognition design (POS-
GRD) problem is given by the pair T = 〈PO0,D〉, where

• PO0 is an initial partially-observable goal recognition model with
stochastic action outcomes, and

• D = 〈M, δ, φ〉 is a design model where:
• M is a set of applicable modifications,
• δ is a modification function, specifying the effect of modifica-

tions on the partially-observable goal recognition model with
stochastic action outcomes, and

• φ is a constraint function that specifies the allowable modifica-
tion sequences.

We focus on two types of modifications. The first, action removal
is defined as in [7], and removes an action from the set of applicable
actions. The second, state sensor refinement (or sensor refinement
for short), is defined next, allowing to distinguish between states pre-
viously mapped to the same observation. State sensor refinement is
different from the sensor refinement reported in [10], which was de-
fined over actions.

Definition 10. A sensor model N ′ is a refinement of sensor model
N if ∀si, sj : N ′(si) = N ′(sj) =⇒ N(si) = N(sj) (but not
necessarily vice versa).

Let POm represent the model that results from applying m ∈ M
to PO and let Nm and N denote the sensor models of POm and
PO, respectively.

Definition 11. A modification m is a state sensor refinement modi-
fication if for any partially-observable goal recognition model with
stochastic action outcomes PO, POm is identical to PO except that
Nm is a refinement of N .

Problem 1 (The POS-GRD problem). Let PO0 be an initial
partially-observable goal recognition model with stochastic action
outcomes. Find a sequence of modifications �m = 〈m1 . . .mn〉, such
that �m is feasible (that is, φ(�m) = �), and which minimizes the
expected wcd of the resulting model POΔ

0 := (POm1
0 )...mn .

4 Solving POS-GRD Problems
G(π̂), G(�τ), and G(o), the sets of goals satisfied by a partial pol-
icy π̂, trajectory �τ , and observation sequence o, respectively, demon-
strate a non-Markovian behavior, which depends not just on the cur-
rent state but also on what we have observed in the past. Intuitively,
this is because once goal g has been eliminated as a possible goal
(by observing the agent performing an action that is not part of any
optimal policy with respect to g), then g never becomes a possible
goal again, even if the agent executed an action that is optimal with
respect to g. We therefore propose the use of augmented MDPs (first
introduced in [18]) to capture the non-Markovian behavior in a par-
tial observability setting.

4.1 Augmented MDP for POS-GRD
Let PO = 〈M,G, N〉 be a partially-observable goal recognition
model with stochastic action outcomes (Definition 1), with M =

〈S, s0,A,T,C, ∅〉 being an MDP with positive costs C and no goal.
An augmented MDP adds a Boolean variable posg for each possible
goal g, to keep track of whether g has been eliminated as a possible
goal or not. The terminal states of this MDP are those where there is
exactly one possible goal, with transitions and costs defined accord-
ing to the original MDP.

We account for partial observability by overlaying a sensor model
on the augmented MDP. We first define a notion of connectivity in
which an agent can transition from state s to state s′, while following
a policy that is optimal with respect to some goal g ∈ G, without
being observed.

Definition 12. State s is unobservably connected to state s′ with
respect to a set of possible goals G if there exists a policy π ∈
∪g∈GΠleg(g), and a trajectory �τ = 〈s0, π(s0), s1, π(s1), . . . , sn〉
with s = s0 and s′ = sn, such that N(s0) = N(s1) = . . . =
N(sn), and with T(si, π(si), si+1) > 0 for 0 ≤ i ≤ n.

We denote by ucG(s) the set of states s′ such that s is unob-
servably connected to s′ with respect to G, e.g., in Figure 2(c),
ucG={g0,g1}(S11) = {S11, S21}.

In a fully-observable setting, a transition from s to s′ using an
action a that is not part of an optimal policy to goal g, results
in the removal of g from the set of possible goals. However, if
N(s) = N(s′), the transition cannot be observed and g cannot be
eliminated. Moreover, even when N(s) 
= N(s′), there may be an-
other transition from ŝ ∈ uc{g}(s) to ŝ′ using action â, such that
T(ŝ, â, ŝ′) > 0, N(s) = N(ŝ), N(s′) = N(ŝ′), and â is an op-
timal action at ŝ with respect to g. In this case, an observer cannot
distinguish between the two transitions and as a result g still cannot
be eliminated from the set of possible goals. As an example, con-
sider Figure 2(a) and assume a fully-observable scenario (ignoring
the shaded areas). Actions a3 and a4 (compensating actions for the
stochasticity of actions a1 and a2, respectively) reveal the agent’s
goal since each one is optimal for only one (different) goal. In the
partially-observable scenario of Figure 2(a), actions a3 and a4 are not
observed as N(S2) = N(S1) and even though N(S0) 
= N(S1),
if a1 is executed, goal g1 cannot be eliminated because a2, optimal
for g1, also transitions from N(S0) to N(S1) and they cannot be
distinguished.

Taking into account the observation above, the augmented MDP
for POS-GRD Πaug = 〈S′, s′0,A

′,T′,C′, g〉 is defined as follows:

• S′ = S × {F, T}|G|: for each s ∈ S we create 2|G| possi-
ble states, corresponding to all subsets of possible goals. We use
w(s′) = s to denote that s is the state of the world at s′ ∈ S′.

• s′0 = s0 · 〈T . . . T 〉: initially all goals are possible.
• A′ = A (action labels remain unchanged).
• T′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (s, a, s′) (s /∈ g)∧ (3)

∀i ∈ {1 . . . , n}(pos′i = (posi∧ (4)(
N(s) = N(s′) (5)

∨(∃π ∈ Πleg(gi) | π(s) = a) (6)

∨(∃π ∈ Πleg(gi) ∧ ∃ŝ ∈ uc{gi}(s)∧ (7)

∃ŝ′ : T (ŝ, π(ŝ), ŝ′) > 0∧ (8)

N(s) = N(ŝ) ∧N(s′) = N(ŝ′))
)
)) (9)

0 otherwise (10)

To compute whether the probability that executing action a when
in state s with 〈pos1 . . . posn〉 (where posi indicates whether goal
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gi is possible) leads to state s′ with 〈pos′1 . . . pos′n〉 is equal to
T (s, a, s′), we test the observer belief regarding each gi according
to the following cases. A goal cannot become possible (Line 4).
A goal remains possible if s′ is unobservably connected (Defi-
nition 12) to s (Line 5) or a is optimal with respect to the goal
(Line 6). Finally, lines 7-9 cover the case of undistinguishable ac-
tions discussed above.

• C′(s · 〈pos1 . . . posn〉, a, s′ · 〈pos′1 . . . pos′n〉) = −C(s, a, s′):
action costs flip sign to find policies with maximal cost in the orig-
inal MDP, and

• g = {s · 〈pos1 . . . posn〉 | ∃i : posi = T ∧ ∀j 
= i : posj = F}:
terminal states are those where exactly one goal remains possible.

Lemma 1. Let π′ be any policy for the augmented MDP Πaug , and
define the non-distinctive partial policy π̂ for PO by:

π̂(s) =

{
a π′(s′) = a ∀s′ ∈ S′ s.t. w(s′) = s

⊥ otherwise
(11)

Then Vπ′(s0) = ED(π̂), that is, the value of policy π′ in Πaug at
s0 is equal to the expected distinctiveness of π̂ in PO.

Lemma 1, proof of which we refrain from giving here for space
consideration, connects the expected distinctiveness cost of a partial
policy value to the expected reward from a policy in the augmented
MDP. The following corollary establishes the connection to the ex-
pected wcd, leading to the algorithm to be detailed next for efficiently
computing the expected wcd for optimal agents.

Corollary 1. Let π′ be an optimal policy for the augmented MDP
Πaug , and let π̂ be as defined in Eq. 11, then Vπ′(s0) is equal to the
expected wcd.

4.2 Constructing an Augmented MDP
Recall that expected wcd is defined as the maximal cost over all le-
gal (optimal when using MDP’s optimal policies) partial plans that
aimed at more than a single goal (Definition 8). To avoid policy enu-
meration, we propose to consider all optimal policies simultaneously
by creating a single augmented MDP and maximize the expected cost
instead of minimizing it (as in MDPs). The number of augmented
states is O(|S| × 2|G|), which is exponential in the number of model
goals. However, not all augmented states are reachable, which pro-
vides us with an opportunity not to generate them all when comput-
ing expected wcd and redesigning the model. We offer next a method
to generate exactly the augmented states needed for expected wcd
computation, solving a single augmented MDP.

The proposed method has the following four steps: (1) Find all
optimal policies; (2) Join them and remove infinite cycles to avoid
computing the expected distinctiveness cost for each policy; (3) Con-
struct the augmented MDP for reachable states taking partial observ-
ability into account; and (4) Solve this augmented MDP to compute
the expected wcd. We next provide details of each of these steps.
Finding Optimal Policies: To identify Πopt(G), we separately solve
an MDP for each goal. Using V ∗(s0), the optimal expected cost at
the starting state, we identify all optimal policies per goal. Figure 2(a)
shows two optimal policies, one per goal, using two different edge
widths (optimal policy to g1 is marked in bold).
Removing Cycles: Combining all optimal policies into a single aug-
mented MDP possibly creates cycles that are the result of joining two
or more policies. Solving such an augmented MDP leads to optimal
policies that choose to remain within the cycle to achieve an infinite

maximum expected cost. For example, Figure 2(a) contains a cycle
of actions a3 and a4, which belong to different optimal policies and
therefore will never be executed together by an optimal agent. There-
fore, we eliminate such cycles.

As a first step, we model the agent’s true behavior using aug-
mented MDPs assuming a fully-observable case. This step guaran-
tees that there are no infinite loops [18]. In this step, states with only
one possible goal that were not goal states are not yet defined as ab-
sorbing states. For each augmented state, the set of goals becomes
part of the state ID. In what follows, we refer to this MDP as cycle-
free MDP and to the sets of possible goals as FO possible goals.

For example, consider Figures 2(a)-(b). State S0 is augmented
with goals g0 and g1 (denoted as subindex 01), then each action is
analyzed to generate successors. When a1 (optimal for goal g0) is
examined, states S1 and S2 are augmented with goal g0, and when
action a2 (optimal for goal g1) is analyzed, S1 and S2 are augmented
with goal g1. Later, when action a3 is analyzed, no new state needs
to be generated as S1 augmented with goal g0 was already created;
a similar situation occurs with a4. It is worth noting that all the aug-
mented states generated from the same state (e.g., S1 or S2) project
to the same observation. Also, it is worth noting that after removing
the cycles in the use-case, the resulting MDP has separate distin-
guished paths for each goal.

Constructing augmented MDP for POS-GRD: To generate the
set of possible goals and their corresponding transition function for
reachable states of the cycle-free MDP, we use an iterative 7-step pro-
cedure, reaching each non-distinctive augmented state: (1) Augment
the initial state with all possible goals; (2) Find all unobservably con-
nected states and augment them with the same set of goals; (3) Find
all immediately connected states projecting successors not belong-
ing to the unobservably connected states; (4) Group them according
to their observations; (5) Augment states in each group; (6) Keep
non-duplicated augmented states; and (7) Update the transition func-
tion. The resultant transition function is equivalent to the augmented
transition function (Section 4.1) for all augmented reachable states.

To illustrate the procedure, consider the resulting augmented MDP
in Figure 2(c). Possible goals for a state are shown as indices to the
ID of their observations. The start sate S001 is augmented with goals
g0 and g1 (Step 1). States S10, S20, S11, and S21 are generated
and since (1) actions a0 and a1 are each optimal for different goals;
(2) both of them transition from O1 to O2; and (3) they are non-
observable, then all these states are augmented with goals g0 and g1
(Steps 3 to 5). The transition function in this case does not change
(Step 7). When S1 and S2 are examined, all their unobservably con-
nected states should be first generated and augmented with the same
set of goals. However, in this case, no new state needs to be created.
Later, other connected states not projecting both g0 and g1 are gen-
erated and augmented following the same procedure.

Algorithm 1 presents a pseudocode for constructing an augmented
MDP for POS-GRD,7 receiving as input a goal recognition model
and a set of optimal policies. The algorithm initially builds a cycle-
free MDP (lines 1-3) and initializes the output variables and a stack
(line 4). Then, the 7-step procedure starts. Step 1 is executed in line
5 and the stack is used to find successors in a DFS-fashion (lines
6-26). Each augmented state in the stack is explored to generate its
immediate successors (lines 8-10). Following steps 2 and 3, the al-
gorithm finds and augments successors (lines 11-12). The set of pos-
sible goals to temporarily augment a successor found in step 3 cor-
responds to the intersection of its predecessors’ goals with the set of

7 Source code is available at https://github.com/cwayllace/POS-GRD
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goals for which the action executed to arrive at it is optimal (line 13).
Next, successors are grouped as specified in step 4 (lines 14-15) and
the final set of goals per group is generated (lines 18-19). The algo-
rithm uses this set to augment states in that group (step 5, line 21).
If the newly augmented state was not explored before, it is added to
the stack for future exploration (step 6, lines 23-24), and to the set of
augmented goals if it is distinctive (line 25). Finally, the augmented
transition function is updated in line 26 (step 7) and once all reach-
able augmented states have been explored, the algorithm returns all
parameters of an augmented MDP.

Algorithm 1: AugMDP-PO(M,G,N,Πopt(G))

1 〈ŝ0, Ŝ, T̂ , Ĝ〉 ← AugMDP -FO′(M,G,Πopt(G))

2 foreach ŝ ∈ Ŝ do
3 if ŝ = s · 〈pos1 . . . pos|G|〉 = s · 〈G′〉 then

ŝ ← sG′;N(ŝ) ← N(s);

4 G′, S′, A′, Stack ← ∅; T ′ ← null

5 s′0 ← ŝ0 · 〈Ĝ〉
6 Stack.push(s′0)
7 while stack 
= ∅ do
8 s′ ← ŝ · 〈Ĝ′〉 ← Stack.pop()
9 Keys ← ∅;Map ← null

10 foreach T̂ (ŝ, π(ŝ), ŝ′) > 0|π(ŝ) ∈ Πopt(Ĝ′′) do
11 if N(ŝ) = N(ŝ′) then s′′ ← ŝ′ · 〈Ĝ′〉;
12 else
13 s′′ ← ŝ′ · 〈Ĝ′ ∩ Ĝ′′〉
14 Keys ← Keys ∪ {N(s′′)}
15 Map(N(s′′)) ←

Map(N(s′′)) ∪ {〈s′, π(ŝ), s′′〉}
16 foreach k ∈ Keys do
17 Goals ← ∅
18 foreach 〈s′, π(ŝ), ŝ′′ · 〈Ĝ′′〉〉 ∈ Map(k) do
19 Goals ← Goals ∪ Ĝ′′

20 foreach 〈s′, π(ŝ), ŝ′′ · 〈, Ĝ′′〉〉 ∈ Map(k) do
21 s′′ ← ŝ′′ · 〈Goals〉
22 if s′′ /∈ S′ then
23 S′ ← S′ ∪ {s′′}
24 Stack.push(s′′)
25 if |Goals| ≤ 1 then G′ ← G′ ∪ {s′′};

26 T ′(s′, π(ŝ), s′′) ← T (ŝ, π(ŝ), ŝ′)

27 return (〈s′0, S′, A′, T ′, G′〉)

Computing wcd: The maximum expected cost can be found using a
TVI-like algorithm [4] to solve the augmented MDP where instead
of using Eq. 1, the minimization condition is replaced with a maxi-
mization condition, due to the reversal of the cost function C′ in the
augmented MDP, see Section 4.1.

4.2.1 Discussion of Correctness and Complexity

Step 6 ensures that no duplicated augmented state is generated.
Therefore, at most O(|S| × 2|G|) augmented states are generated;
Here, S is the set of states of the cycle-free MDP and G is the set of
goals. However, since no successors are generated for states with less
that 2 observable goals, and only reachable states are considered, the
actual number of generated augmentes states is lower.

An augmented state is expanded at Step 2 only once and only if
it is non-distinctive. At each iteration, all successors are ready to be

analyzed and their respective augmented transition function has been
created/updated.

Steps 3-5 guarantee that the resultant augmented MDP structure is
unique and does not depend on the type of traversal of the cycle-free
MDP.

The complexity of constructing an augmented MDP is therefore
O(|Ξ|+Λ), where Ξ is the set of augmented reachable states and Λ
is the average number of state-action successors.

4.3 Reducing Expected wcd

Having shown our proposed method for computing expected wcd in
a partially observable stochastic setting, we now propose two modifi-
cation types, namely action removal and sensor refinement, to reduce
the expected wcd of a given model. Action removal has been shown
multiple times in the Goal Recognition Design literature and here we
show how it is implemented in the stochastic setting under partial
observability. In addition, we present a new modification of sensor
refinement over states. We note that modifications to the model are
introduced to the MDP, which is augmented once more to compute
the revised expected wcd.

Action Removal: In this modification, up to k actions are removed
with the objective of minimizing expected wcd. The naı̈ve ap-
proach would be to remove all combinations of up to k actions
and compute the expected wcd for each combination. To prune
the search space, we perform an iterative search, working our way
up from a single action to multiple actions. We first remove every
legal action in turn. Any action whose removal leads to unreach-
able goals is pruned, as any combination with such an action will
not change the expected wcd value. Next, we iteratively increase
the action set size and repeat the same analysis, seeking a set of
actions whose removal leads to unreachable goals and prune any
combination containing it.

Sensor Refinement: Partial observability reduces an observer’s
ability to distinguish agent states. The design objective is thus to
identify sensors whose refinement yields expected wcd improve-
ment under budget constraints. At the extreme, refining all sensors
leads to a fully-observable model, yet we note that in our model,
even with all sensors refined actions are still unobservable.
We consider a sensor refinement modification that refines a single
state to make it fully observable (Definition 11). Hence, if an agent
is in any of the refined states, its state is known with full certainty.
Figure 2(d) shows the augmented MDP after S1 is refined (lead-
ing to the refinement of S2 as well) and mapped to a new obser-
vation O5, allowing the observer to distinguish it from S2. After
refinement, expected wcd is reduced to 2.0. Note that all distinc-
tive states (S21, S10, and the two goal states) are terminal. Also,
states can be augmented with different sets of possible goals. As
an example, state S10 has two augmented versions: one with both
goals O501, and the other with goal g1 (O541). The observer’s
knowledge is represented through the set of possible goals, which
changes according to the observed sequence. Therefore, sequence
〈O1, O54, O2〉 reveals the agent’s true goal whereas sequence
〈O1, O2〉 does not. Finally, the augmented model represents every
possible trajectory an agent can traverse.
A naı̈ve approach for using this modification involves finding all
combinations of up to k states to refine, compute a new expected
wcd for each combination, and choose the combination that mini-
mizes its value. However, note that once refining a state, if the set
of possible goals of any other state does not change, then refining
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that state would not affect wcd as the structure of the augmented
MDP (i.e., set of augmented goals and transition function) remains
the same. Given this observation, we propose the use of two prun-
ing methods to improve scalability.
First, we identify and prune from any combination states that, if
refined, are guaranteed not to change the augmented MDP struc-
ture. We prune states whose all augmented versions have the same
set of goals under full and partial observability, and whose prede-
cessors and successors share the same set of possible goals, then
refining that state would not affect wcd”. Finding those states is
linear in the size of the augmented states and it requires to store
the set of goals found assuming full observability while the aug-
mented MDP is being built (FO possible goals).
Second, we leverage the fact that the best solution is a fully-refined
model. Therefore, we refine all states within a single observation
and if the expected wcd is not reduced, we prune all combinations
of states that are part of the observation. This step requires solv-
ing the augmented MDP o times where o is the number of obser-
vations. However, the number of pruned combinations is usually
much larger than o.

5 Empirical Evaluation
Our experiments aim at evaluating: (1) algorithms scalability and (2)
effectiveness of pruning. In what follows we introduce the evaluation
datasets (Section 5.1), the experiment settings (Section 5.2), and an
analysis of the results (Section 5.3).

5.1 Data
We evaluate our algorithms on five domains:

1 GRID-NAVIGATION, a grid world where the agent has a 90%
chance of success when moving to an adjacent cell.

2 ROOM, a grid world where actions and transition probabilities are
defined individually for each state.

3 BLOCKSWORLD, with a 25% probability of slippage each time a
block is picked up or put down. Each block has a color and the
goal is specified in terms of colors.

4 BOXWORLD, a modified LOGISTICS domain where the only ac-
tion that introduces uncertainty is “drive-truck” and there is a 20%
probability that the truck ends up in one of two wrong cities.

5 ATTACK-PLANNING, a cybersecurity domain where each host on
a network has a set of stochastically assigned vulnerabilities and
a random subset of hosts has files that an attacker may want to
access [17]. The initial state contains random user credentials that
the attacker obtained (e.g., through phishing attacks). An attacker
can perform one of three types of malicious actions:

– Exploit existing vulnerabilities in a host to gain read access
to the target file or, in case of failure, compromise the host.
The success probability is derived from the industry standard
Common Vulnerability Scoring System [12].

– Update gains network access to a host connected to a compro-
mised host for which the attacker has network access. Update
has an 80% success probability.

– Access a target file if it has read access at the host where the
file is located. Access is deterministically successful.

To induce partial observability in the grid domains, we map up to
four contiguous states to the same observation. For BLOCKSWORLD,
observability was affected in two ways: either a random number of
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Figure 3. Average Percentage of Reduced Combinations

blocks were non-observable, or the effects of actions involving some
randomly selected blocks were hidden. In the BOXWORLD domain,
trucks or airplanes may be unobservable in some random cities. For
ATTACK-PLANNING, initial sensor configurations per instance de-
fine whether the effect of update is observable for a given host.

5.2 Settings

Experiments ran with a budget (of allowed modifications) of k ∈
{1, 2, 3} in a total of 40 instances. We consider three combination of
modifications: (1) sensor refinement only; (2) action removal only;
and (3) both. wcd computation uses the cycle-free MDP to generate
the augmented MDP. Experiments were conducted on a 2.10 GHz
machine with 16 GB of RAM and a timeout of 2 days.

5.3 Preliminary Results

We first analyze the fraction of instances where wcd is reduced for
each combination of modifications and budget. Overall, 83.3% of
the instances had a reduced wcd with a budget of k = 1, 97.2% with
k = 2, and for all the 64% of instances that were able to finish using
k = 3, wcd was reduced. Action removal (56.8%) does not per-
form as well as sensor refinement (78.9%). The maximum reduction
obtained was from 79 to 48 for action removal and from 79 to 38
for sensor refinement. This is likely due to the partially-observable
setting, where refining sensors makes the model more similar to a
fully-observable case. The gap is almost uniform for all k values. It
is worth noting that the extent of reduction depends on the transition
function, the relative position of possible goals and initial state, and
the initial sensor configuration as they determine the distinctiveness
of the policies. We assigned goals and initial state randomly to get a
general understanding of the competitive advantage of sensor refine-
ment and action removal.

Using both modifications reduced wcd more than using each mod-
ification separately in 15.8% of the cases. Specifically, for 19.4% of
the instances, wcd was reduced more when both types of modifica-
tions were used (k = 2) and 34.8% of the finished instances (k = 3).

Figure 3 illustrates the impact of pruning on wcd reduction. We
compare the number of total combinations of modifications needed
before and after pruning, taking the percentage of reduction (larger is
better). Generally, action removal benefited more than sensor refine-
ment from pruning. The ROOM domain benefited the most, mainly
because there were few optimal policies and removing actions made
a large part of the state space, or even a goal, unreachable.

Figure 4 shows the average running time in seconds per domain
for all three values of k when the pruning methods were used (AR:
action removal, SR: sensor refinement, ARSR: both). Instances that
timed-out are not considered in the computation and reduced average
time with higher values of k is a result of this omission. Specifically,
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with a budget of k = 2, one instance of BLOCKSWORLD timed-
out when SR and ARSR were used. With a budget of k = 3, a to-
tal of 12/17/19 instances timed-out when AR/SR/ARSR were used
(5/5/5 from ROOM, 3/3/4 from ATTACK-PLANNING, 4/4/4 from
BLOCKSWORLD, and 0/5/6 from BOXWORLD). Clearly, runtime in-
creases with k. The largest number of actions to remove was 1979
and the largest augmented MDP generated had 16376 augmented
states.

6 Related Work

Goal recognition design, first introduced by Keren et al. [7] and
followed by several extensions [8, 15], offers tools to analyze and
solve a GRD model in fully-observable settings. Other works account
for non-observable actions [9] and partially-observable actions [10],
supporting non-deterministic sensor models that can reflect an arbi-
trary assignment of action tokens emitted by actions. All these mod-
els assume deterministic action outcomes. In contrast, Wayllace et
al. [19, 18] tackled GRD models with stochastic action outcomes
in fully-observable environments. Our proposed model generalizes
these two lines of research into a GRD model with stochastic action
outcomes in partially-observable environments.

Partial observability in goal recognition has been modeled in var-
ious ways [14, 6, 1], usually assuming the agent deals with partial
observability. In particular, observability is modeled using a sensor
model that includes an observation token for each action [5]. Our
sensor model considers observer’s partial observability and uses state
observations, rather than action observation, providing a basis for
many practical applications.

7 Conclusions and Future Work

We present a new GRD variation that accounts for partially-
observable states and stochastic action outcomes, which is relevant
to many applications such as agent navigation. The agent state is ob-
servable, subject to sensor resolution, which means that some states
can be perceived as identical, also, the intention of movement is un-
known. In response to these considerations, we propose the Partially-
Observable Stochastic GRD (POS-GRD) problem, where (1) actions
are not observable and (2) states are partially observable. Our formal
framework takes partial observability into account to compute wcd
for POS-GRD problems. We also provide a skeleton description of a
new algorithm to compute expected wcd and propose a new model
modification of state sensor refinement to reduce expected wcd.

POS-GRD is a new general GRD model, the first to handle partial
observability in stochastic GRDs. In addition, sensor modification
over states is a new model modification. These contributions com-
bined make a substantial (and challenging!) step towards increasing

the generality of the GRD framework, allowing it to model more in-
teresting and realistic applications (e.g., cybersecurity).

Preliminary experiments show that combining modification types
reduces expected wcd for more instances with less budget.

An immediate non-trivial avenue for future research is to extend
our techniques for computing and reducing expected wcd. While the
proposed model is sufficiently general to model sub-optimal agents
(using Πleg), our use of MDP optimal policies limit our solution to
optimal agents (Πopt). Moving beyond optimality in the stochastic
case is more involved than in the deterministic counterpart.
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