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Abstract. In this article, we discuss how to solve information-
gathering problems expressed as ρ-POMDPs, an extension of Partially
Observable Markov Decision Processes (POMDPs) whose reward ρ
depends on the belief state. Point-based approaches used for solving
POMDPs have been extended to solving ρ-POMDPs as belief MDPs
when its reward ρ is convex in B or when it is Lipschitz-continuous.
In the present paper, we build on the POMCP algorithm to propose
a Monte Carlo Tree Search for ρ-POMDPs, aiming for an efficient
on-line planner which can be used for any ρ function. Adaptations are
required due to the belief-dependent rewards to (i) propagate more
than one state at a time, and (ii) prevent biases in value estimates. An
asymptotic convergence proof to ε-optimal values is given when ρ is
continuous. Experiments are conducted to analyze the algorithms at
hand and show that they outperform myopic approaches.

1 INTRODUCTION

Many state-of-the-art algorithms for solving Partially Observable
Markov Decision Processes (POMDPs) rely on turning the problem
into a “fully observable” problem—namely a belief MDP—and ex-
ploiting the piece-wise linearity and convexity of the optimal value
function in this new problem’s state space (here the belief space B)
by maintaining generalizing function approximators. This approach
has been extended to solving ρ-POMDPs as belief MDPs—i.e., prob-
lems whose performance criterion depends on the belief (e.g., active
information gathering)—when the reward ρ itself is convex in B [2]
or when ρ is Lipschitz-continuous [10].

In this paper, we propose two new algorithms for solving ρ-
POMDPs which do not rely on properties of ρ such as its convexity or
its Lipschitz-continuity, but are based on Monte Carlo sampling and
inspired by POMCP [21]: (1) ρ-beliefUCT applies UCT to the belief
MDP; and (2) ρ-POMCP uses particle filters, i.e., samples particles
during trajectories, to estimate the visited belief states and their asso-
ciated rewards. We prove ρ-POMCP’s asymptotic convergence and
empirically assess these algorithms on various information-gathering
problems.

The paper is organized as follows. Section 2 discusses related
work on information-oriented control. Sec. 3 presents background
(i) first on POMDPs, (ii) then on the Partially Observable Monte
Carlo Planning (POMCP) algorithm, a Monte Carlo Tree Search
approach for solving POMDPs, and (iii) finally on ρ-POMDPs. Sec. 4
describes our contribution: ρ-beliefUCT and ρ-POMCP, for solving ρ-
POMDPs with MCTS techniques, and provides a proof of ρ-POMCP’s
convergence. Sec. 5 presents the conducted experiments and analyzes
the results before concluding and giving some perspectives.
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2 RELATED WORK

Early research on information-oriented control (IOC) involved prob-
lems formalized either (i) as POMDPs (as Egorov et al. [9] did re-
cently, since an observation-dependent reward can be trivially recast
as a state-dependent reward), or (ii) with belief-dependent rewards
(and mostly ad-hoc solution techniques as [11, 17]).

Araya-López et al. [2] introduced ρ-POMDPs to easily formalize
most IOC problems. They showed that a ρ-POMDP with convex
belief-dependent reward ρ can be solved with modified point-based
POMDP solvers exploiting the piece-wise linearity and convexity
(PWLC property), with error bounds that depend on the quality of the
PWLC-approximation of ρ. More recently, Fehr et al. [10] applied the
same approach as Araya-López et al., but for Lipschitz-continuous
(LC)—rather than convex—belief-dependent rewards, demonstrating
that, for finite horizons, the optimal value function is also LC. Then,
deriving uniformly improvable lower- (and upper-)bounds led to two
algorithms based on HSVI [22].

Spaan et al.’s POMDP-IR framework allows describing IOC prob-
lems with linear rewards which are provably equivalent to “PWLC”
ρ-POMDPs (i.e., when ρ is PWLC) [19], and also leads to modified
POMDP solvers. For its part, the general ρ-POMDP framework al-
lows formalizing more problems—e.g., directly specifying an entropy-
based criterion.

We here consider ρ-POMDPs, but not relying on generalizing
(PWLC or LC) value function approximators as in previous work, so
that any belief-dependent reward can be used. For instance, this allows
addressing problems where the objective is to minimize the quantity
of information of an adversary with known behaviour or where the
objective is to gather information on specific state variables while
maintaining a low quantity of information on confidential ones (like in
medical or domotic fields). None of these problems can be solved by
previous approaches on ρ-POMDP nor be modelled by POMDP-IR,
which requires a PWLC reward function in B. To circumvent this
difficulty, we build on Monte Carlo Tree Search (MCTS) approaches,
in particular Silver and Veness’s Partially Observable Monte Carlo
Planning (POMCP) algorithm 2010. Moreover, MCTS and POMCP
present several other benefits: (i) they require a simulator rather than
a complete model; (ii) unlike heuristic search, they do not require
optimistic or pessimistic initializations of the value function; and (iii)
they have been proven to be very efficient for solving problems with
huge state, action and observation spaces.

Similar works have been conducted for information gathering con-
trol with an MCTS-based approach [3, 15], but Lauri et al. [15]
propose a POMCP algorithm for information-oriented open-loop
planning (which corresponds to finding a sequence of actions to a ρ-
POMDP while ignoring observations for action selection during plan-
ning), and Bargiacchi [3], whose approach is similar to our advanced
approach (cf Sec. 4.3), present only results on small problems (on
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specific ρ functions, namely negentropy and max-belief, whereas this
article extends the approach for any ρ function). In both cases, there
is no proof of asymptotic convergence and the continuity assumption
of ρ is not discussed. Also, our experiments are conducted on a wider
range of problems, and compare variants of the proposed algorithm
with reference algorithms. We believe that these results demonstrate
that there is interest in MCTS approaches for information-oriented
control, and that our work provides a more in-depth (theoretical and
empirical) look into them, making for a useful contribution.

3 BACKGROUND

3.1 POMDPs

A POMDP [18] is defined by a tuple 〈S,A,Z, P, r, γ, b0〉, where S,
A and Z are finite sets of states, actions and observations; Pa,z(s, s

′)
gives the probability of transiting to state s′ and observing observa-
tion z when applying action a in state s (Pa,z is an S × S matrix);
r(s, a) ∈ R is the reward associated to performing action a in state s;
γ ∈ [0, 1) is a discount factor; and b0 is the initial belief state—i.e.,
the initial probability distribution over possible states. The objective
is then to find a policy π that prescribes actions depending on past
actions and observations so as to maximize the expected discounted
sum of rewards (here with an infinite temporal horizon).

To that end, a POMDP is often turned into a belief MDP
〈B,A, P, r, γ, b0〉, where B is the belief space, A is the same ac-
tion set, and Pa(b, b

′) = P (b′|b, a) and r(b, a) =
∑

s∈S b(s)r(s, a)
are the induced transition and reward functions. This allows con-
sidering policies π : B → A, and their value functions V π(b)

.
=

E[
∑∞

t=0 γ
tr(bt, π(bt))|b0 = b]. Optimal policies maximize V π in

all belief states reachable from b0. Their value function V ∗ is the
fixed point of Bellman’s optimality operator (H) [4] HV : b �→
maxa[r(b, a) + γ

∑
z ‖Pa,zb‖1V (ba,z)], and acting greedily with

respect to V ∗ provides such a policy.

3.2 MCTS for POMDPs

MCTS and UCT MCTS approaches [7, 14, 6] are online,
sampling-based algorithms, here described in the MDP framework
(while they also serve in settings like sequential games). In MCTS, the
tree representing possible futures from a starting state is progressively
built by sampling trajectories in a non-uniform way. Each iteration
consists in 4 steps: (i) selection: a trajectory is sampled in the tree
according to an exploration strategy until a node not belonging to the
tree is reached; (ii) expansion: this new node is added to the tree;
(iii) simulation: this new node’s value is estimated by sampling a
trajectory from this node according to a rollout policy; (iv) backprop-
agation: this estimate and the rewards received during the selection
step are back-propagated to the visited nodes to update their statistics
(value and number of visits). Upper Confidence Bound applied to
trees (UCT) is an instance of MCTS where, when in a state node, the
next action is selected using the Upper Confidence Bounds (UCB1)
strategy, i.e., picking an action so as to maximize its estimated value

increased by an exploration bonus ct,s = Cp

√
logN(s)
N(s,a)

, with Cp > 0

an exploration constant, N(s) the number of past visits of node s, and
N(s, a) the number of selections of action a when in node s.

POMCP Silver and Veness [21] proposed the Partially Observable
Monte Carlo Planning (POMCP) algorithm to apply MCTS for solv-
ing POMDPs. A POMDP is addressed through the corresponding
belief MDP, a belief tree being made of alternating action and belief

nodes as presented in Figure 1. The path to a belief node at depth t
follows the action-observation history ht = (a0, z0, a1, z1, . . . , zt)
leading from the root belief to this belief b(ht).

Root Belief h = ()
b0

ha = (a1)
V (ha), N(ha)

h = (a1, z1)
B(h), V (h), N(h)

. . .

a1

. . .

a2

z1

h = (a1, z2)
B(h), V (h), N(h)

. . .

a1

. . .

a2

z2

a1

ha = (a2)
V (ha), N(ha)

h = (a2, z1)
B(h), V (h), N(h)

. . .

a1

. . .

a2

z1

h = (a2, z2)
B(h), V (h), N(h)

. . .

a1

. . .

a2

z1z2

a2

Figure 1: Example of a belief tree with 2 actions: a1 and a2, and 2
observations: z1 and z2, with various quantities maintained by

POMCP.

Applying directly UCT on the belief-MDP would imply sampling
trajectories (b0, a0, b1, a1, . . . , bt) in belief space, thus requiring the
complete POMDP model and a high computational cost to derive
exact belief states. To prevent this cost, POMCP samples trajectories
in state space, which only requires a simulator G as a generative model
of the POMDP. During the selection phase, the first state is sampled
from the root belief estimate, then one alternates between (i) picking
an action according to UCB1 (applied to estimated action values in
the current belief node), and (ii) sampling a next state s′, observation
z and reward r using G(s, a). By accumulating values in the belief
nodes, averaging over all simulated trajectories gives an estimate of
the value V (h) of the belief node h.

Moreover, states are collected in each visited belief node in order to
estimate the next root belief when an action is actually performed. By
preventing the computation of exact beliefs b(h) in each belief node,
POMCP allows addressing large problems while preserving UCT’s
asymptotic convergence.

Silver and Veness also proposed the PO-UCT algorithm as a first
step towards POMCP. It differs from POMCP in that it does not collect
states, but computes the belief state of the new root with an exact
Bayes update.

3.3 ρ-POMDPs

ρ-POMDPs [2] differ from POMDPs in that their reward function ρ is
belief-dependent, thus allowing to define not only control-oriented cri-
teria, but also information-oriented ones, thus generalizing POMDPs.
The immediate reward ρ is naturally defined as ρ(b, a, b′), the imme-
diate reward associated to transiting from belief b to belief b′ after
having performed action a4.

As presented in related work, Araya-López et al. [2] and Fehr et al.
[10] have exploited PWLC and Lipschitz-continuous reward functions
ρ to solve general ρ-POMDPs. However, while many problems can be
modeled with convex or Lipschitz-continuous ρ, this leaves us with a
number of problems that cannot be solved with similar approximations
or with the POMDP-IR approach (for instance, when we seek to

4 Without loss of generality, the article uses ρ(b, a) (even if the addressed
problems rely on ρ(b, a, b′)).
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minimize information or to find a compromise between gathering
information and preserving privacy as presented in Sec. 2).

Here, we propose to use the MCTS approach to address the general
ρ-POMDP case with no constraints on the ρ function. As an example,
let us consider an agent monitoring a museum and whose aim is to
locate a visitor with a specified certainty. If X denotes the random
variable for the visitor’s location and bX the corresponding belief,
then the reward function ρX(b, a)

.
= 1‖bX‖∞>α

5 rewards beliefs
whose maximum probability is greater than α ∈ [0, 1]. This is a
threshold function, thus neither convex nor Lipschitz-continuous, due
to its discontinuity when ‖bX‖∞ = α.

4 MCTS ALGORITHMS FOR ρ-POMDPs

POMCP and its variant PO-UCT cannot be applied directly to solve
ρ-POMDPs. PO-UCT does not compute exact beliefs during its selec-
tion and backpropagation steps (only at the tree root), and thus cannot
compute belief-dependent rewards along trajectories. POMCP gen-
erates trajectories following a single sequence of states and samples
associated rewards. It collects visited states in belief nodes, which are
not sufficient to correctly estimate the belief and thus belief-dependent
rewards.

4.1 ρ-beliefUCT

The first proposed algorithm, ρ-beliefUCT, consists in directly ap-
plying UCT to the belief MDP built from the ρ-POMDP. This re-
quires accessing the complete ρ-POMDP model and computing exact
beliefs for each visited belief node by performing Bayes updates:
bhaz(s

′) ∝ ∑
s∈S Pa,z(s, s

′).bh(s).
During the simulation step, a belief-based rollout policy (in contrast

with a random one) needs to compute the belief at each action step
not only to make action choices, but also to compute immediate
rewards ρ(b, a) and estimate the value of the added node. This induces
an important computational cost. However, ρ-beliefUCT can take
advantage of several elements. First, since each history corresponds to
a unique belief state, each belief state needs to be computed only once,
whenever a new belief node is added. Secondly, while, in a POMCP
approach, r(b, a) is estimated using averages of r(s,a) without bias
because r(b, a) is linear in b, in our context, ρ(b, a) is a deterministic
function of the belief: its exact value can be directly stored in the
action node. Lastly, during the selection step, an observation can be
sampled without computing observation probability P (z|b(h)) and
without bias by sampling a state s from current belief b(h), then a
state-observation pair (s′, z) from G.

ρ-beliefUCT is an interesting reference algorithm. As a direct adap-
tation of UCT, it inherits its convergence properties only assuming
that ρ is bounded [12]. However, to avoid (i) the cost associated to
exact belief computations, and (ii) the need for the complete model of
the POMDP, we also propose another algorithm, ρ-POMCP, which
does not compute exact beliefs but estimates them.

4.2 ρ-POMCP

As a first approximation, the ρ-POMCP algorithm is similar to
POMCP. During the selection step, trajectories are generated by sam-
pling states and observations using generative model G. When visited,
each belief node h collects the state that has led to this node in order
to build an estimate of the true belief state b(h).

5 with 1 denoting the indicator function.

However, applying directly POMCP by only adding the current
state of the trajectory to the belief node (as proposed in [3]) may lead
to poorly estimated immediate rewards during the first steps of the
algorithm, thus causing the MCTS algorithm (i) to unefficiently spend
time focusing on branches with over-estimated rewards and (ii) to
slow down the exploration of branches with under-estimated rewards.

POMCP

B(h)

a1

B(haz) B(haz)

a2

st

st+1, zt+1, rt+1st+1, zt+1, rt+1

B(haz)

ρ-POMCP

B(h)

a1

B(haz) B(haz)

a2

st

st+1, zt+1, rt+1

βt

βt+1

st+1, zt+1, rt+1

βt+1

Fi
lt
er
in
g

B(haz)

Figure 2: Difference between a POMCP and a ρ-POMCP descent:
during a ρ-POMCP descent, at each simulation step, a bag of

particles βt+1 is generated from the bag βt, the selected action and
the received observation. The particles of this bag βt+1 are added to

the node B(ht+1) to produce a better estimation of b(ht+1) than
with only the sampled trajectory state.

To add more states at each visit of a belief node, we propose using a
particle filter, as illustrated in Figure 2. Thus, at each transition, when
action at is selected from trajectory state st and observation zt+1 is
sampled, the algorithm generates a set βt+1 of |β| states, called a
small bag of particles, using G to make |β| samplings consistent with
observation zt+1. Then, it adds this small bag βt+1 to B(haz),6 the
cumulative bag for history haz, stored in the corresponding belief
node: B(haz) ← B(haz) ∪ βt+1.

Rejection sampling With a generative model G, only rejection
approaches (also referred as logic sampling [13]) can be considered
to produce consistent samples. In this case, a pair (s̃′, z̃) is sampled
from G(s, a), and s̃′ is kept in β if and only if z̃ corresponds to
the observation z of the sampled trajectory. This process repeats
until enough consistent samples have been obtained, which can be
computationally expensive when P (z|h, a) is small.

Importance sampling To avoid the computational cost of rejection
sampling, we instead use importance sampling [8], which assumes
that the observation function is available and leads to weighting each
particle. After performing action at and receiving observation zt+1,
a new small bag βt+1 is generated from βt by using the generative
model and following these steps: (1) sample a state s̃ from βt; (2) sam-
ple a state s̃′ by using the generative model, s̃′ ∼ G(s̃, at); (3) store
this particle s̃′ in βt+1 with an associated weight of P (zt+1|s̃, at, s̃

′)
corresponding to the probability of having generated observation zt+1.
The weights in two small bags associated to the same node can be
compared, and one can thus accumulate such bags in the correspond-
ing belief node. To save memory, when a small bag β is added to a
cumulative bag B(h), particles corresponding to the same state are

6 with a = at and z = zt+1
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merged, their weights being added up. Note that, to prevent particle
depletion, the state st+1 in trajectory ht = (s0, a0, . . . , at, st+1) is
also included in small bag βt+1 with its corresponding weight, so that
the observation generated during the sampled trajectory can always
be explained by at least one particle in βt+1. While this induces a
bias in this trajectory’s small bags, since trajectory states are obtained
by sampling from the root belief, the distribution of the states in the
cumulative bags B(h) is unbiased.

In the simulation step, belief estimates are required at least to esti-
mate instant rewards, and possibly to make decisions. The sequence
of small bags β thus needs to be perpetuated.

Finally, during the back-propagation step, the cumulative bag B(h)
of belief node h is used to estimate true belief state b(h)—by nor-
malizing the weights—and compute ρ(B(h)). Weights are stored
un-normalized in B(h) so that new weighted particles can be added
without introducing a bias.

The above algorithm description leads to Algorithm 1. In this
algorithm, the notation T corresponds to the belief tree and I to the
initial belief. s, β 1+n∼ I indicates that 1+n states are sampled from I ,
1 being stored in s and the n others in β. The function PF corresponds
here to the importance sampling particle filtering process previously
described and ws′ = P (z|s, a, s′).

Algorithm 1: ρ-POMCP Text in red highlights differences with POMCP.

Fct SEARCH (h)
repeat

if h = empty then

s, β
1+n∼ I

else

s, β
1+n∼ B(h)

SIMULATE (s, β, h, 0)
until TIMEOUT()
return argmaxb V (hb)

Fct ROLLOUT (s, β, h, δ)

if γδ < ε then return 0
a ∼ πrollout(h, ·)
(s′, z) ∼ G(s, a)
β′ ←PF(β, a, z)

∪ {(s′, ws′)}
return ρ(β, a)

+ γ.ROLLOUT
(s′, β′, haz, δ + 1)

Fct SIMULATE (s, β, h, δ)

if γδ < ε then return 0
if h �∈ T then

forall a ∈ A do

T (ha) ←
(Ninit(ha),
Vinit(ha), ∅)

return ROLLOUT
(s, β, h, δ)

a ← argmaxb V (hb) +

c
√

logN(h)
N(hb)

(s′, z) ∼ G(s, a)
β′ ←PF(β, a, z)

∪ {(s′, ws′)}
B(h) ← B(h) ∪ β
R ← ρ(B(h), a)

+ γ.SIMULATE
(s′, β′, haz, δ + 1)

N(h) ← N(h) + 1
N(ha) ← N(ha) + 1
V (ha) ←

V (ha) + R−V (ha)
N(ha)

return R

Note that, as in POMCP or in standard particle filters, when the
system actually evolves, the actual observation may not be explained
by any state contained in the new root’s cumulative bag. We leave this
case for discussion, but it is still possible to re-estimate the current
belief by simulating the process from the initial belief.

Asymptotic convergence The following theorem states the asymp-
totic convergence of ρ-POMCP, a notable difference with ρ-beliefUCT
being the need for ρ to be continuous in b and bounded by ρmax.

Theorem 1 Let ρ be continuous in b and bounded by ρmax, and
ε > 0, then the root action values computed by ρ-POMCP converge
asymptotically to ε-optimal action values.

Proof 1 Since ρ is bounded and the criterion is γ-discounted, the ε-
convergence allows reasoning with a finite horizon only, even though
the problem horizon is infinite (with an infinite belief space). To do

so, let us consider the tree of depth δ = � ln
ε(1−γ)
ρmax
ln γ

�, and assume that
the root belief estimate is exact. Due to UCB1, all nodes in that tree
are visited infinitely often. Each belief-node h then collects infinitely
many particles (|β| at each visit) and, due to the use of particle filters
applied from the root node, the probability distribution induced by
cumulative bags B(h) converges to the true belief state b(h). Let
us prove by induction that, at any depth d ≤ δ, the action value
estimates are bounded by γ−dε. Trivially, any node’s value estimate
is absolutely bounded by ρmax

1−γ
, so that, in particular, the bound is

γ−δε at depth δ (cf. def of δ). Let us now assume that the induction
property holds at depth d ∈ {1, . . . , δ}. Then for any node h at depth
d− 1, (i) due to ρ’s continuity, ρ(b(h)) is correctly estimated, 7 (ii)
since each action is infinitely selected, by induction, the action values
converge to γd−1ε-optimal values, and (iii) UCB1 selects the optimal
action infinitely more often than other actions, thus V (h) converges
to a γd−1ε-optimal value. �

4.3 ρ-POMCP variants

Proposed variants The current difference between POMCP and
ρ-POMCP lies in the way particles are collected in order to estimate
the reward obtained at each transition. But value estimates are updated
in the same way. However, these updates can be improved, leading
to several ρ-POMCP variants, since, during its execution, ρ-POMCP
builds increasingly better estimates of the true belief states in visited
belief nodes. To do so, we first discuss what is computed by updates
performed by POMCP (and vanilla ρ-POMCP), and then propose
several variants (also proposed by [3]).

Computations performed by POMCP If we ignore the node ini-
tialization in POMCP, then, when considering a node-action pair ha,
the value stored in V (ha) averages, over N(ha) samples/visits:

• ∑
s∈βha

r(s, a): the total reward over the states s that were sam-
pled while action a was picked in h (βha denotes this set of states);

• ∑
z∈Zha

1N(h,a,z)≥1Rollout(haz): the total return of the roll-
outs generated from each observation z sampled after picking a in
h (set Zha), where N(h, a, z) is the number of times action a was
followed by observation z in node h (while N(haz) is the number
of updates of node haz);

• ∑
z∈Zha

∑
a′∈A N(haza′)V (haza′): the sum of the values of

the children nodes, weighted by their visit counts (which also
includes the rollouts performed from these nodes).

By introducing belief node value estimates V (h), initialized with
rollout values (for N(h) = 1), this leads to the following formulas:

V (h) ← 1

N(h)

[
Rollout(h) +

∑
a′∈A

N(ha′)V (ha′)

]
;

V (ha) ← 1

N(ha)

⎡
⎣ ∑

s∈βha

r(s, a) + γ
∑

z∈Zha

N(haz)V (haz)

⎤
⎦ .

7 It is only required that the bias of the ρ(B(h)) estimator vanishes when the
number of particles grows, which is guaranteed by ρ’s continuity.
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Last-reward-update ρ-POMCP Thus, in POMCP, V (ha) is a
moving average that ‘‘contains” an estimate of r(b(h), a), that esti-

mate being computed as
∑

s∈βha
r(s,a)

N(ha)
.

In vanilla ρ-POMCP, the sampled r at a current time step is re-
placed with an estimate of ρ(b(h)) as ρ(B̂N(h)(h)), where B̂N(h)(h)
is the cumulative bag after the first N(h) visits. In this case, V (ha)
includes thus (among other elements) an average of successive es-
timates (i.e., it computes

∑N(ha)
i=1 ρ(B̂φ(i)(h), a), where φ(i) is the

ith visit of h where a was selected). However, it would seem more
appropriate to instead use the reward associated to the last estimated
belief ρ(B̂φ(N(ha))(h), a), which is a less biased estimate.

This proposed variant, called last-reward-update ρ-POMCP (or
“lru-ρ-POMCP”), fixes this rather easily by replacing the update of
V (ha) in Algorithm 1 by

V (ha) ← N(ha)− 1

N(ha)
[V (ha)− ρprev(h, a)]

+ ρ(B(h), a) +
1

N(ha)
γ.SIMULATE(s′, haz, δ + 1),

where ρprev(h, a) is the previous value of the reward when ha was
last experienced (thus needs to be stored).

Last-value-update ρ-POMCP But then, V (ha) also “contains”
estimates of average rewards for future time steps, which suffer from
the same issue. To fix this, SIMULATE should not return a sample
return, but an estimate of the average return.

The updates in the backpropagation step consist then in re-
estimating all the values of the visited belief nodes by using the reward
obtained at each transition and the initial rollout, which needs to have
been previously stored. This is done in last-value-update ρ-POMCP
variant (or “lvu-ρ-POMCP”) through the following formulas:

V (h) ← 1

N(h)

[
Rollout(h) +

∑
a

N(ha)V (ha)

]
,

V (ha) ← ρ(B(h), a) +
γ

N(ha)

∑
z

[N(haz).V (haz)] .

5 EXPERIMENTS

5.1 Benchmark Problems

POMDPs being a subclass of ρ-POMDPs, first benchmark problems
we consider are the classical Tiger, Tiger-Grid and Hallway2 prob-
lems [16] (as per Cassandra’s POMDP page) and instances of Rock
Sampling [23] with several grids of n×n cells, and n rocks to sample
(where n equals 4, 6 and 8). A reward of +100 (resp. −100) is given
for sampling a good (resp. bad) rock.

Then, a known issue with information-gathering problems is that a
simple myopic strategy may often give very good results [5, 20]. In
order to assess the proposed algorithms, we had to provide problems
where myopic strategies encounter difficulties.

We first proposed the Museum problem, inspired by [19], where
an agent has to continuously localize a visitor in a toric grid envi-
ronment (4 × 4 in our experiments). The state corresponds to the
visitor’s unknown location. At each time step, the visitor stays still
with probability 0.6, and moves to 1 of his 4 neighboring cells with
probability 0.4 (chosen uniformly). The agent acts by activating
a camera in any location. It then receives a deterministic observa-
tion: “present” if the visitor is at this location, “close” if s/he is in a
neighboring cell, and “absent” if s/he is further away. Additionally:

the immediate reward corresponds to the negentropy of the belief:
ρ(b, a, b′) = −H(b′) =

∑
s b

′(s).log(b′(s)); the initial belief b0 is
uniform over all cells; and γ = 0.95. The interest of this problem
lies in the large number of actions (one per cell). We also used a
variant, Museum Threshold, as proposed in Sec. 3.3, where the (non-
continuous) reward is based on a threshold function on the belief state
(with α = 0.8) which is null in most of the belief space.

In active-localization problems, an agent is in a toric grid with
white and black cells. At each step, it can move to a neighboring cell
or observe the color of its current cell. Active localization is difficult
for myopic strategies as they see no (immediate) benefit in moving.
Additionally: observations and transitions are deterministic; b0 is
uniform over all cells; the reward corresponds to the entropy difference
between b and b′: ρ(b, a, b′) = −H(b′) + H(b); and γ = 0.95.
Several configurations have been studied (cf. Fig. 3): (i) MazeCross,
where black cells make it easy to localize oneself; (ii) MazeLines,
where the agent cannot localize itself within the striped region and has
to plan several steps ahead to look for the spot in the empty region; (iii)
MazeHole, which requires the agent to reason one step in advance to
search for the missing black cell in this regular configuration; and (iv)
MazeDots, identical to MazeHole except that black cells are separated
by several white cells. MazeDots_nxn corresponds to variations of the
MazeDots configuration where n denotes the size of the grid.

GridX and GridNotX [10] differ from the first localization problems
in that: (i) moves (n,s,e,w) succeed with probability 0.8, otherwise
the agent stays still; (ii) denoting bx (resp. by) the belief over the x
(resp. y) coordinate, the reward function is ρ(b) = +‖bx− 1

3
1‖1 (resp.

−‖bx− 1
3
1‖1) for GridX (resp. GridNotX). GridNotX is an interesting

problem since the objective consists in maximizing uncertainty, which
can not be modeled with state-depend rewards and POMDP-IR.

In the SeekAndSeek problem, an object is lost in a (toric grid) maze
with obstacles limiting the possible moves of the agent. The agent
can move in the maze and receives specific observations whenever
the object is on its location (present), next to it (close), or otherwise
(absent). The immediate reward received is the entropy difference
over the possible object locations ρ(b, a, b′) = −H(b′) +H(b). The
object being at a fixed location, a myopic agent surrounded by already
visited cells has no incentive to explore any of them since they do not
give any information.

We also addressed Araya-López’s CameraClean Diagnosis prob-
lem [1]. Here, a robot camera can be oriented to shoot one of four
different zones and must find an object put in a fixed location. Its state
is its current target zone, and a boolean specifying whether its lens is
clean or dirty. As actions, the robot camera can reorient itself (deter-
ministically) to the next zone, shoot the current zone, or clean its lens.
When the camera takes a picture, the probability to properly detect the
presence or absence of the object in the target zone is 0.8 if the lens is
clean, and 0.55 if dirty. The reward is the entropy difference between
starting and arrival belief states ρ(b, a, b′) = −H(b′) +H(b).

Finally, we proposed the LostOrFound problem to consider non-
convex rewards. An agent is in a toric corridor with one colored
cell. It can move left or right (with probability 0.3 to stay), stay or
change its status (lost or found). Then, it observes the color of its
cell. The reward depends on the agent’s status. If its status is found,
the agent tries to localize itself and ρ(b, a, b′) = Hmax − H(b′),
where Hmax = log(|cells|) denotes the maximum entropy to ensure
positive rewards. If its status is lost, it tries to get lost and receives
ρ(b, a, b′) = 3.H(b′). To act optimally, the agent needs to change
its status to lost and to perform moving actions to lose information
regarding its location.

All experiments were conducted on Intel Xeon Gold 6130 cores @
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(a) (b) (c) (d) (e) (f)

Figure 3: The various cell configurations used for active localization problems; from left to right: (a) MazeCross, (b) MazeLines, (c) MazeHole
and (d) MazeDots; (e) corresponds to the cell configuration used for GridX and GridNotX, and (f) the obstacle configuration for SeekAndSeek.

2.1 GHz with 512 MB. Source code is available at https://gitlab.
inria.fr/vthomas/ecai_2020_source.

5.2 Results

Influence of rollouts Preliminary experiments have been con-
ducted with random rollouts. For the same number of descents, ρ-
POMCP with random rollouts (stopped when γdepth < 0.01) lasts
between 5 and 10 times longer than without any rollout (setting the
value of new nodes to 0). Moreover, the gain from using a pure random
rollout policy was also rarely significant. In some problems (Tiger), it
even reduced the observed performance. We thus focus on ρ-POMCP
and ρ-beliefUCT without rollouts.

Comparison with myopic strategies Table 1 presents results
comparing the purely Random strategy, Look-ahead strategies, ρ-
beliefUCT, and ρ-POMCP on the benchmark problems. The look-
ahead-H algorithms perform dynamic programming over all possible
futures for a fixed finite horizon H by using the complete ρ-POMDP
model. The pure myopic strategy, where the agent maximizes its im-
mediate reward, corresponds to Look-ahead-1, whereas Look-ahead-3
corresponds to anticipating all consequences 3 time-steps in advance8.
Both ρ-MCTS algorithms (ρ-POMCP and ρ-beliefUCT) use a fixed
number of descents nbdescents = 10 000, without any rollout (setting
the value of new nodes to 0) and use a specific constant UCB for each
problem as specified in Tab. 1 (usually (Rmax − Rmin)/(1 − γ)).
For ρ-POMCP, |β| = 50 and importance sampling was used.

(a) Tab. 1 shows that Look-ahead-1 is close to the best value only
on Tiger, GridX and Museum entropy. Regarding museum problems,
the myopic strategy is less efficient than look-ahead-3 in Museum
Threshold due to the sparsity of non-zero rewards.

(b) It is known that Look-ahead-1 often gives good results and
usually constitute a very good baseline [5, 20]. But, we have also
compared our approaches to the more challenging Look-ahead-3 strat-
egy. In this case, ρ-POMCP and ρ-beliefUCT give better results than
Look-ahead-1 and similar results to Look-ahead-3. In most cases,
the difference between Look-ahead-1 and ρ-POMCP is significant.
ρ-POMCP also improves on Look-ahead-3 in SeekAndSeek, Rock-
Sampling44, GridNotX ActiveLocLines, Hallway2 and TigerGrid.

(c) ρ-POMCP and ρ-beliefUCT provide the same results for this
number of descents and take usually a lot more time than the Look-
ahead algorithms. ρ-beliefUCT is usually faster than ρ-POMCP, but
this depends on the problem since computational costs of these two
algorithms come from different operations. In ρ-beliefUCT, this cost
is due to the computation of exact beliefs when a new belief node is
added. In ρ-POMCP, it is due to the generation of small bags β at
each transition. That is why, whereas the time needed by ρ-POMCP
is more regular (except for the yet-unexplained case of GridX), the
time needed by ρ-beliefUCT largely depends on |S|. For instance,

8 To prevent side-effects, when several actions share the same highest value,
the performed action is randomly selected among them.

belief computation is quick in Tiger or CameraClean, but requires
more time in Active Localization problems, where belief states include
many states with a non-zero probability. Sec. 6 proposes tentative
solutions to ρ-POMCP’s high computational cost.

(d) In problems with larger state or observation spaces, like Hall-
way2 and TigerGrid, ρ-MCTS algorithms are faster than Look-ahead-
3 (by a factor between 8 and 20 depending on the problem) while
achieving a higher performance. It shows that ρ-MCTS algorithms
manage to deal with problems even with a high branching factor
(where Look-ahead-3 cannot compete) by focusing their descents on
interesting branches.

(e) Finally, results from Rocksampling are difficult to analyze since
they highly depend on the rock locations (different for v1, v2 and v3).
The random action selection in Look-head when no reward is visible
gives a good exploration policy for reaching rocks, whereas ρ-MCTS
require more time to reach the interesting rewards (cf Tab. 2).

Results with fixed time-budget Table 2 presents results regard-
ing the influence of |β| with a fixed time-budget of 1 s by action
(except last column). When |β| increases, the number of descents per-
formed by ρ-POMCP naturally decreases (since trajectory generation
is slower), but this has no clear impact on the γ-discounted cumulated
value. Several problems exhibit different behaviors. In CameraClean
and Tiger, there is a significant performance gap between |β| = 0
and |β| = 5. This might come from the highly stochastic observation
process which requires better belief state estimates to act correctly.
In Rocksampling, small values of |β| give better results. This may
be due to overestimation which favors exploitation, and more de-
scents allowing to reach a greater depth. Finally, results obtained with
LostOrFound need to be commented in detail. With a UCB constant
of 35, ρ-POMCP needs an large bag to give good results. In this
problem, convex rewards (found status) are compared with concave
rewards (lost status). However, when we try to maximize information
(convex reward), a poorly estimated belief lead to an optimistic return
and ρ-POMCP is attracted by the corresponding branch. On the con-
trary, with concave rewards, the estimated return is low and will be
an incentive not to explore this branch anymore. Both these effects
lead ρ-POMCP to fail to find a good policy when |β| is low. When
the UCB constant increases, this effect disappears due to favored ex-
ploration. In (almost) all cases, when the time-budget increases (like
10 s in the last column), ρ-POMCP manages to generate the highest
cumulated return (higher than Look-ahead-3 from Tab. 1).

Comparison between rejection and importance sampling (IS)

We have conducted experiments with ρ-POMCP algorithms to test the
interest of using importance sampling instead of rejection sampling.
All experiments were conducted with 200 runs of 40 actions, 10 000
descents per action, |β| = 20, and UCB constants from previous
tables. The cumulated values are the same and rejection sampling
requires approximatively 20% more time on small problems (the table
is not presented in this article). However, for problems with larger
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Table 1: Results obtained when executing 200 episodes of 40 actions. V is the averaged γ-discounted performance; Err is the standard error;
and t(s) is the average duration of one episode. ρ-MCTS-algorithms were launched with a fixed number of 10 000 descents before performing

each action. Significantly best values are highlighted in bold.

Random Look-ahead-1 Look-ahead-3 ρbeliefUCT ρPOMCP |β| = 50

Problem (UCB cst) V ± Err t(s) V ± Err t(s) V ± Err t(s) V ± Err t(s) V ± Err t(s)

Tiger (360) -122.96 ± 2.59 0.00 1.80 ± 0.13 0.02 1.77 ± 0.12 0.08 1.92 ± 0.13 6.44 2.04 ± 0.11 63.63
CameraClean (14) 0.39 ± 0.01 0.00 0.19 ± 0.01 0.02 0.82 ± 0.02 0.07 0.81 ± 0.02 8.46 0.81 ± 0.02 64.59

SeekAndSeek (69.3) -42.04 ± 1.43 0.01 -37.70 ± 1.46 0.06 -30.75 ± 1.36 0.43 -23.25 ± 1.16 32.73 -25.68 ± 1.20 72.61

Hallway2 (1) 0.02 ± 0.00 0.01 0.03 ± 0.00 0.62 0.15 ± 0.01 723.19 0.21 ± 0.01 46.17 0.19 ± 0.01 36.40
TigerGrid (1) -1.73 ± 0.15 0.01 -0.08 ± 0.04 0.22 0.52 ± 0.06 217.54 1.93 ± 0.05 20.48 1.81 ± 0.06 25.29

Museum entropy (1) -26.31 ± 0.23 0.02 -16.85 ± 0.30 0.16 -16.95 ± 0.27 70.02 -16.09 ± 0.30 24.11 -16.77 ± 0.28 51.83
Museum threshold (1) 1.71 ± 0.07 0.02 6.30 ± 0.16 0.18 6.78 ± 0.17 71.53 6.58 ± 0.17 28.63 6.60 ± 0.17 83.29

ActivLocCross (3.2) 1.38 ± 0.04 0.01 2.33 ± 0.02 0.04 2.58 ± 0.01 0.32 2.57 ± 0.01 25.70 2.57 ± 0.01 39.99
ActivLocLines (4.3) 1.11 ± 0.04 0.01 1.99 ± 0.04 0.08 2.78 ± 0.03 0.87 2.99 ± 0.03 72.46 2.96 ± 0.03 50.59
ActivLocHole (4.2) 0.92 ± 0.03 0.01 1.59 ± 0.04 0.07 2.36 ± 0.04 0.79 2.28 ± 0.04 64.34 2.29 ± 0.04 60.18
ActivLocDots (3.6) 0.76 ± 0.05 0.01 1.56 ± 0.05 0.05 2.09 ± 0.04 0.48 2.15 ± 0.04 41.61 2.15 ± 0.04 54.69

ActivLocDots 8x8 (4.2) 0.48 ± 0.03 0.01 1.15 ± 0.04 0.06 1.65 ± 0.03 0.81 1.77 ± 0.04 67.12 1.74 ± 0.04 83.33
ActivLocDots 10x10 (4.6) 0.33 ± 0.03 0.02 0.73 ± 0.04 0.10 1.16 ± 0.04 1.28 1.34 ± 0.05 93.83 1.25 ± 0.04 121.00
ActivLocDots 12x12 (5) 0.27 ± 0.03 0.02 0.60 ± 0.04 0.12 0.98 ± 0.04 1.69 0.98 ± 0.05 130.12 0.96 ± 0.04 160.93

GridX (26) 16.69 ± 0.14 0.01 21.62 ± 0.04 0.03 21.72 ± 0.04 0.34 21.68 ± 0.04 82.12 21.73 ± 0.04 448.01
GridNotX (26) -16.91 ± 0.15 0.01 -4.57 ± 0.20 0.04 -3.95 ± 0.15 0.37 -3.22 ± 0.14 13.89 -3.04 ± 0.14 70.26

RockSampling44 (100) -20.95 ± 4.15 0.01 18.10 ± 1.82 0.05 99.12 ± 4.49 2.09 115.67 ± 4.92 12.48 109.15 ± 4.76 61.34
RockSampling66 (100) -5.66 ± 1.70 0.02 5.26 ± 0.73 0.17 96.04 ± 4.32 10.08 82.59 ± 4.14 39.46 78.21 ± 3.74 107.09

RockSampling88 v1(100) -3.83 ± 1.72 0.09 6.33 ± 1.06 1.11 158.49 ± 4.87 46.01 206.05 ± 5.46 107.79 177.31 ± 5.95 131.09
RockSampling88 v2 (100) -4.28 ± 1.20 0.05 6.53 ± 0.83 0.65 140.38 ± 4.88 49.04 114.66 ± 6.12 169.70 104.53 ± 5.99 178.04
RockSampling88 v3 (100) -2.73 ± 1.02 0.05 4.79 ± 0.98 0.63 117.47 ± 4.93 53.26 86.21 ± 3.83 170.42 91.60 ± 4.24 177.57

LostOrFound (35) 24.40 ± 0.69 0.01 31.23 ± 0.00 0.02 61.75 ± 0.28 0.14 62.97 ± 0.21 53.84 61.82 ± 0.38 495.08
LostOrFound (100) 25.18 ± 0.66 0.01 31.23 ± 0.00 0.03 61.85 ± 0.27 0.14 31.38 ± 0.15 7.08 31.23 ± 0.00 49.01

Table 2: Influence of |β| for a fixed time budget with a budget of 1s per action (except last column with a budget of 10s for reference). Each
column corresponds to the results obtained for 200 runs of 40 actions by ρ-POMCP and several values of |β|. V is the average γ-discounted

cumulative value, Err the standard Error and nbd the number of descents performed. Significantly best values are highlighted in bold.

|β| = 0 |β| = 1 |β| = 5 |β| = 10 |β| = 100 |β| = 10, t = 10s

Problem (UCB cst) V ± Err nbd V ± Err nbd V ± Err nbd V ± Err nbd V ± Err nbd V ± Err nbd

Tiger (360) -13.43 ± 0.00 30945 -13.43 ± 0.00 29763 2.14 ± 0.10 19639 2.12 ± 0.12 13900 0.38 ± 0.12 2766 1.95 ± 0.13 102553
CameraClean (14) 0.28 ± 0.02 31976 0.25 ± 0.02 28418 0.77 ± 0.02 19092 0.78 ± 0.02 13942 0.79 ± 0.02 3289 0.80 ± 0.02 92671

SeekAndSeek (69.3) -28.39 ± 1.25 17342 -27.46 ± 1.21 14574 -28.04 ± 1.23 10877 -27.82 ± 1.19 8505 -27.07 ± 1.18 1740 -26.37 ± 1.13 65322

Hallway2 (1) 0.19 ± 0.01 30226 0.18 ± 0.01 23153 0.19 ± 0.01 17522 0.21 ± 0.01 14052 0.18 ± 0.01 2561 0.25 ± 0.01 106838
TigerGrid (1) 1.73 ± 0.06 58236 1.81 ± 0.06 48902 1.84 ± 0.06 38756 1.79 ± 0.06 31980 1.82 ± 0.06 9641 1.80 ± 0.06 184639

Museum entropy (1) -16.51 ± 0.29 29418 -16.81 ± 0.27 24674 -16.74 ± 0.29 19007 -16.20 ± 0.29 15034 -17.01 ± 0.29 3052 -16.64 ± 0.28 65596
Museum threshold (1) 6.15 ± 0.17 31232 6.15 ± 0.17 26468 6.23 ± 0.18 19334 6.59 ± 0.18 14958 6.70 ± 0.16 3196 6.41 ± 0.18 81593

ActivLocCross (3.2) 2.58 ± 0.01 20602 2.59 ± 0.01 18893 2.56 ± 0.01 15391 2.57 ± 0.01 12475 2.57 ± 0.01 2837 2.58 ± 0.01 99308
ActivLocLines (4.3) 2.89 ± 0.03 11859 2.89 ± 0.03 11188 2.90 ± 0.03 9208 2.90 ± 0.03 7697 2.87 ± 0.03 1693 2.98 ± 0.03 58659
ActivLocHole (4.2) 2.36 ± 0.04 12737 2.39 ± 0.04 12025 2.26 ± 0.04 9556 2.27 ± 0.04 8152 2.33 ± 0.04 1709 2.34 ± 0.04 57199
ActivLocDots (3.6) 2.15 ± 0.04 15897 2.18 ± 0.04 14965 2.16 ± 0.04 12031 2.21 ± 0.04 9288 2.18 ± 0.04 2035 2.14 ± 0.04 70543

GridX (26) 21.69 ± 0.04 44487 21.67 ± 0.04 35916 21.79 ± 0.04 23823 21.67 ± 0.04 17583 21.68 ± 0.04 3718 21.61 ± 0.04 101912
GridNotX (26) -3.46 ± 0.15 40786 -3.30 ± 0.14 33989 -3.54 ± 0.14 23351 -3.17 ± 0.13 16605 -3.41 ± 0.14 3627 -3.01 ± 0.15 123545

RockSampling44 (100) 114.00 ± 4.68 21967 110.78 ± 5.08 18991 106.79 ± 4.69 13059 109.00 ± 4.87 9952 103.89 ± 4.33 2198 118.46 ± 4.59 66347
RockSampling66 (100) 110.12 ± 4.37 14033 108.86 ± 4.38 11981 103.77 ± 4.37 8915 88.08 ± 4.13 6416 50.00 ± 3.98 1112 109.88 ± 4.02 55186

RockSampling88 v1(100) 172.69 ± 6.10 6228 155.01 ± 6.11 5195 152.48 ± 5.57 3791 123.84 ± 5.32 2946 50.02 ± 4.42 542 188.54 ± 5.07 23907
RockSampling88 v2(100) 130.21 ± 5.85 4615 113.39 ± 5.67 4378 108.54 ± 5.28 2990 99.43 ± 5.26 2286 41.93 ± 3.89 420 149.96 ± 5.38 26922
RockSampling88 v3(100) 116.15 ± 5.03 5732 118.31 ± 5.12 4634 109.51 ± 4.59 3181 102.24 ± 4.67 2403 68.04 ± 4.04 466 171.84 ± 4.56 24677

LostOrFound (35) 31.23 ± 0.00 32734 31.23 ± 0.00 27317 31.87 ± 0.35 19088 39.68 ± 1.12 14826 59.50 ± 0.32 4019 37.92 ± 0.96 74955
LostOrFound (100) 50.32 ± 0.79 35012 59.86 ± 0.22 33141 58.27 ± 0.27 22519 55.42 ± 0.37 15824 31.23 ± 0.00 3462 63.05 ± 0.16 114450

observation spaces or with highly stochastic observation process, like
TigerGrid, Hallway2 or Museum problems, rejection sampling re-
quires much more time (from to 2 to 8 times more than IS, i.e., from
48 s to 381 s for TigerGrid problem) because of a high reject rate.

Results with proposed variants To speed up convergence, lru-
ρ-POMCP and lvu-ρ-POMCP variants (cf. Sec. 4.3) have been in-
vestigated replacing moving averages by up-to-date estimates, which
are less biased in our setting. However, up to now, experiments with
fixed time budgets (100 ms, 200 ms, 1 s and 10 s) have not shown any

significant improvement.

6 DISCUSSION

In this article, we proposed two algorithms, ρ-POMCP and ρ-
beliefUCT, to address ρ-POMDPs without constraints on the re-
ward function. ρ-POMCP (and trivially ρ-beliefUCT) is proved to
asymptotically converge when ρ is continuous and bounded. ρ-MCTS-
algorithms are thus particularly useful when considering non-convex
non-Lipschtiz-continuous rewards which cannot be addressed by pre-
vious approaches (like [2], [10] or [19]).

V. Thomas et al. / Monte Carlo Information-Oriented Planning2384



Conducted experiments show that both algorithms give better re-
sults than the proposed baseline. The difference between ρ-POMCP
and direct use of POMCP (β = 0 in Table 2) is less significant. How-
ever, we proposed problems (like LostOrFound) where the use of a
particle filter generates better results with a fixed-time budget (due to
poorly estimated beliefs when using small particle bags).

This advantage of ρ-POMCP over POMCP would probably in-
crease with a better use of the available time budget. We have ob-
served that ρ-POMCP is time consuming due to the many sampled
particles. One promising direction would be to save time by letting a
cumulative bag B(h) grow sub-linearly (rather than linearly) with the
number of visits N(h), i.e., by considering dynamic |β|. This will
require modifying the way particles are generated, which is no simple
task since particles need to be propagated from the root to the end of
each trajectory.

Another issue that even concerns vanilla POMCP and particle
filtering is how to deal with unexpected transitions. If, after actually
performing an action a, the actual observation z has been rarely
sampled (if at all), the new root may come with a poor belief estimate
or not exist at all, so that the online computations will give poor results
if they can be run at all. In this case, performing particle filtering from
the root belief’s parent might provide a new root belief but with a high
computational cost. Another complementary improvement would be
to regularly sample particles from the initial POMDP belief to add
new particles in the current root and prevent particle depletion during
episodes.

Finally, we hope that MCTS approaches such as ρ-POMCP will
provide a way to cope with many states, actions or observations.
Future work includes considering continuous ρ-POMDPs (i.e., with
continuous states/actions/observations), e.g., building on Sunberg and
Kochenderfer [25] [26], in order to address information-gathering
problems in a robotic context.
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