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Abstract. We study active learning of deterministic infinite-words
automata. In our framework, the teacher answers not only member-
ship and equivalence queries, but also provides the loop index of the
target automaton on wvω , which is the minimal number of letters of
wvω past which the target automaton reaches the final cycle on wvω .
We argue that in potential applications if one can answer Boolean
part in membership (and equivalence) queries, one can compute the
loop index as well.

Our framework is similar to the one of Angluin’s L∗-algorithm,
but the crucial difference is that the queries about the loop index
depend on a particular automaton representing an ω-regular lan-
guage. This allows us to bypass the NP-hardness coming from the
minimisation problem for deterministic Büchi automata and pro-
vide a polynomial-time algorithm for learning deterministic Büchi
automata. We adapt this algorithm to deterministic infinite-word
weighted automata with LIMINF and LIMSUP value functions,
which, treated as parity automata, can recognize all ω-regular lan-
guages.

1 Introduction

Automata are the fundamental computation model, which have a va-
riety of applications ranging from being the baseline of computa-
tional complexity to applications in AI [23] and formal methods [14].

Many areas, including verification [20], benefit from the fact that
various types of automata can be constructed automatically from
data. Such a construction, called learning, typically cannot be per-
formed effectively in a passive way, i.e., by only considering a list of
positive and negative examples [18, 15]. In particular, such an algo-
rithm for deterministic finite automata (DFA) could be used to break
popular cryptographic systems [18].

To overcome this difficulty, the active learning framework was de-
veloped. In this framework, the learning algorithm can actively ask
the teacher queries of two forms: does a given word belong to the
(hidden) target regular language (membership query), and does the
constructed automaton recognise the target language (equivalence
query); it is essential that the answer to the latter query is supported
with an appropriate counterexample where applicable. Angluin in her
seminal paper [1] showed the L∗ algorithm that learns DFA in poly-
nomial time and asks polynomially many queries in the size of the
automaton. The L∗ algorithm for DFA is versatile; it has been ex-
tended to other types of automata such as weighted automata [9],
tree automata [17, 21] or nominal automata [24].

The extension of L∗ to infinite words has proved to be elusive.
There are two main problems over infinite words. First, the right con-
gruence relation, which is the crux of Angluin’s algorithm, does not
characterise ω-regular languages; there are different ω-regular lan-
guages defining the same right congruence relation. Second, in the
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infinite word case there is no notion of the canonical (syntactic) au-
tomaton. For some ω-languages there are several different minimal
automata (see Section 3). For these reasons, extending the L∗ algo-
rithm to ω-regular languages is difficult.

An L∗-style algorithm for ω-regular languages has been given
in [4]. However, the algorithm given there does not learn ω-automata;
it returns a Family of DFA (FDFA), which is an alternative formal-
ism to represent ω-regular languages. FDFA can be translated to de-
terministic ω-automata, but the translation may involve exponential
blow-up.

The existence of polynomial-time ω-automata learning algorithm
remains open. One of the possible reasons is that for deterministic
Büchi automata (DBA), the minimalisation problem is NP-complete
[26], whilst L∗-style algorithms typically construct minimal au-
tomata. Thus, to overcome this NP-hard lower bound, we must con-
sider algorithms that may construct automata that are not minimal.

Our framework. We study the problem of learning deterministic
ω-automata. The main body of the paper is devoted to DBA, but we
also briefly discuss how our technique can be extended to other types
of deterministic automata.

In contrast to previous approaches, we assume that the teacher has
some limited knowledge regarding the automaton recognising the ω-
regular language rather than the language alone. We introduce a third
type of queries, called loop-index queries. To understand this type
of queries observe that a computation of a deterministic automaton
on an ultimately-periodic word is also ultimately-periodic, i.e., after
some finite number of steps it reaches an ultimate cycle. The loop
index of an ultimately periodic word is the number of transitions after
which this ultimate cycle is reached. The loop-index query asks what
is the loop index of a given ultimately-periodic word.

Feasibility and advantages of using loop-index queries. In con-
trast to the membership and equivalence queries, the loop-index
queries are sensitive to the automaton structure; swapping the au-
tomaton with an equivalent one can change the answers to loop-index
queries. Still, to answer these queries we need only modest infor-
mation about the structure of A. We discuss two possible scenarios
where the teacher is able to answer such questions.

Black-box model. Assume that we have a black-box program in a
setting where we can check the state equivalence (i.e., by comparing
snapshots of the physical memory) along a run, but it is not possi-
ble to check state equivalence among different runs because, for in-
stance, the programs memory is fragmented differently. In this case,
if the black-box program is essentially a deterministic finite automa-
ton and we can provide a reasonable estimation on the automaton
size, then we can compute the loop index of a word, because the
value of the loop index can be bounded in the product of the sizes of
the automaton and the ultimately periodic word.
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Having the black-box model, we can answer the membership
and loopindex queries, but not the equivalence queries. So we keep
the black-box model running, but in parallel we run the automaton
learned by our technique. If at some point, they produce different
results, we use it as a counterexample and learn from experience to
obtain a new automaton which is a better approximation of the target
one. Our technique (Lemma 11 in particular) guarantees that these
approximations converge, i.e., after a finite number of such iterations
(at most cubic in size of the target automaton) we obtain the target
automaton.

Learning automata given as black-box has a big advantage for au-
tomata given implicitly, which are too big to construct explicitly [20].
Many implicit representations (through programs or propositional
formulas) allow for checking states for equality, which is sufficient
for computing the loop index.

Human teacher model. We assume that the teacher is a human
who has a general understanding of how the automaton should look
like. Answering the loop index queries requires additional effort, but
the possible benefit is that the resulting automaton may be easier to
understand by the teacher as it fits better their intuition.

In particular, ω-automata can be used as a specification formal-
ism for temporal properties [25]. In this context, learning of ω-
automata facilitates the construction of temporal specifications [20].
Our framework can be used to learn specifications expressible with
DBA. Still, the teacher specifying a temporal property needs to un-
derstand well what is being specified. In particular, the teacher is
likely to evaluate the property over finite prefixes and partition the
infinite words into parts with equivalent impact on the property. This,
in turn, can be used to find a cycle and the length of the prefix leading
to this cycle is the loop index.

On the technical side, adding the loop index queries to the frame-
work makes the NP-completeness of the minimisation problem [26]
no longer applicable, since we only require to construct a minimal
automaton consistent with the loop index queries, which may not be
minimal in general.

Results. Our main contribution is a polynomial-time algorithm
for learning DBA. The algorithm asks three types of queries as dis-
cussed above and constructs a DBA of size not greater than the tar-
get automaton. Then, we adapt the learning algorithm to determin-
istic weighted automata with LIMINF and LIMSUP value functions.
Weighted automata return values, and hence the answer to a mem-
bership query wvω is the value that the target automaton returns on
wvω . We argue that this can be seen as learning parity automata. We
also briefly discuss that the algorithm can be extended to determin-
istic Muller automata, but the complexity can suffer as the acceptance
conditions constructed in the algorithm may be of exponential size.

Paper organization. We discuss the related work right after pre-
liminaries, which allows us to give more details on how results fit into
the current state of the research. Then, we formally define our frame-
work in Section 4, develop the necessary theory in Section 5 and
present the learning algorithm in Section 6. The remaining sections
are devoted to discussion on possible extensions of the algorithm and
discussion of the future work.

2 Preliminaries

Automata and runs. Given a finite alphabet Σ of letters, a word w
is a finite or infinite sequence of letters. A word is ultimately periodic
if it is of the form wvω , i.e., some prefix followed by an infinite

repetition of a word. We denote the set of all finite words over Σ by
Σ∗, and the set of all infinite words over Σ by Σω . For a word w,
we define w[i] as the i-th letter of w, and we define w[i, j] as the
subword w[i]w[i + 1] . . . w[j] of w. We use the same notation for
vectors and sequences; we assume that sequences start with 0 index.

An ω-generator is a pair (w, v) ∈ Σ∗× (Σ∗ \{ε}) such that there
is no v′ shorter than v such that v′ω = vω . An ω-generator (w, v) is a
succinct representation of an ultimately-periodic word wvω; clearly,
every such word has infinitely many possible ω-generators. Notice
that we do not require here w to be minimal.

A deterministic Büchi automaton (DBA) is a tuple (Σ, Q, q0, F, δ)
consisting of the alphabet Σ, a finite set of states Q, the initial state
q0 ∈ Q, a set of accepting states F , and a transition function δ : Q×
Σ → Q.

We extend δ to δ̂ : Q × Σ∗ → Q inductively: for each q, we
set δ̂(q, ε) = q, and for all w ∈ Σ∗, a ∈ Σ, we set δ̂(q, wa) =
δ(δ̂(q, w), a). The run π of a DBA A on a word w is the sequence
of states δ̂(q0, ε)δ̂(q0, w[1])δ̂(q0, w[1, 2]) . . . . A run is accepting if
some accepting state occurs infinitely often in that run. By A(w) we
denote the Boolean value true if the run of A on w is accepting.

The size of a DBA A, denoted by |A|, is its number of states.

The loop index. A run of a deterministic automaton on an ulti-
mately periodic word is an ultimately periodic sequence. We define
the loop index of a DBA A on an ultimately periodic word wvω , de-
noted as �A (w, v), as follows. Let π be the run of A on wvω , then
�A (w, v) is the smallest number j such that for some c > 0 and
all i > j we have π[i] = π[i+ c] and wvω[i+1] = wvω[i+1+ c].

Example 1. Consider the DBA Aex depicted in Figure 1 and the
words w = ab and v = b. The run of A on wvω is q0q0q1q

ω
2 and

so �A (w, v) = 3. The run of A on wwω is q0(q0q1)ω and so �A

(w,w) = 1. The run of A on vvω is q0q1qω2 and so �A (v, v) = 2.

3 Related work and technical motivations

Before we present our framework in Section 4, we discuss the elu-
siveness of learning ω-regular languages and other approaches to
similar problems.

PAC-learning of DFA is believed to be impossible. The hardness
of PAC-learning of DFA has been shown under cryptographic as-
sumptions [18] and under average-case SAT assumptions [15]. This
shifted the focus of automata learning from the passive setting (PAC-
learning) to the active setting. In the active setting, Angluin showed
the L∗ algorithm, which learns minimal DFA in polynomial time us-
ing membership and equivalence queries [1]. The L∗ algorithm has
been adapted to learn NFA [11], alternating automata [3, 10], nom-
inal automata over infinite alphabets [24], weighted automata over
words [9] and trees [17, 21].

Extending the L∗ algorithm to infinite-word automata has been a
long-standing open problem with motivations from automatic veri-
fication [20]. In the DFA case, the L∗ algorithm relies on the right
congruence relation ∼L for a language L defined as follows: for
u, v ∈ Σ∗ we have u ∼L v if and only if for all words w ∈ Σ∗ we
have uw ∈ L ↔ vw ∈ L. Myhill-Nerode theorem implies that the
minimal DFA recognising L is isomorphic to the automaton, whose
states are equivalence classes of ∼L and the transitions are defined
based on ∼L.

This approach fails in the infinite-word case. Consider the DBA
Aex over Σ = {a, b} depicted in Figure 1. This automaton recog-
nizes the language Lex of words containing infinitely often bb. Ob-
serve that the right congruence relation for Lex consists of a single
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equivalence class. Indeed, Lex is prefix-independent, i.e., the mem-
bership to this language does not depend on finite prefixes. Formally,
for all u, v ∈ Σ∗ and w ∈ Σω we have uw ∈ Lex ↔ vw ∈ Lex.
Indeed, either w contains bb infinitely often and both uw and vw
belong to Lex or w contains only finitely many bb and so do the
words vw and uw. However, single-state DBA can recognise only
the language of all words or the empty language. Furthermore, it is
not difficult to see that no DBA of 2 states recognises Lex. In sum-
mary, the right congruence relation has a single equivalence class,
but a minimal-size DBA recognising Lex has 3 states.

The above problem could be addressed by considering a differ-
ent definition of the right congruence relation. However, any relation
defined based on recognised language fails to characterise infinite-
word automata uniquely because there are ω-languages recognised
by a DBA such that a minimal-size DBA recognising it is not unique.
There are various sources for this ambiguity. Again, consider the
DBA Aex (see Figure 1) and its language Lex. The automaton Aex is
strongly connected and its language is prefix-independent, therefore
we can pick any state of Aex to be its initial state and it will not affect
the recognised language. Second, we can change self-loop in q2 over
b to a transition (q2, b, q0) or (q2, b, q1) and still the altered automata
would recognise the language of words with infinitely many bb.

Despite the problems with learning DBA discussed above, it could
have been still possible to construct an L∗-style learning algorithm
for DBA, which returns some minimal-size DBA recognising the
target language. Observe that such an algorithm could be used to
minimise DBA. Having a DBA A, we can answer membership and
equivalence queries for the language of A in polynomial time in |A|.
Therefore, we could run the learning algorithm, compute answers to
queries based on A, and return the learned automaton.

However, it has been shown that deciding, given k and a DBA
A, whether A admits a language-equivalent DBA A′ of at most k
states, is NP-complete [26]. It follows that there is no polynomial-
time learning algorithm for DBA that returns a minimal-size DBA
(unless P=NP).

There have been considered three approaches to bypass the above
limitations.

• ω-regular languages are equivalent if they agree on all ultimately-
periodic words. Based on this observation, we define, given an
ω-regular language L, the language L$ = {u$v | uvω ∈ L}. The
language L$ is regular and can be learned with the L∗-algorithm
and the resulting DFA can be transformed into a non-deterministic
Büchi automaton [12]. However, the size of the minimal DFA
recognising L$ can be exponential in the size of a DBA recog-
nising L.

• Another approach is to consider restricted classes of languages. It
has been shown that ω-regular languages that can be recognized
with a DBA and with a deterministic co-Büchi automaton can be
learned in polynomial time [12].

• It has been shown that the full class of ω-regular languages can
be learned in polynomial time, if the representing formalism is
Families of DFA (FDFA) [4]. The FDFA considered can be trans-
formed to deterministic parity automata. The translation, however,
involves exponential blow-up [2].

Our results in this context

In the automata learning frameworks from the literature (discussed
above), the queries involve only the language of the automaton. We
present a new approach, in which besides membership and equiv-
alence queries, we consider loop-index queries, which depend on

the particular automaton and its structure. This approach enables us
to overcome the limitations discussed in this section. We show that
DBA are learnable in polynomial time in our framework, and the
DBA we learn is always at most as big as the target automaton. It is
beneficial to learn DBA rather than L$ or FDFA, because DBA is a
standard formalism, which can be fed into state-of-the-art verifica-
tion tools such as PRISM [19]. We focus on learning ω-languages
represented with DBA, but we also discuss how to extend our ap-
proach to learning deterministic parity automata that recognise all
ω-regular languages.

Other related work

Recently, there has been a renewed interest in learning weighted
automata over finite words [8, 21, 6, 5, 7]. These results apply to
weighted automata over fields [16]. In the infinite-word case, it has
been shown that weighted automata over the limit-average value
function can be almost-exactly learned in polynomial time [22]. Al-
most exactly here refers to the approximation notion based on proba-
bility; the learning algorithm from [22] returns an automaton, which
agrees with the target automaton on the set of words of probability 1.
In this work, we require the learned automaton to agree with the tar-
get automaton on all words. Furthermore, we consider infinite-word
weighted automata over the limit infimum and limit supremum value
functions [13].

4 Framework

We consider the active learning setting, in which the learning algo-
rithm asks queries to an oracle called the teacher. In our setting we
learn DBA and the teacher answers queries about the target DBA T ,
which is concealed from the learning algorithm. There are three types
of queries:

• membership queries: given an ω-generator (w, v), the teacher re-
turns whether T accepts wvω ,

• equivalence queries: given an automaton A, if A is language-
equivalent to T , the teacher returns YES, otherwise the teacher
returns an ω-generator(w, v) such that wvω distinguishes A and
T , i.e., exactly one of A and T accepts wvω , and

• loop-index queries: given an ω-generator (w, v), the teacher re-
turns the loop index of T on wvω

We define the learning problem as follows:

Problem 2 (Learning problem). Given a teacher for a (hidden) tar-
get DBA T , construct a DBA A, which is language equivalent to T
and has at most as many states as T .

Remark. In our learning framework, we allow the learned automa-
ton to be different from the target automaton. Consider Σ = {a}
and a DBA A, which forms a cycle (over transitions labeled a) and
all states are accepting. Then, the target automaton is indistinguish-
able with queries from a single-state automaton (with the state being
accepting).

The algorithm presented in Section 6 returns an automaton, which
is language-equivalent to the target automaton, and has the same
loop-index on all the words that appear in the communication be-
tween the algorithm and the teacher.
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Figure 1. The automaton Aex used in our examples.

5 Theory

In this section, we develop the theoretical underpinnings for the
learning algorithm. For a given target DBA T and a set of ω-
generators C, we show how to define an automaton AT

C based on
C. Then, if such an automaton is not equivalent to T , we show how
to use a counterexample to extend C. We repeat the process and
show that after a polynomial number of steps we obtain an automaton
equivalent to T .

Let us start with the following fact that is an important factor in
our construction.

Fact 3. Let T = (Σ, Q, q0, F, δ) be a DBA. Consider F ′ ⊆ Q that
consists of all states q such that for all wvω �∈ L(A), q appears
only finitely many times in the run of T on wvω . Then L(T ) =
L((Σ, Q, q0, F

′, δ)).

To understand the need for this fact, consider three automata over
the alphabet a, b with states q0, q1, q2 and the transitions function δ
such that δ(q0, a) = q0, δ(q1, a) = q2, δ(q2, a) = q0 and δ(qi, b) =
qi+1 mod 3 for all i. The accepting states of the three automata are
{q1}, {q2} and {q1, q2}. Then all the automata represent the same
language, the language of words with infinitely many b’s. The above
fact states that, while there may be many sets of accepting states that
define the same language, one can always consider the maximal set,
which is defined based on cycles on rejected words. The proof of this
fact is straightforward and thus omitted.

5.1 Automata based on ω-generators

In this section we discuss how to define a DBA AT
C based on a set of

ω-generators C and the values of the loop and membership queries
regarding C on the automaton T . Note that for the second component
it suffices to have an oracle that answers to the loop and membership
queries for T .

Let us fix an alphabet Σ for the rest of the section. Let �∗ A

(w, r, v) = max(0,�A (wr, v) − |w|) be the function which says,
after reading w, how many further letters are needed to reach the cy-
cle on wrvω . The maximum function is to avoid nuances of cycles
starting prematurely.

For a set of ω-generators C and a DBA T , we define the relation
∼T

C⊆ Σ∗ × Σ∗ such that w1 ∼T
C w2 if for all (r, c) ∈ C

• T (w1rc
ω) = T (w2rc

ω), and
• �∗ T (w1, r, c) =�∗ T (w2, r, c).

States of AT
C . For a set of ω-generators C, we define the set of

states QT
C as the set of equivalence classes of ∼T

C . We show that
these states are, intuitively, unions of states of the target automaton,
i.e., for each equivalence class [W ]∼T

C
there is a set of states S such

that [W ]∼T
C

= {w | δ̂(q0, w) ∈ S}.

Lemma 4. Let T = (Σ, Q, q0, F, δ) be a DBA and C ω-generators.
For all finite words w, v, if δ̂(q0, w) = δ̂(q0, v), then w ∼T

C v.

Proof. Consider words w, v such that δ̂(q0, w) = δ̂(q0, v). Then,
for every ω-generator (r, c) we have T (wrcω) = T (vrcω) and �∗ T

(w, r, c) =�∗ T (v, r, c). In particular it holds for the ω-generators
from C. It follows that w ∼T

C v.

Transition function of AT
C . For a ∈ Σ, we define

a−1C = {(u, c) | (au, c) ∈ C} ∪ {(ε, ca) | (ε, ac) ∈ C}.

The intuition behind a−1C is that equivalence classes of ∼T
C de-

termine equivalence classes of ∼T
a−1C . We say that C is closed

if for all a ∈ Σ we have a−1C ⊆ C. The closure of C, de-
noted by cl(C), is the smallest closed set containing C. For ev-
ery set C, its size of the closure |cl(C)| is O(|C|2). Observe that
cl(C1 ∪ C2) = cl(C1) ∪ cl(C2).

We define the may relation Δmay
C ⊆ QT

C × Σ × QT
C that contains

all the possible transitions among the states QT
C . That is, we say that

Δmay
C (W1, a,W2) holds if and only if for all w1 ∈ W1, w2 ∈ W2

we have w1a ∼T
a−1C w2.

Example 5. Consider the automaton presented in Figure 1 and C =
{(ε, a)}. Then we have QT

C = {q0, q1}, where q1 contains all the
words ending with b and q0 all the remaining words. The relation
Δmay

C consists of tuples (q, a, q0) and (q, b, q′) for all q, q′ ∈ QT
C .

We show that for all closed C the relation Δmay
C contains a func-

tion.

Lemma 6. For all automata T , a closed set of ω-generators
C, W1 ∈ QT

C and a ∈ Σ there is W2 ∈ QT
C such that

Δmay
C (W1, a,W2).

Proof. Observe that if w1 ∼T
C w2, then w1a ∼T

a−1C w2a for any
closed set of ω-generators C. Consider a state W1 ∈ QT

C , a word
w ∈ W1 and a letter a ∈ Σ. Let W2 be a state such that wa ∈ W2.
Then, for all w′ ∼T

C w we have wa ∼T
a−1C w′a (by the above

observation), thus Δmay
C (W1, a,W2).

Let δmay
C be any function that is a subset of Δmay

C , i.e., for all
W1 ∈ QT

C and a ∈ Σ we define δmay
C (W1, a) = W2 for some arbi-

trary chosen W2 such that Δmay
C (W1, a,W2). Such W2 exists thanks

to Lemma 6. In order to define AT
C uniquely, we assume a mapping

from closed sets C to δmay
C and fix one of such functions. The partic-

ular choice is irrelevant, but it needs to be consistent.

Accepting states of AT
C . To define accepting states, we recall

Fact 3 stating that we can focus on automata where non-accepting
states are those that appear on some cycle in a run on a rejected ul-
timately periodic word. Thus, we define F T

C ⊆ QT
C to be the set

of classes of states that are not known to be on a negative cycle,
i.e., W ∈ F T

C if and only if for all w ∈ W and all (ε, c) ∈ C, if
�∗ T (w, ε, c) = 0, then T accepts wcω .

Example 7. In the setting of Example 5, the state q0 will be rejecting
and q1 will be accepting.

Finally, we define the automaton AT
C as the tuple

(Σ, QT
C , [ε]∼T

C
, F T

C , δmay
C ). We will show that C can be constructed

in a way to make AT
C equivalent to the target automaton.
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5.2 Improving the automata

We now show how to extend C based on a counterexample for AT
C in

order to obtain a better approximation of the target automaton. First,
we show that extending C either increases the number of states of
AT

C or does not increase Δmay
C′ and F T

C′ .

Lemma 8 (Weak monotonicity). Consider C ⊆ C′. Then, either
AT

C′ has more states than AT
C , or both automata share the set of

states and we have Δmay
C′ ⊆ Δmay

C and F T
C′ ⊆ F T

C .

Proof. Observe that the definition of ∼T
C′ involves the universal

quantification over C and hence it is monotonic in C, i.e., we have
∼T

C′⊆∼T
C . Thus, |QT

C′ | > |QT
C | or QT

C′ = QT
C . Assuming that

QT
C′ = QT

C , the definitions of Δmay
C and F T

C involve universal quan-
tification over C and hence are monotonic in C.

Now, we discuss how to extend C to ensure progress, i.e., one of
the inequalities from Lemma 8 becomes strict. Consider a word wvω

accepted by exactly one of automata T and AT
C . We show how to

extend C to C′ such that the automaton AT
C′ accepts wvω if and

only if T does. It follows that AT
C and AT

C′ differ and we get strict
in Lemma 8.

First, for an ω-generator (w, v) and i ∈ N. We define
WITNESS(w, v, C, i) as a closed set of ω-generators that ensures
that in both automata T and AT

WITNESS(w,v,C,i): (*) the states reached
upon wvω[1, i] are either both accepting of both rejecting. We
achieve this by making sure that WITNESS(w, v, C, i) contains
C and the ω-generator (w, v), and it satisfies (**): if (ε, c) ∈
WITNESS(w, v, C, i), then (wvω[1, i], c) ∈ WITNESS(w, v, C, i).
Recall that for any C′, acceptance of a state in AT

C′ is defined based
on its behaviour on ω-generators of the form (ε, c) from C′, therefore
(**) implies (*).

Formally, we define WITNESS(w, v, C, i) as follows:

C ∪ cl
(
{(wvω[1, i], c) | (ε, c) ∈ cl(C ∪ {(w, v)})}

)

Note that all ω-generators of the form (ε, c) from
WITNESS(w, v, C, i) belong to cl(C ∪ {(w, v)}) and hence
(**) holds.

While WITNESS(w, v, C, i) ensures (*), which involves the prefix
wvω[1, i], the main goal is to extend C to C′ such that the resulting
automaton AT

C′ accepts wvω if and only if T does. This follows from
the above properties of WITNESS(w, v, C, i) and the choice of the
index i. We shall pick i to be big enough so that the states reach upon
wvω[1, i] in both automata are in the ultimate cycle over wvω . For
such i, we know that if T accepts wvω , all states of T in the ultimate
cycle are accepting. Conversely, if T rejects wvω , some state of T in
the ultimate cycle is rejecting.

The following lemma formally states the properties enforced by
WITNESS(w, v, C, i).

Lemma 9. Let T = (Σ, Q, q0, F, δ) be a DBA, C be a closed set
of ω-generators, (w, v) be an ω-generator and i ≥�T (w, v). For
C′ = WITNESS(w, v, C, i), we have

(a) if δ̂(q0, wvω[1, i]) is accepting in T , then δmay
C′ (q0, wvω[1, i]) is

accepting in AT
C′ , and

(b) if wvω is rejected by T , then for all j ≥ i δmay
C′ (q0, wvω[1, j]) is

rejecting.

Proof. For a state W , by PosW we denote the set of witnesses
(r, c) ∈ C′ such that for every u ∈ W satisfying �∗ T (u, r, c) ≤ |r|
the DBA AT

C′ accepts urcω . Notice that W is accepting if and only

if for all (ε, c) ∈ C′ and all u ∈ W such that �∗ T (u, ε, c) = 0 we
have (ε, c) ∈ PosW .

Let Π be the run of AT
C′ on wvω and (ε, c) ∈ C′. First, we show

the following property

(wvω[1, i], c) ∈ PosΠ[0] ⇔ (ε, c) ∈ PosΠ[i]. ($)

To see ($), observe that for all j we have (wvω[j, i], c) ∈ C′

as C′ is closed. Furthermore, for all j > 0 we have Δmay
C (Π[j −

1], wvω[j],Π[j]), i.e., Π[j − 1]a ∼T
a−1C Π[j] for a = wvω[j]. The

definition of ∼T
a−1C implies that

(wvω[j + 1, i], c) ∈ PosΠ[j] ⇔ (wvω[j + 2, i], c) ∈ PosΠ[j+1].

A straightforward induction leads to ($).
To show (a), assume that qi is the accepting state reached in

T upon wvω[1, i], i.e., qi = δmay
C′ (q0, wvω[1, i]). Then, for every

(ε, c) ∈ C′, if �∗ T (wvω[1, i], ε, c) = 0, then T reaches upon
wvω[1, i] a cycle over c. This cycle contains qi, which is accepting.
Therefore, wvω[1, i]cω is accepted by T and hence (wvω[1, i], c) ∈
PosΠ[0]. We apply ($) and get (ε, c) ∈ PosΠ[i]. This holds for every
(ε, c) ∈ C′ and hence Π[i] is accepting.

Now we prove (b). First, for v, we say that z is a rotation of v if
z = xy and v = yx for some words x, y.

Assume that wvω is rejected by T . Let z be a rotation of v that
completes wvω[1, i], i.e.,

wvω[1, i]zω = wvω

Observe that (wvω[1, i], z) ∈ C′ \ PosΠ[0]. Note that by ($) we
have (ε, z) ∈ C′ \ PosΠ[i]. Since i ≥�T (w, v), we have �∗ T

(wvω[1, i], ε, v) = 0. Therefore, Π[i] is rejecting.
Now, observe that for all j ≥ i, the state Π[j] is rejecting as well.

Indeed, the definition of ∼T
a−1C implies that for all j we have

(ε, au) ∈ PosΠ[j] ⇔ (ε, ua) ∈ PosΠ[j+1]

Furthermore, the closure implies that for all rotations z of v we have
(ε, z) ∈ C′.

It follows that for the rotation r of v that completes wvω[1, j], i.e.,

wvω = wvω[1, j]rω

we have (ε, r) ∈ C′ \ PosΠ[j]. Clearly, �∗ T (wvω[1, j], ε, v) = 0
and hence Π[j] is rejecting.

The above lemma shows that if wvω is rejected by the tar-
get automaton, then it is also is rejected by AT

C′ for C′ =
WITNESS(w, v, C,�A (w, v)). If wvω is accepted, then the accept-
ing state in its ultimate cycle can be only reached after |w| + |T |
steps; however, while learning T , we do not know its size, and in
this case we cannot estimate it as an underestimation could violate
the termination property of our algorithm. To avoid such problems,
we define a fixed-point like method for finding a correct value of i.

The saturate function. We define the function saturateTC on ω-
generators such that for all (w, v) we put

saturateTC (w, v) = WITNESS(w, v, C, i)

where i > |w|+ |AT
C′ | · |v| is the smallest number such that the state

after reading wvω[1, i] in AT
WITNESS(w,v,C,i) is accepting if and only

if T accepts wvω .
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Observe that the smallest i exists and is bounded by �T (w, v) +
|T | · |v|. If the run is rejecting, then i = |w|+ |AT

C′ | · |v|+1 suffices.
Otherwise, the cycle in the run of T on wvω starts at �T (w, v). The
length of the cycle is bounded by |T | · |v|. Since this run is accepting,
we know that the cycle contains an accepting state on some position
i satisfying

|w|+ |AT
C′ | · |v| < i ≤ |w|+ 2 · |T | · |v|. (#)

The second inequality follows from the fact that |AT
C′ | ≤ |T | and

�T (w, v) ≤ |w|+ |T | · |v|. Lemma 9 implies that the equivalence
class of wvω[1, i] is accepting in AT

C′ . We conclude with the follow-
ing:

Lemma 10. Let T = (Σ, Q, q0, F, δ) be a DBA and C be a
set of ω-generators and (w, v) be an ω-generator. For C′ =
saturateTC (w, v), we have T (wvω) = AT

C′(wvω).

Proof. Assume that T accepts wvω . Let i be the number from the
definition of saturateTC (w, v). The equivalence class Wi is accept-
ing. Since i > |w| + |AT

C′ | · |v|, the position i belongs to the cycle
of AT

C′ on wvω and hence this cycle contains an accepting state Wi.
Therefore, AT

C′ accepts wvω .
Assume that T rejects wvω . Then, Lemma 9 (b) states that AT

C′

rejects wvω .

Lemma 10 implies that if wvω is a word accepted by exactly one
of the automata T , AT

C and C′ = saturateTC (w, v), then then word
wvω distinguishes AT

C and AT
C′ . This, together with Lemma 8 gives

us the following lemma.

Lemma 11 (Strong monotonicity). If wvω is a word accepted by
exactly one of the automata T , AT

C and C′ = saturateTC (w, v) is
such that QT

C = QT
C′ and F T

C′ = F T
C , then δmay

C �⊂ Δmay
C′ .

6 Algorithm

We now present the learning algorithm. We assume that the alpha-
bet Σ is fixed and known to the algorithm. The main procedure is
presented as Algorithm 1. It assumes a teacher T that provides three
functions, realising the three kinds of queries:

• EQUIVALENCE(A) that verifies whether a given automaton is
equivalent to the target one, and returns true if it is or an ω-
generator of a word that distinguishes the target automaton and
A otherwise,

• LOOPINDEX(w,v) that returns the loop index for wvω , and
• VALUE(w,v) that returns whether the target automaton accepts

wvω .

Algorithm 1 The algorithm learning a DBA.
1: procedure LEARN(T)
2: C := ∅
3: A := GENERATE AUTOMATON(C, T)
4: while T.EQUIVALENCE(A) �= true do

5: (w,v) := T.EQUIVALENCE(A)
6: C := SATURATE(w, v, C, T)
7: A := GENERATE AUTOMATON(C, T)
8: return A

The procedure LEARN(T) starts with C being empty and then, in
each loop iteration, it extends C based on a provided counterexam-
ple. In Section 6.3, we argue that the number of loop iterations is

at most cubic in the number of states of the target automaton. But
first, we discuss the procedures SATURATE(w, v, C, T) and GENER-
ATE AUTOMATON(C, T).

6.1 Automata generation

The general scheme of the procedure GENERATE AUTOMATON(C,
T) is presented as Algorithm 2.

Essentially, the states of the automaton A constructed by the algo-
rithm are functions q : C → {true, false} × N. For each state,
we keep a selector wq such that for every (r, c) ∈ C we have
q(r, c) = (T (wqrc

ω),�∗ T (wq, r, c)).
The number of possible states is infinite, but Lemma 4 guarantees

that the number of such functions realised in any automaton AT
C is

bounded by the number of states of T . To benefit from this, the pro-
cedure GENERATE AUTOMATON(C, T) performs a BFS search on
the state space; it starts from the single-state (incomplete) automa-
ton with the empty transition function δ, and then adds transitions
(function ADD SUCCESSORS(A)) in the following manner: for any
state q and letter a such that the value of δ(q, a) is not set, take the
selector wq and compute qa such that for all (r, c) ∈ C we have
qa(r, c) =(T.VALUE(warcω), �∗ T (wa, r, c)). If qa is in the set of
states, then δ(q, a) ..= qa. Otherwise, add qa to the set of states, set
δ(q, a) ..= qa and wqa

..= wa.
Depending on the choice of successors above, we may add suc-

cessors in a different order and end up with different functions δ.
We show, however, that δ ⊆ Δmay

C . Indeed, for any q, a, q′, if
(q, a, q′) ∈ δ, then wq′ ∼C wqa, so in particular wq′ ∼a−1C wqa,
thus Δmay

C (q, a, q′).
The last step is to compute the accepting states – this amounts to

marking a state q as an accepting state if for all (ε, c) ∈ C the first
element of q(ε, c) is true.

This procedure works in polynomial time: it takes at most |T | · |Σ|
loop iterations, as the size of the generated automaton is at most the
size of the target automaton T . Each loop iteration asks at most |C|
queries and processes them in polynomial time.

Algorithm 2 The automaton generating procedure.
1: procedure GENERATE AUTOMATON(C, T)
2: A := (Σ, {q0}, q0, {}, {})
3: while A �= ADD SUCCESSORS(A) do

4: A := ADD SUCCESSORS(A)
5: A := COMPUTE ACCEPTING STATES(A)
6: return A

6.2 Saturation

The procedure SATURATE(w, v, C, T) is a straightforward implemen-
tation of saturateTC (wvω). It is crucial that saturateTC depends on
the target automaton T only to the extent provided by the teacher T .
The procedure uses auxiliary functions ACCEPTING(A, q) checking
whether q is an accepting state in A and EVAL(A, w) which returns
the state of A after reading w.

6.3 Complexity and correctness

The procedure LEARN(T) works in time polynomial in size of the
target automaton T . To see this, observe that by Lemmas 8 and 11
each step of the main loop of LEARN(T) increases C so one of two
things happens:
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Algorithm 3 The saturation procedure.
1: procedure SATURATE(x, y, C, T)
2: li := T.LOOPINDEX(x,y)
3: (w, v) := (xyω)[1,li], (xyω)[li+1,li+LENGTH(v)]
4: i := LENGTH(w)+LENGTH(v)+1
5: repeat

6: C’ := C ∪ cl({(wvω[1, i], c) | (ε, c) ∈ cl(C∪{(w, v)})}
7: Ac := GENERATE AUTOMATON(C)
8: class acc := ACCEPTING(Ac, EVAL(Ac,( wv)ω[1, i]))
9: i := i+1

10: until class acc = T.VALUE(w,v)
11: return C’

1. the number of states of AT
C increases, or

2. the set of states remains the same, the sizes of the set of accepting
states and Δmay

C do not increase and one of them decreases.

By Lemma 4, the number of states of AT
C is bounded by the num-

ber of states of T , so 1 happens less than |T | times. For a fixed set
of states Q, the set F has at most |Q| elements and Δmay

C has at most
|Q|2|Σ| elements, so they can decrease that many times. Therefore,
the number of loop iterations is at most cubic in |T |.

It is not hard to check that GENERATE AUTOMATON(C, T) works
in time polynomial in the target automaton and C, and for SATU-
RATE(w, v, C, T), polynomial time follows from the estimation (#) in
Section 5. Thus, the whole procedure works in polynomial time.

The correctness of the learning algorithm follows from the fact
that it only terminates when there are no more counterexamples, i.e.,
when it finds an automaton equivalent to the target one.

Theorem 12. Active learning DBA with teacher answering equiv-
alence queries, membership queries and loop-index queries can be
done in time polynomial in the size of the target automaton and the
size of teachers’ responses.

7 Extensions

The algorithm for learning DBA can be straightforwardly adapted
to learn deterministic co-Büchi automata. It stems from the fact that
a DBA can be complemented by swapping accepting and rejecting
states and changing the Büchi acceptance condition into co-Büchi.
We discuss further extension of our technique to different types of
deterministic ω-automata.

7.1 Deterministic limit infimum and limit
supremum automata.

A deterministic LIMSUP-automaton A is similar to DBA, except that
the set of accepting states F is now replaced by a cost function
γ : Q → Z which assigns integers, called weights, to states. Runs
of LIMSUP-automata are defined in the same way as for DBA. The
value of a word w assigned by the LIMSUP-automaton A, denoted
by A(w), is defined as the limit supremum of weights of states along
the run of A on w, i.e., the maximal weight that appears infinitely
often. We say that LIMSUP-automata A1,A2 are equivalent if for
all words w we have A1(w) = A2(w). The definition of A(w) for
LIMINF-automata is symmetric; in the rest of this section we focus
on LIMSUP-automata.

The learning framework for LIMSUP-automata is a straightfor-
ward extension of the framework for DBA: the membership queries
now return the value of a given word rather than just whether the

word is accepted, and the other queries remain virtually the same.
The learning problem is defined analogously to the DBA case.

Observe that LIMSUP-automata satisfy the following counterpart
of Fact 3.

Fact 13. Let T = (Σ, Q, q0, γ, δ) be a deterministic LIMSUP-
automaton. Consider γ′ : Q → Z such that γ′(q) is the minimum
of values of all the words whose runs visit q infinitely often. Then T
and (Σ, Q, q0, γ

′, δ) are equivalent.

Proof. Let T ′ = (Σ, Q, q0, γ
′, δ). Clearly, for any q we have

γ′(q) ≥ γ(q), thus for any word w, T ′(w) ≥ T (w). On the other
hand, T ′(w) ≤ T (w) because the value of each state that T ′ visits
infinitely often while reading w is bounded by T (w). Thus, for any
w, T ′(w) = T (w), meaning that T ′ and T are equivalent.

We briefly discuss how to adapt the learning algorithm for DBA to
learn LIMSUP-automata.

Theorem 14. Active learning LIMSUP-automata and LIMINF-
automata with teacher answering equivalence queries, membership
queries and loop-index queries can be done in time polynomial in the
size of the target automaton and the size of teachers’ responses.

The proof is very similar to the proof of Theorem 12. The way the
automaton AT

C is constructed and improved is almost the same as
before, except we now include the weights. The algorithm chances
very little as well.

The automaton AT
C . First, for a set of ω-generators C and a

LIMSUP-automaton A, we define the relation ∼T
C in the same way

as for DBA. Note, however, that A(wvω) denotes the value that the
LIMSUP-automaton returns on wvω . The transition relation is de-
fined in the same way, as in the DBA case.

Finally, we define the cost function based on Fact 13. Intuitively,
γA
C (W ) = x if we cannot show that the value of γA

C (W ) should
be smaller. Formally, for every W ∈ QT

C , we define γA
C (W ) as the

minimum A(wcω) over all w ∈ W and all (ε, c) ∈ C, where the
minimum is ∞ if there are no (ε, c) ∈ C.

Automata improvement. Counterexample-guided automaton im-
provement works similarly to the DBA case, except that now the
saturateTC procedure ensures that the new automaton while process-
ing a counterexample reaches a state in the ultimate cycle of its run
with weight equal to the value of the counterexample. It is also en-
sured that there is no higher weight in the ultimate cycle.

Algorithm. The algorithm from Section 6 can be adapted to the
LIMSUP-automata case simply by adjusting the functions operating
on accepting states to work with weights. In particular, in GENER-
ATE AUTOMATON(C, T), we need to replace the function computing
the accepting states with a function that computes for each state q
the minimum of values in q of all the loops (ε, c) ∈ C, following the
intuition provided by Fact 13.

Furthermore, in SATURATE(x, y, C, T), we replace AC-
CEPTING(Ac, EVAL(Ac,(wv)ω[1, i])) with WEIGHT(Ac,
EVAL(Ac,(wv)ω[1, i])), which returns the weight of the states
reached upon (wv)ω[1, i]. It can be shown that this weight reaches
T.VALUE(w,v) in a desirable number of iterations.

The proof of polynomial complexity and acceptance remains the
same and thus is omitted.
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7.2 Deterministic parity automata

A deterministic parity automaton (DPA) A is a tuple (Σ, Q, q0, δ, �),
where Σ, Q, q0, δ are as in a DBA, and γ is a function labelling states
with natural priorities, i.e., � : Q → N. A run π of DPA is defined
in the same way as for DBA; the run π is accepting if the maximal
priority occurring infinitely often is even, i.e., limit supremum of pri-
orities along π is even.

Observe that DPA and deterministic LIMSUP-automata are closely
related. In fact, we can learn DPA if we consider these automata as
deterministic LIMSUP-automata. That is, assuming that in the mem-
bership queries the teacher returns the maximal priority that occurs
infinitely often, we can use the learning algorithm for deterministic
LIMSUP-automata to learn DPA.

7.3 Other acceptance conditions

Our technique does not extend to Street and Rabin conditions. The
reason is that there is no counterpart of Fact 3 from these automata.
In the DBA case, a rejected word is a proof that all the states on its
ultimate cycle are rejecting; in the Street and Rabin cases, this trans-
lates into an alternative; for example, in the Rabin case, an ultimate
periodic word is rejected if for all the pairs (B,G), the ultimate cycle
does not visit G or visits B. Overcoming this difficulty is an interest-
ing future work.

For Muller automata, the acceptance condition is a family of sets
of states and a run of an ultimately-periodic word is accepting if
the set of states of its ultimate cycle is in this family. Interestingly,
a counterpart of Fact 3 holds for Muller automata: every rejected
ultimately-periodic word is a proof that the set of states of its ulti-
mate cycle does not belong to the acceptance condition. Thus, our
technique can be extended to work with Muller automata. However,
this requires the acceptance condition to be represented explicitly.
For a target automaton with a small acceptance condition, our tech-
nique is likely to consider during its computation an automaton AT

C

whose acceptance condition is of exponential size. Therefore, the ob-
tained (pessimistic) complexity is as good as of the naive algorithm
(,,check all the automata, starting from the smallest”). Whether this
can be avoided by considering some compressed representation re-
mains an open question.

8 Conclusions and future work

We have shown that various types of infinite-word automata can be
actively learned in polynomial time if we allow the algorithm to
ask three types of queries: membership, equivalence and loop-index.
Loop-index queries depend on the structure of the target automaton
and have not been considered before. This new approach allowed us
to bypass various obstacles, which appear in the infinite-word case.

The approach can be employed to work with limit infimum and
limit supremum automata. Whether it can be extended to other types
of automata is an open problem.

In future work, we plan to study active learning of other types
of infinite-word weighted automata such as automata with the limit
average value function.
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