
Lifted Heuristics for Timeline-Based Planning
Riccardo De Benedictis and Amedeo Cesta1

Abstract. This paper discusses the issue of efficient resolution of
timeline-based planning problems. In particular, taking inspiration
from the more classical heuristics for the resolution of STRIPS-like
problems, it proposes a new heuristic strategy which, while main-
taining the variables lifted, allows more accurate decisions. The con-
cepts presented in this work pave the way for a new type of heuristics
which, at present, allow this kind of solvers a significant performance
improvement.

1 Introduction

Since their early introduction, domain-independent heuristics have
immediately proven to be a fundamental ally in solving difficult com-
binatorial problems such as those related to automated planning. The
number of heuristics, introduced in recent years, for the efficient res-
olution of these problems has grown significantly to the point of con-
stituting a research field (called heuristic planning) in its own right.
The different approaches that make up a solver’s paraphernalia, range
from the seminal hadd and hmax [4] to the more recent develop-
ments relying on delete-relaxation, like the hFF heuristic [36] and
the causal graph heuristics [32], on landmarks, like in [37, 46], on
the critical path, like the hm heuristic [31, 30] or, lastly, on abstrac-
tion, like in [17] or in [33, 34].

While the above heuristics are significantly heterogeneous among
them (although, often, they share some commonalities), they have in
common the fact that they have been developed specifically for the
resolution of a particular type of problem, characterized by a spe-
cific modeling language called PDDL [28], representing a natural
evolution of the most long-lived STRIPS [19] formalism. Despite the
PDDL, over the years, has been extended through different directions
by introducing durative-actions and numeric fluents [20], derived
predicates and timed initial literals [18], continuous changes [21],
state-trajectory constraints and preferences [27] and object-fluents2,
the development of heuristics for reasoning with these more expres-
sive formal systems has remained relatively limited to a few cases
(e.g., [45, 23]).

Although it significantly departs from the previous ones, the
timeline-based approach represents a different formalism that, al-
ready in its original formulation [44], is able to cover a large part of
the above features. Although introduced before the aforementioned
formalisms, this specific planning paradigm has always remained
a niche within the automated planning community. The fragmenta-
tion of the different timeline-based formalisms, indeed, did not allow
the emergence of a common language which would have enabled a
fair comparison among the different reasoners. Furthermore, analo-

1 CNR - Italian National Research Council, ISTC, email:
{name.surname}@istc.cnr.it

2 http://www.plg.inf.uc3m.es/ipc2011-deterministic/
attachments/Resources/kovacs-pddl-3.1-2011.pdf

gously to the solvers reasoning upon the previous PDDL extensions,
timeline-based planners have to cope with the high expressiveness of
the formalisms which, despite making them particularly suited at ad-
dressing real-world applications, unavoidably leads to performance
issues. The contribution of this paper is, hence, twofold: after pro-
viding a new formalization of the timeline-based problem, aiming
to embracing the different aspects of the previous formalisms, we
propose a new domain-independent heuristic which, inspired by the
more classical ones, aims at improving the resolution efficiency.

2 Timeline-based planning

Timeline-based planning was first introduced in [44, 43] and, since
then, many solvers have been proposed like, for example, IXTET [29],
EUROPA [38], ASPEN [10], the TRF [25, 6] on which the APSI
framework [26] relies and, more recently, PLATINUm [50]. Some
theoretical work on timeline-based planning like [24, 38] was mostly
dedicated to identifying connections with classical planning a-la
PDDL [20]. The work on IXTET and TRF has tried to clarify some
key underlying principles but mostly succeeded in underscoring the
role of time and resource reasoning [7, 40]. The planner CHIMP
[49] follows a Meta-CSP approach having meta-Constraints which
havely resembles timelines. The Flexible Acting and Planning En-
vironment (FAPE) [16] tightly integrates timelines with acting. The
Action Notation Modeling Language (ANML) [47] is an interest-
ing development which combines the HTN decomposition methods
with the expressiveness of the timeline representation. Finally, it is
worth mentioning that the timeline-based approaches have been of-
ten associated to resource managing capabilities. By leveraging on
constraint-based approaches, most of the above approaches like IXTET
[41, 40], [8], [48] or [51] integrate planning and scheduling capabil-
ities. Finally, [11] proposes a recent new formalization of timeline-
based planning.

In order to better understand what we are talking about when
discussing about timeline-based planning, it is important to intro-
duce some basic concepts about constraint networks. Some of the
timeline-based frameworks like, for example, those described in
[48, 24], refer to timeline-based planning in terms of constraint-based
planning, further emphasizing the central role that constraints take on
within this type of planning. The main ingredients of constraint net-
works are variables and constraints. Formally,

Definition 1. A variable is an object that has a name and is able to
take different values.

A variable (whose name is) x must be given a value from a set that
is called the domain of x and is denoted by dom (x). The domain of
a variable x may evolve in time but is always included in a (possibly
infinite) set called initial domain. Depending on the nature of these
domains, variables can be distinguished between continuous, having

ECAI 2020
G.D. Giacomo et al. (Eds.)

© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200362

2330



an infinite initial domain usually defined in terms of real intervals,
and discrete, whose initial domain contains a finite number of values.

Definition 2. A constraint is a restriction on combinations of values
that can be taken simultaneously by a set of variables.

A constraint c is defined over a set of variables which constitute the
scope of c and are denoted by scp (c). Finally, a structure composed
of variables and constraints is called a constraint network.

Definition 3. A constraint network N is composed of a finite set of
variables, denoted by vars (N ), and a finite set of constraints, de-
noted by cons (N ), such that ∀c ∈ cons (N ) , scp (c) ⊆ vars (N ).

Since constraint networks are fundamentals for timeline-based
planning, it is worth introducing some further concepts without go-
ing into too much formal details. Specifically, an assignment of val-
ues to some or all the variables is called an evaluation. Furthermore,
an evaluation is said to be consistent if it does not violate any con-
straint. An evaluation is said to be complete if it includes all the vari-
ables. Finally, given a constraint network, the problem of finding a
consistent and complete evaluation is called Constraint Satisfaction
Problem (CSP) (refer to [15, 42] for a comprehensive introduction to
constraint networks and CSPs).

(a) A continuous timeline.

(b) A step-wise timeline.

Figure 1: A continuous and a step-wise timeline.

Constraint networks represent the lowest level elements on which
timeline-based planning relies. The main data structure for the
timeline-based paradigm is, indeed, the timeline which, in generic
terms, is a function of time, either discrete or continuous, over a given
domain. Formally,

Definition 4. A timeline T is a function

T : T → D

where T is the (either discrete or continuous) domain of time and D
is the (possibly infinite) domain of the timeline.

It is worth noticing that the previous definition is quite general, not
specifying any limitation neither on the time, which can be either
discrete or continuous, nor on the domain which can be, in general,

of any kind. Specifically, the domain of a timeline can be either sym-
bolic (e.g., “a”, “b”, “c”, etc.) or numeric (e.g., “1”, “2”, “3”, etc.).
Additionally, numeric domains can be either integer (e.g., “10”, “12”,
“25”, etc.) or real (e.g., “1.23”, “2.17”, “3.14”, etc.). While integer
domains can change in time only step-wise, real domains can change
both step-wise and continuously. Finally, continuous changes can
happen both linearly or non-linearly. Figure 1 (a), for example, repre-
sents a continuously updating non-linear timeline over reals. Figure 1
(b), on the contrary, shows a step-wise updating timeline.

Since the definition of timeline is completely general, it is possi-
ble to represent, through these, extremely heterogeneous concepts.
We need, therefore, a unifying element that allows to represent con-
tents homogeneously, in a way which is agnostic from the nature of
the timeline. To this end, we introduce the concept of token and es-
tablish that values on timelines are a direct consequence of tokens
through a timeline extraction procedure (more details soon). Without
loss of generality, a token is an “assertion over a temporal interval”.
Formally,

Definition 5. A token is an expression of the form:

n (x0, . . . , xi)χ@ [s, e, τ ]

where n is a predicate name, x0, . . . , xi are the parameters of the
predicate (i.e., constants, numeric variables or symbolic variables),
χ is the class of the token (i.e., either a fact or a goal), s and e are
the temporal parameters of the token (i.e., constants or variables)
belonging to T such that s ≤ e and τ is the scope parameter of
the token (i.e., a constant or a symbolic variable) representing the
timeline on which the token apply.

Roughly speaking, the expression on the left of the “@” symbol rep-
resents the “assertion” while the expression at its right represents the
“interval”. In other words, a token n (x0, . . . , xi)χ@ [s, e, τ ] asserts
that ∀t such that s ≤ t ≤ e, the relation n (x0, . . . , xi) holds at
the time t on the timeline τ . Furthermore, given a token η, we call
pars (η) its parameters x0, . . . , xi, s, e, τ .

Tokens constitute the main building blocks of timeline-based
plans. Regardless of the resolution procedure, indeed, the role of any
timeline-based solver consists in introducing new tokens and/or es-
tablishing the values of their parameters. A critical aspect to keep in
mind, when talking about tokens, is that, in general, their parameters
are variables, like those introduced in the Definition 1 and, as such,
can be constrained. In other words, in order to reduce the allowed val-
ues for the tokens’ constituting parameters, and thus decreasing the
modeled system’s allowed behaviors, it is possible to impose con-
straints among them (and/or among the parameters and other possi-
ble variables). Such constraints include temporal constraints, bind-
ing constraints between symbolic variables as well as (non)linear
constraints among numerical variables (possibly including temporal
variables).

The set of tokens and constraints is used to describe the main
data structure that is used to represent plans of the timeline-based
approach: the token network. Formally,

Definition 6. A token network is a tuple π = (T ,N ), where:

– T = {η0, . . . , ηj} is a set of tokens, such that ∀η ∈
T , pars (η) ⊆ vars (N ).

– N is a constraint network.

Roughly speaking, tokens provide a higher level semantics to (some
of) the variables of the constraint network, grouping them into data
structures on which the planner can reason.

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning 2331



Finally, as already mentioned, tokens can be partitioned into
two classes: facts and goals. While facts are, by definition, inher-
ently true, goals have to be achieved. Causality, in particular, in the
timeline-based approach, is defined by means of a set o rules indicat-
ing how to achieve goals. Formally,

Definition 7. A rule is an expression of the form

n (x0, . . . , xk)@ [s, e, τ ] ← r

where:

– n (x0, . . . , xk)@ [s, e, τ ] is the head of the rule, i.e. an expression
in which n is a predicate name, x0, . . . , xk are the parameters
of the head (i.e., numeric variables or symbolic variables), s and
e are the temporal parameters of the head (i.e., constants or vari-
ables) belonging to T such that s ≤ e and τ is the scope parameter
of the head (i.e., a constant or a symbolic variable) representing
the timeline on which the rule apply.

– r is the body of the rule (or the requirement), i.e. either a slave (or
target) token, a constraint among tokens (possibly including the
x0, . . . , xk, s, e, τ variables), a conjunction of requirements or a
(priced3) disjunction of requirements.

Specifically, rules define causal relations that must be complied to
in order for a given goal to be achieved. Roughly speaking, for each
goal having the “form” of the head of a rule, the body of the rule (i.e.,
further tokens, constraints, conjunctions and disjunctions) must also
be present in the token network. An example of rule is given by

At (?x)@ [s, e, τ ]←

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[e− s ≥ 1]∧⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
dt : DriveTo (?x)g@ [s, e, τ ]∧
[τ == dt.τ ] ∧ [s == dt.e]∧

[?x == dt.?x]

}

∨
{
ft : FlyTo (?x)g@ [s, e, τ ]∧
[τ == ft.τ ] ∧ [s == ft.e]∧

[?x == ft.?x]

}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

By means of a combination of slaves, constraints, conjunctions and
disjunctions, the above rule states that, in order to be in a given posi-
tion, our agent must reach it either by driving or by flying.

We have now all the ingredients to define a timeline-based plan-
ning problem. In particular, the definition can rely on the above con-
cept of requirement.

Definition 8. A timeline-based planning problem is a triple P =
(T,R, r), where:

– T is a set of timelines.
– R is a set of rules.
– r is a requirement, i.e. either a (fact or goal) token, a constraint

among tokens, a conjunction of requirements or a (priced) dis-
junction of requirements.

It is worth highlighting that, conversely to other timeline-based
approaches, our formalism makes a clear distinction between tokens
and values on timelines. This difference aims at guaranteeing us a
further element of generality. The transition from tokens to timelines,
however, requires the introduction of a further function which allows
to extract the timelines from the tokens. Specifically,

Definition 9. An extraction function XT is a function for a timeline
T

XT : T× 2TT → D
3 It is possible, if needed, to associate a cost to the different disjuncts of a

disjunction so as to model preferences.

where T is the (either discrete or continuous) domain of time, TT is
the set of tokens in the token network, having T in the domain of their
τ variable, and D is the domain of the timeline.

As can be easily seen by comparing Definition 4 with Definition 9,
the result of the extraction function is, basically, a timeline. Each
type of timeline, indeed, has associated its own timeline extraction
procedure which allows to pass from the associated tokens to the re-
sulting timelines. In other words, the timeline extraction procedure
assigns to the tokens a higher-level semantic: according to the nature
of the timeline, the procedure is able to “recognize the meaning” of
the involved tokens. Note that, thanks to the introduction of the above
higher-level semantic, not all token configurations lead to consistent
timelines. According to the nature of the timeline, indeed, some con-
figurations of tokens might lead to inconsistencies. It is responsibility
of the solver to introduce further constraints so as to avoid such in-
consistencies. Another way to see a timeline, indeed, is in terms of a
global constraint (refer, for example, to [15, 42]). In other words, a
timeline is a global constraint over the tokens which are applied on
it.

Examples of timelines, extracted from tokens, are shown in the
Figure 2. Specifically, Figure 2a shows a state-variable timeline, a
step-wise timeline whose domain depends from the tokens which can
be assigned, by means of the τ variable (omitted, for simplicity), to
it. This type of timeline, in particular, introduces an additional con-
straint that guarantees that different values, on the same timeline,
cannot overlap in time. The state-variable of Figure 2a, as an exam-
ple, has two values that overlap as a consequence of the overlapping
of the At (l1) and the GoingTo (l2) tokens. Such an inconsistency
can be solved, for example, by imposing an ordering constraint be-
tween the tokens. Another type of timeline, typically used in pure
scheduling problems, is the reusable-resource (see Figure 2b). This
step-wise timeline is characterized by a maximum capacity and by
a resource level which changes over time according to how the to-
kens, representing resource usages, overlap. The resource constraint
guarantees that concurrent uses of the resource do not exceed its ca-
pacity. Finally, as example of a continuous timeline, the consumable-
resource timeline (see Figure 2c) is characterized by a maximum ca-
pacity and by an initial amount. Similarly to reusable-resources, the
resource level changes over time according to how the tokens, rep-
resenting resource productions and consumptions, overlap, while the
resource constraint guarantees that the level never exceeds the re-
source capacity nor goes below zero.

It is worth noticing that, by enabling any implementing solver to
reason about timelines agnostically from their specific nature, the
above definition allows us to maintain a certain generality. Further-
more, once provided an extraction function and the algorithms for
managing the specific global constraint, new types of timelines can
be introduced without affecting the solvers’ resolution procedures.

The last aspect to consider regards the solution of a timeline-based
planning problem. Roughly speaking, a solution is a token network
whose all goals have been achieved. Furthermore, at least one con-
sistent and complete evaluation of the underlying constraint network
must be available. Notice that, among the constraints of the constraint
network, there are also those which are imposed by the timelines.
Formally,

Definition 10. A token network π = (T ,N ) is a solution for a
timeline-based planning problem P = (T,R, r) if:

– there exists a complete and consistent evaluation of the constraint
network N .

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning2332



(a) A state-variable timeline.

(b) A reusable-resource timeline. (c) A consumable-resource timeline.

Figure 2: Different timelines extracted by tokens.

– every goal g ∈ T is achieved (i.e., either the goal g is recognized
as semantically equivalent of another token or a rule, whose head
is compatible with the token g, is applied).

3 Reasoning with timelines

Unfortunately, the above definitions do not provide a computable test
for building and verifying solutions. This section, therefore, intro-
duces the typical approach for solving timeline-based planning prob-
lems. Specifically, common timeline-based solvers strongly rely on
partial-order planning [52] for reasoning, while generalizing the con-
cept of threat for including any possible inconsistency which might
arise as a consequence of the timeline constraints (e.g., different
states overlapping on the same state-variable, resources overusages,
etc.). Despite this generalization, the search space (and, conse-
quently, the solving algorithm) remains substantially unchanged. In
particular, timeline-based solvers rely on the concept of flaws, that a
token network has, and on the concept of resolvers, for solving them.
Formally,

Definition 11. A flaw in a token network π = (T ,N ) is either: (i) an
open goal (i.e., a goal whose associated rule has not yet been applied
or which has not yet been recognized as semantically equivalent to
another token), (ii) a threat (i.e., any possible inconsistency arising
as a consequence of the timeline constraints) or (iii) a disjunction.

Intuitively, the main resolution principle consists in refining the to-
ken network π, identifying its flaws and applying resolvers for solv-
ing them, while maintaining the constraints cons (N ) consistent, un-
til the token network π has no more flaws.

procedure TP(π)
flaws ← OpenGoals (π) ∪ Threats (π) ∪ Disjunctions (π)
if flaws = ∅ then return π
end if
select any flaw ϕ ∈ flaws
resolvers ← Resolve (ϕ, π)
if resolvers = ∅ then return failure
end if
non-deterministically choose a resolver ρ ∈ resolvers
π′ ← Refine (ρ, π)
return TP (π′)

end procedure

Figure 3: The TP procedure for solving timeline-based planning prob-
lems.

Figure 3 specifies a recursive non-deterministic procedure called
TP (for Timeline-based Planning) for resolving timeline-based plan-
ning problems. Specifically:

– flaws denotes the set of all flaws in π provided by procedures
OpenGoals, Threats and Disjunctions; ϕ is a particular
flaw in this set.

– resolvers denotes the set of all possible ways to resolve a specific
flaw ϕ in a plan π and is given by the procedure Resolve. The
resolver ρ is a particular element of this set.

– π′ is the new plan obtained by refining π according to the resolver
ρ as a consequence of the procedure Refine.

The TP procedure is called with an initial token network π0, char-
acterized by the problem’s requirement. Each successful recursion is
a refinement of the current plan according to the chosen resolver. In
particular, the Resolve procedure returns all the resolvers that, in
the token network π, solve the ϕ flaw. These resolvers depend, neces-
sarily, on the type of flaw ϕ and on the current token network π. In the
case of open goals, for example, resolvers represent the application
of the corresponding rule or the unification with other semantically
equivalent tokens (i.e., same predicate name and same, pairwise, pa-
rameter values). In the case of excessive concurrent resource usage,
resolvers could represent ordering constraints between the tokens.
As a consequence, each invocation of the Refine procedure might
introduce new tokens, new variables and/or new constraints to the
token network. Intuitively, refinement operations should be chosen
so as to avoid adding to the token network any constraint that is not
strictly needed (this is called the least commitment principle).

4 Toward more effective heuristics

Reasoning within the above formal system is not at all simple4.
It is worth noting that while the choice of the resolver is a non-
deterministic step (i.e., it may be required to backtrack on this
choice), the selection of a flaw is a deterministic step (i.e., there is
no reason to backtrack on this choice) as all flaws need to be solved
before or later in order to reach a solution plan. Despite the order
in which flaws are processed is very important for the efficiency of
the procedure, it is unimportant for its soundness and completeness.
A deterministic implementation of the TP procedure should rely on
algorithms like A* or IDA* so as to avoid that the search may keep
exploring deeper and deeper a single path in the search space, adding
indefinitely new tokens to the partial plan and never backtracking.
As a consequence, choosing the right flaw and the right resolver be-
comes a crucial aspect for coping with the computational complexity
and hence efficiently generating solutions.

The main difficulty derives from the impossibility of i) having a
perfectly defined current state and ii) measuring the distance between

4 Note that it is possible, in general, to represent through this formalism a
self-referential proposition P , whose meaning is “P is false”, and show
quite easily its non-decidability.

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning 2333



this state and a desired state indicated in the formulation of the rea-
soning problem. For these reasons it becomes particularly inconve-
nient to use or even adapt, directly, the heuristics developed for clas-
sical formalisms. What we propose in this document is, somehow, to
separate the temporal aspects from the purely causal ones, which in
classical planning are strongly linked to be almost the same thing,
and to apply classical heuristics only to the latter. In doing so, the
rules of the timeline formalism become the equivalent of the PDDL
operators, having the requirements as preconditions and the head of
the rule as the only positive effect. Once this paradigm shift has been
made, it becomes possible to adapt the heuristics of classical plan-
ning. Note that, however, this translation is not trivial: if, on the one
hand, there is the simplification of having, for each operator, only a
single positive effect (i.e., the solved flaw), on the other hand there
is the difficulty of rendering atoms “ground” due to the presence of
numerical parameters (representing, for example, the starting and the
ending times of the tokens). We are therefore forced to reason about
a sort of causal graph having lifted variables.

The overall proposed idea consists in applying, in a coarse way, all
the possible resolvers for all the possible flaws until some termina-
tion criteria, i.e., unifications and resolvers which do not add further
flaws, is met. Specifically, since flaws and resolvers are causally re-
lated (i.e., resolvers might introduce flaws which are solved by other
resolvers, etc.) it is possible to build an AND/OR graph for repre-
senting such causal relations. By doing so, instead of searching in
the space of the token networks, we have a single disjunctive to-
ken network containing all the possible plans (or, hopefully, only the
“most interesting” ones) that can be found starting from the initial
token network π0. By exploiting the topology of such a graph it is
possible to generate an estimation of “how far” a flaw is from being
solved and exploit this estimation for guiding the resolution process.
Specifically, taking inspiration from the hadd and the hmax heuris-
tics introduced in [4], the cost of a resolver, which can be seen as
an AND node, can be estimated as the maximum (in case of hmax

heuristic or, in case of the hadd heuristic, the sum) of the estimated
costs of the flaws introduced by the resolver itself plus an intrinsic
resolver’s cost, while the estimated cost of a flaw, which can be seen
as an OR node, can be estimated as the minimum of the estimated
costs of its possible resolvers. Since all flaws must be solved, the
solver chooses, among those that have to be solved, the most expen-
sive flaw (i.e., the one that, most likely, will detect an inconsistency
earlier) and will solve it with the least expensive resolver (i.e., the
one that, more likely, will lead to a solution).

5 The lifted heuristic formulation

Before formally introducing the proposed heuristics, it is worth pro-
viding some definitions. Specifically, since the presence of flaws and
resolvers, within the current partial solution, is controlled by a set of
propositional variables, we refer to flaws by means of ϕ variables (we
will use subscripts to describe specific flaws, e.g., ϕ0, ϕ1, etc.) and to
resolvers by means of ρ variables (similarly to flaws, we will use sub-
scripts to describe specific resolvers, e.g., ρ0, ρ1, etc.). Specifically,
the value of such variables will be used to recognize active flaws
that have to be solved (i.e., those flaws whose ϕ variables assume
the true value) and applied resolvers (i.e., those resolvers whose ρ
variables assume the true value). Additionally, given a flaw ϕ, we
refer to the set of its possible resolvers by means of res (ϕ) and to
the (possibly empty) set of resolvers which are responsible for intro-
ducing it by means of cause (ϕ). The latter set is usually constituted
by the sole resolver representing the application of the rule which

introduced the flaw. Nonetheless, this set can also be empty in case
of top-level flaws, in which case the true value is assigned to their
controlling ϕ variables or, also, can contain more than one resolver
in case the flaw is a consequence of their simultaneous application
(e.g., a flaw representing two states overlapping on the same state-
variable is activated whenever the rules that introduce the two states
are applied simultaneously). Finally, given a resolver ρ, we refer to
the set of its preconditions (e.g., the set of tokens introduced by the
application of a rule) by means of precs (ρ) and to the flaw solved
through its application by means of eff (ρ).

The above definitions allow us to formally introduce our heuris-
tics. Specifically, let G be the estimated cost function, the estimated
cost of a flaw ϕ and of a resolver ρ are characterized by the following
equations:

G (ϕ) = minρ∈res(ϕ)G (ρ)

G (ρ) = c (ρ) +maxϕ∈precs(ρ)G (ϕ)

where c (ρ) is the intrinsic cost of the ρ resolver, i.e., a positive num-
ber representing the “cost” of disjuncts, in case of priced disjunc-
tions, or the value 1, in other cases.

5.1 Enforcing causality constraints

Similar to planning models based on satisfability [39], it is possible
to introduce propositional constraints to the ϕ and ρ variables so as to
guarantee the causal relations. By doing so, once the graph has been
built, it is possible to frame the search space within a given bound-
ary, dropping the computational complexity of the search procedure
to a “simpler” NP-hard5. Furthermore, the introduction of these vari-
ables allows the use of propagation techniques and, in the event of in-
consistencies, conflict analysis (and, hence, non-chronological back-
tracking) techniques, typical of SAT/SMT based solvers. The plan-
ning problem is therefore reduced to the assignment of true values to
the variables associated to the resolvers while observing the assign-
ment, as a consequence of constraint propagation, of true values to
the variables associated to the flaws.

Additionally, we need a gimmick to establish the presence or
not of the tokens inside the solution. In this regard, a state vari-
able σ ∈ {inactive, active, unified} is associated to each token.
Specifically, a partial solution will consist solely of those tokens of
the token network which are active. Moreover, in case such tokens
are goals, the bodies of the associated rules must also be present
within the solution. The unified tokens do not participate directly in
the partial solution, since they are recognized as semantically equiv-
alent to other active tokens, yet, since possibly subject to constraints,
they might indirectly influence the “shape” of the solution. Finally,
inactive tokens do not participate at all in the solution. We refer to
tokens, later on, by means of σ variables (we will use subscripts to
describe specific tokens, e.g., σ0, σ1, etc.) and to the flaws introduced
by tokens by means of the ϕ (σ) function.

Specifically, for each flaw ϕi, we enforce the following causality
constraints

ϕi = ∧ρk∈cause(ϕi)ρk (1)

ϕi ⇒ ∨ρl∈res(ϕi)ρl (2)

5 There is, intuitively, no guarantee that the built graph contains a solution.
Similarly to what happens in Graphplan [3], indeed, it might be required
the addition of a “layer” to the graph.

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning2334



guaranteeing that the preconditions of all the applied resolvers are,
eventually, satisfied (constraint 1) and that at least one resolver is
active whenever the flaw becomes active (constraint 2)6.

Analogously, for each resolver ρj , we enforce the causality con-
straint constraint 3, guaranteeing that the application of a resolver
activates (and resolves!) the associated flaw.

(¬ρj ∨ eff (ρj)) (3)

The last aspect to consider concerns the update of the σ vari-
ables as a consequence of the application of a rule application re-
solver and of a unification resolver. Specifically, each rule appli-
cation resolver ρa binds the σa variable of the goal token, whose
rule has been applied, to assume the active value (formally, ρa ==
ϕ (σa) == active). Finally, for each unification resolver ρu repre-
senting the unification of a token σu with a token σt, the constraints
¬ρu ∨ σu == unified and ¬ρu ∨ σt == active guarantee the
update of the σ variables while adding ϕ (σt) to the preconditions of
ρu guarantees the operation of the heuristic.

5.2 An explanatory example

In order to better understand how the heuristic and causality con-
straints work we introduce, in this section, a very simple example in-
volving an agent moving between different locations either by driv-
ing or by flying (which, in turn, requires good weather). Figure 4
shows an example of the graph which is generated for solving the
problem of going from l0 (a fact) to l1 (a goal).

Figure 4: An example of causal graph with lifted variables.

Estimated costs for flaws (boxes) and resolvers (ovals) are on
their upper right. Notice that, in the example, the flaw ϕ0 can only
be solved by resolver ρ0 which is directly applied (solid lines rep-
resent what is in the current partial solution). Additionally, since
ϕ0 = ϕ (σ3), the active value is assigned to σ3. The first flaw to
be solved is, hence, ϕ1, which can be solved either with resolver
ρ1, having an estimated cost of 3, or with resolver ρ2 having an es-
timated cost of 47. Applying, for example, the least expensive re-
solver ρ1 would lead, as a consequence of constraint propagation, to
the activation of the flaw ϕ2 (notice that precs (ρ1) = {ϕ2} and
cause (ϕ2) = {ρ1}) which can be solved with the sole resolver ρ3,
which in turn activates the flaw ϕ4 which is solved with resolver ρ5

6 Notice that it is possible to introduce further constraints whenever it is
known that the resolvers of a flaw are, among them, mutually exclusive.

7 In the figure, the estimated costs are represented in the upper right of the
flaws/resolvers and are computed through the hmax heuristic. Whenever
they do not coincide, in parenthesis is also represented the value from the
hadd heuristic.

leading to a solution. Finally, since ϕ4 = ϕ (σ6), the unified value
is assigned to σ6.

6 Current results

The causal graph, described in the previous section, has been im-
plemented within the ORATIO solver8. In order to show the effec-
tiveness of the proposed approach, we tested the solver, enhanced
with the above heuristic, on different instances of the GOAC domain.
Specifically, the Goal Oriented Autonomous Controller (GOAC) was
an ESA initiative aimed at defining a new generation of software au-
tonomous controllers to support increasing levels of autonomy for
robotic task achievement. In particular, the domain, initially defined
in [26] and more recently cited in [13], aims at controlling a rover
to take a set of pictures, store them on board and dump the pictures
when a given communication channel was available. The interest-
ing aspect of this domain is that communication can only take place
within specific visibility windows that take into account the astro-
nomical motions of the planets/satellites which, in some cases, may
stand between the transmitting and receiving stations. The presence
of these visibility windows, in particular, requires an explicit model-
ing of temporal aspects in order to adequately plan the transmission
of information and can hence easily be modeled through, and solved
by, timeline-based planners. The problem is made more interesting
by the presence of constraints which include the available resources
(e.g., memory and battery) as well as by having a distance matrix,
among the possible locations, which might be not completely con-
nected.

Figure 5 shows the execution times of different timeline-based
solvers (i.e., EPSL [9], AP2 [26], J-TRE [14], one of the precursors
of ORATIO using a less accurate heuristic [1], and the more recent
PLATINUm [50]) as well as a couple of temporal-planning solvers
(i.e., OPTIC [2] and COLIN (see [12]), both based on a classic FF-
style forward chaining search [35]) in solving different instances of
the GOAC problem. In particular, problems are obtained by varying
the problem complexity along the number of pictures to be taken
and the number of communication windows. Notice that if on the
one hand the increasing number of communication windows raises
the complexity of the planning problem with a combinatorial effect,
on the other hand an higher number of such windows might allow
the planner to more easily find room for transmitting. More in gen-
eral, among all the generated problem instances, the ones with higher
number of required pictures and higher number of visibility windows
result as the hardest ones. The right mix of causal and temporal as-
pects makes the GOAC problem particularly complex to the point that
some of the planners, beyond a certain number of pictures to collect
and data dumps, show serious scalability issues. As shown in the
figure, besides being considerably more efficient, compared to other
timeline-based planners, ORATIO is also able to solve more complex
instances. Compared to the temporal-planning solvers, however, it
is clear that, despite significant improvements, there is still a per-
formance gap to fill. Possible explanations of this gap include the
maintenance, in the current state of the solvers, of the consistency
between the various constraints (which is not required in the forward
state space search planners), in addition to the greater effectiveness
of the FF heuristics. Another aspect to take into consideration re-
gards the possibility of making the graph more accurate, so as to be
able to represent heuristics as h2 [31, 30]. Since it is not possible to
recognize the mutual exclusivity between the resolvers directly from

8 https://github.com/pstlab/oRatio

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning 2335



the rules’ structure, we have not yet found an effective approach for
implementing it.

Figure 5: Execution times of different solvers to instances, of increas-
ing complexity, of the GOAC problem.

6.1 Comments on results

Although, for the moment, there are solvers able to solve the GOAC

problem more efficiently than the ORATIO solver, we believe that
the current results are nevertheless significant. In the first place, in-
deed, the heuristic described in this document proposes a complete
paradigm shift for timeline-base planners: we pass from heuristics
based on the current partial solution (i.e., the current token network
π) to heuristics based on all possible plans of what the planning prob-
lem says to us. In so doing, we have the possibility to anticipate the
consequences of decisions before they are even taken and this re-
sults in more accurate plan synthesis. A second aspect to consider
regards the possibility of modeling (and, above all, integrating) dif-
ferent kinds of reasoning which depart from those more closely re-
lated to automated planning. By removing the temporal parameters
from the tokens, indeed, we obtain a form of reasoning which is sim-
ilar to constrained logic programming. The proposed heuristics, in
particular, remains valid, and paves the way for the efficient integra-
tion of different forms of reasoning such as, for example, automated
planning and ontological reasoning. To better understand this aspect
we can consider as an example the execution of Prolog program,
whose efficiency strongly depends on the order in which the goals
are defined within the rules. Note that different rules with the same
goals in different order are semantically the same. In this case the
programmer could be wrong to define the order or, even worse, the
order could depend on the value of the parameters unavoidably af-
fecting the performance of the resolution process. Finally, it is worth
noting that the generated graph might be used to synthesize explana-
tions (or, also, for proposing alternatives) of the decisions taken by
the solver in an Explainable AI fashion [22, 5]. Some of the ques-
tions that an “explainable” planner might answer, indeed, are “why

did you do action A? I would have done action B” or “why didn’t
you do something else?” or, even, “why can’t you do that?”. In such
cases a graphical representation of the graph, appropriately modified
(for example, eliminating the inactive part that represents alterna-
tive plans), could help the user to understand the planner’s decisions,
highlighting possible causal relationships between temporally distant
decisions and therefore, in large problems, not immediately visible
from the resulting timelines. Furthermore, since the graph contains
alternative plans, it is possible to exploit it to show consequences of
other choices, possibly showing more expensive or even impossible
plans, generating, in the latter case, infeasibility explanations thanks
to the constraint network’s conflict analysis.

7 Conclusions

The reasons for introducing a new timeline-based formalism are
manifold and range from the possibility to model, through a uni-
form formalism, continuous changes over time (see, for example,
Figure 1a) to make the plans more flexible in the execution phase
(relaxing the constraint, present in some formalisms, that forces the
timelines to be completely filled over time). Whatever the formalism,
reasoning upon these systems remains particularly challenging from
a computational point of view. For this reason we have introduced a
new heuristic that takes into account, before starting the search, all
possible resolvers for all possible flaws that may emerge from the
resolution process, so as to be able to make choices according to a
more accurate criterion. Although encouraging, the results show that
there is still work to be done. As an example, since it is possible
to recognize mutex resolvers by propagating constraints, it is worth
to investigate different approaches for representing the h2 heuris-
tic. Analogously, the proper adaptation of landmark-based heuris-
tics, might represent a fruitful path toward the resolution efficiency.
We hence believe that, through this document, we can lay the founda-
tions for the definition of a new typology of heuristics for the efficient
resolution of timeline-based planning problems.

ACKNOWLEDGEMENTS

Authors work is partially supported by the INdAM-GNCS project
Metodi formali per tecniche di verifica combinata, and by SI-
ROBOTICS 9. They are members of the OVERLAY10 network.

REFERENCES

[1] Riccardo De Benedictis and Amedeo Cesta, ‘Investigating domain in-
dependent heuristics in a timeline-based planner’, Intelligenza Artifi-
ciale, 10(2), 129–145, (2016).

[2] J. Benton, Amanda Coles, and Andrew Coles, ‘Temporal Planning
with Preferences and Time-Dependent Continuous Costs’, in Twenty-
Second International Conference on Automated Planning and Schedul-
ing, (2012).

[3] Avrim L. Blum and Merrick L. Furst, ‘Fast Planning Through Planning
Graph Analysis’, Artificial Intelligence, 90(1-2), 281–300, (1997).

[4] Blai Bonet and Héctor Geffner, ‘Planning as Heuristic Search’, Artifi-
cial Intelligence, 129(1-2), 5–33, (2001).

[5] Michael Cashmore, Anna Collins, Benjamin Krarup, Senka Krivic,
Daniele Magazzeni, and David Smith. Towards Explainable AI Plan-
ning as a Service, 2019.

[6] Amedeo Cesta, Gabriella Cortellessa, Simone Fratini, and Angelo
Oddi, ‘Developing an End-to-End Planning Application from a Time-
line Representation Framework’, in IAAI-09. Proceedings of the
21st Innovative Applications of Artificial Intelligence Conference,
Pasadena, CA, USA, (2009).

9 PON 676–Ricerca e Innovazione 2014-2020–G.A. ARS01 01120
10 https://overlay.uniud.it

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning2336



[7] Amedeo Cesta and Angelo Oddi, ‘Gaining Efficiency and Flexibility
in the Simple Temporal Problem’, in Proceedings of the Third Interna-
tional Workshop on Temporal Representation and Reasoning (TIME-
96), eds., L. Chittaro, S. Goodwin, H. Hamilton, and A. Montanari.
IEEE Computer Society Press: Los Alamitos, CA, (1996).

[8] Amedeo Cesta, Angelo Oddi, and Stephen F. Smith, ‘A Constraint-
Based Method for Project Scheduling with Time Windows’, Journal
of Heuristics, 8(1), 109–136, (Jan 2002).

[9] Amedeo Cesta, Andrea Orlandini, and Alessandro Umbrico, ‘Toward
a general purpose software environment for timeline-based planning’,
in 20th RCRA International Workshop on Experimental Evaluation of
Algorithms for solving problems with combinatorial explosion, (2013).

[10] S. Chien, D. Tran, G. Rabideau, S.R. Schaffer, D. Mandl, and S. Frye,
‘Timeline-Based Space Operations Scheduling with External Con-
straints’, in ICAPS-10. Proc. of the 20th Int. Conf. on Automated Plan-
ning and Scheduling, (2010).

[11] Marta Cialdea Mayer, Andrea Orlandini, and Alessandro Umbrico,
‘Planning and execution with flexible timelines: a formal account’, Acta
Informatica, 53(6), 649–680, (Oct 2016).

[12] A. J. Coles, A. I. Coles, M. Fox, and D. Long, ‘COLIN: Planning with
Continuous Linear Numeric Change’, Journal of Artificial Intelligence
Research, 44, 1–96, (May 2012).

[13] Amanda Jane Coles, Andrew Ian Coles, Moises Martinez Munoz,
Okkes Emre Savas, Juan Manuel Delfa, Tomás de la Rosa, Yolanda
E-Martı́n, and Angel Garcı́a Olaya, ‘Efficiently Reasoning with Inter-
val Constraints in Forward Search Planning’, in Proceedings of the
Thirty Third AAAI Conference on Artificial Intelligence. AAAI Press,
(1 2019).

[14] Riccardo De Benedictis and Amedeo Cesta, ‘New Reasoning for Time-
line based Planning - An Introduction to J-TRE and its Features.’, in
ICAART 2012 - 4th International Conference on Agents and Artificial
Intelligence, pp. 144–153. SciTePress, (2012).

[15] Rina Dechter, Constraint Processing, Elsevier Morgan Kaufmann,
2003.

[16] Filip Dvorák, Arthur Bit-Monnot, Félix Ingrand, and Malik Ghallab,
‘Plan-Space Hierarchical Planning with the Action Notation Modeling
Language’, in IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Limassol, Cyprus, (November 2014).

[17] Stefan Edelkamp, ‘Planning with Pattern Databases’, in Sixth European
Conference on Planning, (2014).

[18] Stefan Edelkamp and Jörg Hoffmann, ‘PDDL2.2: The language for the
Classical Part of the 4th International Planning Competition’, Technical
Report 195, Institut für Informatik, (January 2004).

[19] Richard Fikes and Nils J. Nilsson, ‘STRIPS: A New Approach to the
Application of Theorem Proving to Problem Solving’, in IJCAI, pp.
608–620, (1971).

[20] Maria Fox and Derek Long, ‘PDDL2.1: An Extension to PDDL for
Expressing Temporal Planning Domains’, Journal of Artificial Intelli-
gence Research, 20, 61–124, (2003).

[21] Maria Fox and Derek Long, ‘Modelling Mixed Discrete-continuous
Domains for Planning’, Journal Of Artificial Intelligence Research,
27(1), 235–297, (2006).

[22] Maria Fox, Derek Long, and Daniele Magazzeni, ‘Explainable Plan-
ning’, ArXiv, (2017).

[23] Santiago Franco, Mauro Vallati, Alan Lindsay, and Thomas Lee Mc-
Cluskey, ‘Improving Planning Performance in PDDL+ Domains via
Automated Predicate Reformulation’, in Computational Science –
ICCS 2019, pp. 491–498. Springer International Publishing, (2019).

[24] J. Frank and Ari K Jónsson, ‘Constraint-Based Attribute and Interval
Planning’, Constraints, 8(4), 339–364, (2003).

[25] S. Fratini, F. Pecora, and A. Cesta, ‘Unifying Planning and Scheduling
as Timelines in a Component-Based Perspective’, Archives of Control
Sciences, 18(2), 231–271, (2008).

[26] Simone Fratini, Amedeo Cesta, Riccardo De Benedictis, Andrea Orlan-
dini, and Riccardo Rasconi, ‘APSI-based Deliberation in Goal Oriented
Autonomous Controllers’, ASTRA, 11, (2011).

[27] Alfonso E. Gerevini, Patrik Haslum, Derek Long, Alessandro Saetti,
and Yannis Dimopoulos, ‘Deterministic planning in the fifth interna-
tional planning competition: {PDDL3} and experimental evaluation of
the planners’, Artificial Intelligence, 173(5-6), 619–668, (2009). Ad-
vances in Automated Plan Generation.

[28] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram,
M. Veloso, D. Weld, and D. Wilkins. PDDL—The Planning Domain
Definition Language, 1998.

[29] M. Ghallab and H. Laruelle, ‘Representation and Control in IxTeT, a
Temporal Planner’, in AIPS-94. Proceedings of the 2nd Int. Conf. on AI
Planning and Scheduling, pp. 61–67, (1994).

[30] Patrik Haslum, Blai Bonet, and Héctor Geffner, ‘New Admissible
Heuristics for Domain-Independent Planning’, in AAAI, volume 5, pp.
9–13, (2005).

[31] Patrik Haslum and Héctor Geffner, ‘Admissible Heuristics for Optimal
Planning’, in Proceedings of the Fifth International Conference on Ar-
tificial Intelligence Planning Systems, Breckenridge, CO, USA, April
14-17, 2000, pp. 140–149. AAAI Press, (2000).

[32] Malte Helmert, ‘The Fast Downward Planning System’, Journal of Ar-
tificial Intelligence Research, 26(1), 191–246, (2006).

[33] Malte Helmert, Patrik Haslum, and Jörg Hoffmann, ‘Flexible Abstrac-
tion Heuristics for Optimal Sequential Planning’, in ICAPS, pp. 176–
183, (2007).

[34] Malte Helmert, Patrik Haslum, Jörg Hoffmann, and Raz Nissim,
‘Merge-and-Shrink Abstraction: A Method for Generating Lower
Bounds in Factored State Spaces’, Journal of the ACM (JACM), 61(3),
16, (2014).

[35] Jörg Hoffmann, ‘FF: The Fast-Forward Planning System’, AI Maga-
zine, 22(3), 57–62, (2001).

[36] Jörg Hoffmann and Bernhard Nebel, ‘The FF Planning System: Fast
Plan Generation Through Heuristic Search’, Journal of Artificial Intel-
ligence Research, 14, 253–302, (2001).

[37] Jörg Hoffmann, Julie Porteous, and Laura Sebastia, ‘Ordered Land-
marks in Planning’, Journal of Artificial Intelligence Research, 22,
215–278, (2004).

[38] A.K. Jonsson, P.H. Morris, N. Muscettola, K. Rajan, and B. Smith,
‘Planning in Interplanetary Space: Theory and Practice’, in AIPS-00.
Proceedings of the Fifth Int. Conf. on AI Planning and Scheduling,
(2000).

[39] Henry Kautz and Bart Selman, ‘Planning as Satisfiability’, in ECAI,
volume 92, pp. 359–363, (1992).

[40] Philippe Laborie, ‘Algorithms for propagating resource constraints in
AI planning and scheduling: existing approaches and new results’, Ar-
tificial Intelligence, 143, 151–188, (February 2003).

[41] Philippe Laborie and Malik Ghallab, ‘Planning with Sharable Resource
Constraints’, in Proceedings of the 14th international joint conference
on Artificial intelligence - Volume 2, IJCAI’95, pp. 1643–1649. Morgan
Kaufmann Publishers Inc., (1995).

[42] Christophe Lecoutre, Constraint Networks: Techniques and Algo-
rithms, Wiley-IEEE Press, 2009.

[43] Nicola Muscettola, ‘HSTS: Integrating Planning and Scheduling’, in
Intelligent Scheduling, ed., Zweben, M. and Fox, M.S., Morgan Kauff-
mann, (1994).

[44] Nicola Muscettola, Stephen Smith, Amedeo Cesta, and Daniela
D’Aloisi, ‘Coordinating Space Telescope Operations in an Integrated
Planning and Scheduling Architecture’, IEEE Control Systems, 12, (03
1992).

[45] Wiktor Piotrowski, Maria Fox, Derek Long, Daniele Magazzeni, and
Fabio Mercorio, ‘Heuristic Planning for PDDL+ Domains’, in Proceed-
ings of the Twenty-Fifth International Joint Conference on Artificial In-
telligence, IJCAI’16, pp. 3213–3219. AAAI Press, (2016).

[46] Julie Porteous, Laura Sebastia, and Jörg Hoffmann, ‘On the Extrac-
tion, Ordering, and Usage of Landmarks in Planning’, in Sixth Euro-
pean Conference on Planning, (2014).

[47] David E. Smith, Jeremy Frank, and William Cushing, ‘The ANML lan-
guage’, in ICAPS Workshop on Knowledge Engineering for Planning
and Scheduling (KEPS), (September 2008).

[48] David E. Smith, Jeremy Frank, and Ari K. Jónsson, ‘Bridging the Gap
Between Planning and Scheduling’, Knowledge Engineering Review,
(2000).

[49] Sebastian Stock, Masoumeh Mansouri, Federico Pecora, and Joachim
Hertzberg, ‘Hierarchical hybrid planning in a mobile service robot’, in
KI 2015 Proceedings, pp. 309–315, (2015).

[50] Alessandro Umbrico, Amedeo Cesta, Marta Cialdea Mayer, and Andrea
Orlandini, ‘Platinum: A new framework for planning and acting’, in
AI*IA 2017 Proceedings, pp. 498–512, (2017).

[51] Gérard Verfaillie, Cédric Pralet, and Michel Lemaı̂tre, ‘How to model
planning and scheduling problems using constraint networks on time-
lines’, The Knowledge Engineering Review, 25(3), 319–336, (2010).

[52] Daniel S. Weld, ‘An Introduction to Least Commitment Planning’, AI
Magazine, 15(4), 27–61, (1994).

R. De Benedictis and A. Cesta / Lifted Heuristics for Timeline-Based Planning 2337


