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Abstract. Conventional distributed word representation learning,
which learns a single vector for each word, is unable to represent dif-
ferent meanings of polysemous words. To address this issue, a num-
ber of approaches were proposed to model individual word senses
in recent years. However, most of these sense representations are
hard to be integrated into downstream tasks. In this paper, we pro-
pose a knowledge-based method to learn word sense representations
that can offer effective support in downstream tasks. More specifi-
cally, we propose to capture the semantic information of prior human
knowledge from sememes, the minimum semantic units of meaning,
to build global sense context vectors and perform a reliable soft word
sense disambiguation for polysemous words. We extend the frame-
work of Skip-gram model with a contextual attention mechanism to
learn an individual embedding for each sense. The intrinsic experi-
mental results show that our proposed method can capture the dis-
tinct and exact meanings of senses and outperform previous work on
the classic word similarity task. The extrinsic experiment and further
analysis show that our sense embeddings can be utilized to effec-
tively improve performance and mitigate the impact of polysemy in
multiple real-word downstream tasks.

1 Introduction

Distributed word representation has been widely used in natural lan-
guage processing (NLP) due to its ability to capture semantic infor-
mation of words, mostly as a fundamental step in neural approaches.
The main idea is to represent each word with a dense vector in a con-
tinuous low-dimensional semantic space [31] where words with sim-
ilar meanings are close to each other. The most popular approaches of
word representation learning are based on context tokens prediction
[19] and co-occurrence matrix factorization [25].

However, many words are polysemous, which means they have
multiple senses. Since conventional word representation learning
methods represent each word with a single vector, these word em-
beddings suffer from the meaning conflation deficiency problem [32]
and lack the ability to capture the exact semantic meanings of differ-
ent senses [30]. Moreover, the meaning conflation would shorten the
distance between words with different meanings in semantic space
when they are similar to the different senses of another word [22],
which impacts the effectiveness of semantic space [33].

To address this issue, some research on learning multiple represen-
tations for senses of a word was presented in recent years. One im-
portant branch is unsupervised sense representation, which induces
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distinctive senses of a word from the corpus without supervision
[29, 13, 22, 17]. For these unsupervised approaches, a drawback is
that the induced senses are hard to distinguish and cannot correspond
with the meanings in the real world. Additionally, the induced senses
have tight correlation with the training corpus, leading to an ordinary
performance [18, 2] in downstream tasks where the distribution of
corpus is different. Another branch is knowledge-based sense repre-
sentation [4, 15, 3, 27], which constructs senses by exploiting knowl-
edge resources and learn sense representations that explicitly corre-
spond to a specific word sense defined in the knowledge resource.

Word sense disambiguation is a crucial step in sense representa-
tion learning. However, in most existing approaches, the word sense
disambiguation step is simply based on the similarity between sense
embeddings and context embeddings. The semantic information in
the knowledge resource is underutilized as it is only used to initialize
sense embeddings. In addition, most existing approaches perform a
hard disambiguation step, in which the most appropriate sense is
selected to represent a word. However, different senses of a word
are not completely independent to each other and they may jointly
contribute to the word meaning in certain context.

Niu et al. [24] first proposed a knowledge-based method to learn
both Chinese word and sense representation, which utilized atten-
tion mechanism and the knowledge resource to perform soft disam-

biguation. Though their enhanced word embeddings achieved great
performance in intrinsic evaluation, according to our verification in
Section 6, their by-product sense embeddings were unable to capture
the exact semantic information for senses, which means such sense
embeddings could not eliminate the meaning conflation deficiency
problem and support downstream tasks. The reason is probably that
the word sense disambiguation step is unreliable as it utilized the
hidden representations of sense and context to perform word sense
disambiguation, which are even not in a same semantic space.

The recent contextualized representations such as ELMo [26],
GPT [28] and BERT [6] provide each token a context-dependent rep-
resentation, which have been proven to be effective for improving
the performances in various NLP tasks. These representations could
implicitly alleviate the impact of polysemous words to some extent,
because different senses have different contexts in most cases. How-
ever, in contrast to sense embeddings, contextualized representations
could not explicitly distinguish the polysemous word. Besides, due
to the complex model with large number of parameters, in some case
contextualized embeddings are problematic in practice. For exam-
ple, They are inapplicable in some real-time systems or resource-
restricted systems because of the low inference-time efficiency and
large memory usage. The large-scale corpus to train such large mod-
els are also difficult to obtain in some areas. Thus, learning light-
weighted sense representations that is beneficial to downstream tasks
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is still a valuable work.
In this paper, we aim to leverage knowledge resources to disam-

biguate word senses and learn sense representations that are ben-
eficial to downstream tasks. Following Niu et al. [24], we adopt
HowNet [7] as the sense inventory, which is a Chinese lexical knowl-
edge base widely used in such NLP tasks as word similarity calcu-
lation [5], word representation learning [24] and language modeling
[10]. In HowNet, each word is annotated with one or multiple senses
and the meaning of each sense is unveiled by one or multiple se-
memes, which are the minimum semantic units of meaning [1]. The
detail of HowNet is in Section 3.1.

We propose a novel Sememe-based Contextual Attention (SCA)
model to learn individual sense representations with HowNet. SCA
model utilizes the semantic information of sememe knowledge to
constitute the global context of each sense, which is used to model
the global context distribution of a sense in the corpus. Once the
global sense contexts are constituted, they are fixed and used to
perform soft word sense disambiguation with a contextual attention
mechanism. Our reliable word sense disambiguation step utilizes the
context word distribution rather than the hidden representation of the
context and the senses of target words, which are even not in a same
semantic space and carry no semantic information at the start of train-
ing. The sense embeddings learned by SCA can be easily integrated
to downstream NLP tasks with an additional soft disambiguation
step. We conduct both intrinsic evaluation and extrinsic evaluation
on our model. The experimental results show that the sense embed-
dings by our model can: (1) effectively capture semantic information
and build high-quality sense representations, (2) provide strong sup-
port in downstream tasks by addressing polysemy issue.

To summarize, we make the following contributions in this paper:

• We propose a novel approach to perform reliable soft sense dis-
ambiguation with contextual attention and learn knowledge-based
sense embeddings, which achieve significant improvement in in-
trinsic evaluation.

• Our sense embedding can be easily integrated into downstream
tasks because of our reliable sense disambiguation step with the
contextual attention mechanism.

• We evaluate the effectiveness of the sense embeddings learned by
our approach in token-level, sentence-level and document-level
NLP tasks, and the results show that these sense embeddings are
beneficial for downstream tasks by mitigating the impact of poly-
semy.

2 Related Work

2.1 Unsupervised Sense Representation Learning

Reisinger and Mooney [29] proposed a method to build multi-
prototype representations for words by clustering the occurrences of
each word, where senses are represented by the cluster centroids.
Following that, Huang et al. [13] introduced a cluster-based neural
language model to learn sense representations. In these methods, the
number of senses is fixed for each word, which is unrealistic.

Neelakantan et al. [22] proposed to learn sense representation and
disambiguation jointly with a extended Skip-gram model, with a
varying number of senses per word. Lee and Chen [17] first proposed
a modularized framework based on reinforcement learning to learn
sense representations with a separated sense selection module. Li
and Jurafsky [18] tested the performance of unsupervised sense rep-
resentations on natural language understanding tasks and observed

Figure 1. The definition of the two senses of “水分” in HowNet.

improvement in some of the tasks (part-of-speech tagging, semantic
relation identification, semantic relatedness).

2.2 Knowledge-enhanced Representation Learning

A series of methods were proposed to utilize the glosses in WordNet
[21] to initialize sense vectors with the average word embeddings
of glosses [4], or representation of glosses generated by a convolu-
tional neural network [3], and perform word sense disambiguation to
learn sense specific representation. Yang and Mao [34] proposed a
supervised fine tuning framework to learn multi-prototype embed-
dings from existing word embeddings and mini-contexts of word
pairs. This post-process method provides a new solution, in which
the sense embeddings are transformed from word embeddings with
corrupted information [12].

In addition to these methods, SE-WRL [24] first proposed to inte-
grate HowNet [7] to jointly learn representations of Chinese words,
senses and sememes. They applied attention scheme to disambiguate
senses by calculating the similarity between sense embeddings and
context embeddings. The knowledge-enhanced word representations
from SE-WRL achieved great performance in intrinsic evaluation.
However,the sense embeddings from SE-WRL failed to model the
exact meaning for each sense, hence this method cannot fully elimi-
nate the meaning conflation deficiency problem.

3 Background

3.1 HowNet

HowNet [7] is one of the most widely used fully computational Chi-
nese knowledge base, unveiling the meaning of concepts in lexicons
with sememes. In HowNet, words, senses and sememes are orga-
nized into three top-down levels. Each word is annotated by one or
multiple senses, and each sense is annotated by a set of sememes. A
sememe is defined as the minimum semantic unit, summarized man-
ually. Figure 1 shows the senses and sememes of the polysemous
word “水分”. HowNet defines two common senses of “水分”, which
are “moisture content” and “exaggeration”. Each sense is interpreted
by a set of sememes. For the first sense “moisture content”, its se-
mantic definition is given by the sememes “湿度” (dampness) and
“物质” (physical), which can be glossed thus: the dampness in phys-
ical stuff. Besides, the other sense “exaggeration” is defined by the
sememes “信息” (information) and “夸大” (boast).

HowNet interprets more than 110,000 senses of words with only
1983 sememes. Senses with similar meanings are annotated by sim-
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ilar sets of sememes. In Chinese, there have been a number of re-
searches on measuring semantic similarity between words or senses
[11, 8, 5, 9].

3.2 Skip-gram Model

The Skip-gram model, proposed in Word2Vec [19], is one of the
most widely used model in word representations learning because
of its efficiency and performance of semantic modeling. This model
is basically a log-linear classifier with two projection, which aims
at predicting the surrounding context words of the target word. The
probability of context word wc, based on target word w is given by:

P (wc|w) =
exp(v�wc

· v′w)∑
w′

c∈W
exp(v�

w′
c
· v′w) (1)

where vw presents the embedding vector for w from the input embed-
ding matrix and v′w is from the output embedding matrix. For each
target word w, given a context words set C sampled from a dynamic
sliding window K, the model aims to minimize the following loss
function:

L = −
∑

wc∈C

log(P (wc|w))) (2)

4 Methodology

In this section, we present the Sememe-based Contextual Attention
(SCA) model for learning multiple embeddings for polysemous
word, each of which corresponds to a specific word sense defined by
sememes in HowNet. Our approach follows the conventional Skip-
gram model [19], with the addition of utilizing sememes and contex-
tual information to disambiguate and represent word senses.

In the following sections, we denote the total vocabulary as W. For
each word w in W, Sw is the sense set and si ∈ Sw is the ith sense
of word w. Each sense s is defined by a sememe set Ms, where mi

s

represents the ith sememe of sense s.

4.1 SCA Model

The overall architecture of SCA is shown in Figure 2, which contains
three stages as follows:

• Global word context generation. For each word defined in
HowNet, we generate the global context derived from its occur-
rences in a large textual corpus.

• Global sense context generation. Given a target word, we first
calculate the similarity matrix for its senses. Then we generate the
global context for each sense, constituted by the global context of
its similar words.

• Soft word sense disambiguation and sense representation

learning. With the pre-generated global sense context matrix, we
perform reliable soft word sense disambiguation on target word
by calculating the contextual attention for its senses.

4.1.1 Global Word Context Generation

Considering that senses are not directly available in unlabeled cor-
pus, the basic idea of SCA model is to disambiguate polysemous
words with the global context of each sense, which constituted by
the global context the of words having similar meaning to the tar-
get sense. To achieve that, we first generate the global word con-
text matrix Cw from the corpus to represent the statistical context of

each word. More specifically, Cw represents the matrix of global co-
occurrence counts, where each row Cw

i is a bag-of-words and each
element Cw

ij represents the counts wj occurs within the context win-
dow K of wi. Additionally, since frequent words are less representa-
tive to disambiguate word senses, we weight Cw

ij with a subsampling
weight sub(wj) inherited from Mikolov et al. [20], computed as fol-
lows:

sub(wj) = min(

√
δ

f(wj)
, 1) (3)

where δ is the subsampling threshold and f(wj) is the frequency of
wj in corpus. sub(wj) is the probability for wj to remain during
subsampling in the Skip-gram model. Finally, we perform L2 nor-
malization on each row of Cw:

Cw
i ← Cw

i

||Cw
i || (4)

4.1.2 Global Sense Context Generation

In this step we generate the global context for each sense of the tar-
get word. We describe following two matrixes, which are the kernel
parts in this step.
Sense-word similarity matrix. Assuming that words with similar
meanings have similar distributions, we represent the context distri-
butions of each sense with the context distributions of words which
have similar meaning to the target sense. Thus we propose a simple
algorithm to compute the similarity between senses and words. For-
mally, given a sense s and a word w, the similarity between s and w
can be defined as:

Sim(s, w) = max
si∈Sw

{ sim(s, si)√
|Sw|

} (5)

where |Sw| denotes the number of senses of w and sim(s1, s2) de-
notes the similarity between s1 and s2, which is measured by Ochiai
coefficient as follows:

sim(s1, s2) =
|Ms1

⋂
Ms2 |√

|Ms1 |×|Ms2 |
(6)

Given a target word wt and its senses to be disambiguated, we gen-
erate the sense-word similarity matrix Sim(wt), where Sim(wt)ij
denotes the similarity between sense si and word wj . Furthermore,
for each sense, we retain its similarity to the top N similar words and
zero its similarity to other words in order to accelerate learning and
reduce the noise brought by the words with deviated meaning. N is
set to be 5 straightforwardly according to our observation.
Global sense context matrix. After generation of sense-word simi-
larity matrix, we can utilize Sim(w) as the weight matrix to weight
the context vectors in Cw and build the statistic global context vec-
tor for each sense. Formally, given a sense si of word w, the global
context vector is calculated as follows:

Cs(si) =

|W |∑

j=1

Sim(w)ij · Cw
j (7)

where Cs(si) represents the global context vector of sense si and
it is one row of the global sense context matrix Cs(w) of the target
word w.

T. Zhang et al. / Leveraging Human Prior Knowledge to Learn Sense Representations2308
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Figure 2. The architecture of SCA model. The red numbers represent the three stages in Section 4.1. wt is the target word and si is the ith sense of wt. Cw

represents the global word context matrix. Each row of Cw denotes the global context vector of a specific word, which is derived from a large textual corpus.
Sim(wt) denotes the sense–word similarity matrix of target word wt. Cs represents the global sense context matrix, where each row is the global context

vector for one sense of wt. Cr denotes the local context of wt in a training instance.

4.1.3 Sense Representation Learning with Soft
Disambiguation

With the global sense context matrix, we can perform word sense dis-
ambiguation with a contextual attention mechanism. For each sense
si ∈ Sw, the contextual attention scheme calculates a attention score
ai, which indicates the normalized similarity between the local con-
text vector Cr and the context vector of each sense Cs(si). We cal-
culate the attention score ai of si as following:

ei = Cs(si) · Cr� (8)

ai =
exp(γei)

∑|Sw|
j=1

exp(γej)
(9)

where γ is the scale coefficient. The algorithm can be considered as
soft word sense disambiguation if γ is not particularly large.

After word sense disambiguation, we extend Skip-gram model
with a contextual attention mechanism to learn separated representa-
tion for each sense, which is regarded as the minimum unit in the sen-
tence. We utilize contextual attention to select the appropriate senses
to make up the target word representation vw, which is formalized as
follows:

vw =

|Sw|∑

i=1

ai · vsi (10)

where vsi denotes the embedding vector of si ∈ Sw and ai is the
attention score for si. Finally, vw is used to predict the context words
by Noise Contrastive Estimation introduced in [20], which can re-
duce the computational complexity significantly.

4.2 Usage of Sense Representations for
Downstream Tasks

In this section, we describe how to integrate our sense embeddings
in downstream tasks.

In many downstream NLP tasks, word representation is used as
the foundational module to convey semantic information in words.
Since word sense is not directly obtainable in downstream tasks, we
perform a soft word sense disambiguation step to select appropriate
word senses and represent words with sense embeddings weighted
by contextual attention, same as the process in the previous section.
Specifically, we use Equation 7 to build the sense context matrix
Cs(w) for word w with word context matrix Cw and calculate con-
textual attention according to Equation 8 and 9. The representation
of w is built of the sense embeddings with contextual attention, as
shown in Equation 10. Note that the representation of each word is
not fixed when used in downstream tasks because of the soft word
sense disambiguation with contextual attention, thus our sense em-
bedding can bring additional contextual information that is support-
ive to downstream tasks.

5 Intrinsic Evaluation

In this section, we explore the intrinsic quality of our method with
word similarity task and a qualitative investigation. Firstly we evalu-
ate the sense embeddings from our SCA model on the word similarity
task, showing our embedding improves the correlation with human
judgments. Next, we perform a qualitative investigation on nearest
neighbors and word sense disambiguation of our method.
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5.1 Experiment Settings

For word context matrix generation and sense representation learn-
ing, we adopt SogouCS2 as the corpus. SogouCS is a Chinese news
dataset, which contains about 1.3 million news and 1.9 billion char-
acters. In preprocessing, we remove non-Chinese characters and per-
form Chinese word segmentation with Stanford CoreNLP3 toolkit.
We use HowNet4 as the sense inventory. In HowNet, 1,983 distinct
sememes are defined manually to unveil the meaning of word senses.
According to the sense inventory, 52.22% of words in preprocessed
SogouCS are polysemous, showing the significance to learn sense
representations respectively.

Three conventional methods, including GloVe, CBOW and Skip-
gram model, are chosen as the baselines. Additionally, due to the
Chinese corpus and knowlege base, we compare our SCA model with
both word embeddings and sense embeddings from the best model
SAT of SE-WRL [24]. To the best of our knowledge, SE-WRL is the
exclusive method to learn Chinese word and sense representations
with monolingual corpus.

For all experiments, we select the best hyper-parameters with same
corpus and experimental settings. Specifically, we set the dimensions
of all word and sense embeddings to be 256. For SCA model, the
size of context window K is only fixed as 4 when calculating the
contextual attention, whereas it is dynamic during training with a
max size 4. The vocabulary size is set to be 160,000. We set the
negative samples to be 64. The sub-sampling parameter δ is 10−4.
The learning rate lr is initialized to be 0.2, and will decay through the
total training 5 iterations. Additionally, the scale coefficient γ is 27.
During word context matrix generation we set N to be 5, and context
window increases to 8 because sub-sampling approach is abandoned
in this step.

Table 1. Spearman correlation ρ× 100 on word similarity task. Hard
represent the SCA model with contextual hard attention, which only select

the most appropriate sense in word sense disambiguation. Soft represent the
SCA model with contextual soft attention.

Model Wordsim-240 Wordsim-297
Glove 57.73 55.16
CBOW 55.20 58.16
Skip-gram 55.69 58.91
SAT (word) 57.21 59.27
SAT (sense) 2.16 5.80
SCA (hard) 58.62 59.35
SCA (soft) 60.14 61.33

5.2 Word Similarity

We choose wordsim-240 and wordsim-2975 to evaluate the perfor-
mance of word similarity computation, which were provided by Chen
et al. [3]. According to our statistics, about 30% words are polyse-
mous in wordsim-240 and wordsim-297 by HowNet definition. For
word embedding evaluation, we use the cosine similarity to sort all
the word-pairs and compare the orderings of models against the one
obtained by the human judgments with the Spearman correlation ρ.
For sense embedding evaluation, we measure the similarity between
words based on MaxSim metric [29], which is the most popular

2 http://www.sogou.com/labs/resource/cs.php
3 https://nlp.stanford.edu/software/segmenter.shtml
4 http://www.keenage.com
5 https://github.com/Leonard-Xu/CWE/tree/master/data

method to adapt word-based similarity benchmarks to sense:

MaxSim(w,w′) = max
s∈Sw,s′∈Sw′

cos(vs, vs′) (11)

The Spearman correlation results are shown in Table 5.1. We ob-
serve that representations leveraging sense information including
SAT(word) and SCA outperform conventional word embeddings,
which indicates that prior human knowledge of word senses is ben-
eficial to model exact meanings of words or senses. The sense em-
beddings of SAT offer a poor performance, which means SAT can’t
capture the exact meaning of each sense. The reason may lie in that
sense disambiguation with hidden representations is not completely
reliable and it’s weak to represent sense with the average of sememe
representations. In contrast, our sense embeddings with soft attention
achieves a significant improvement compared with the word embed-
dings of SAT, which indicates that our model can make better use
of sense knowledge to disambiguate and model word senses. The
performance decline of SCA sense embeddings with hard attention
demonstrate the effectiveness of soft word sense disambiguation. The
reason is that senses of a word are not always completely separated
from each other, whereas they are related and constitute the meaning
of the word jointly in some context.

5.3 Qualitative Investigation

We first perform a qualitative investigation on nearest neighbors us-
ing conventional Skip-gram model and our SCA model. As shown in
Table 2, as opposed to conventional word embeddings, our sense em-
beddings can capture the exact meaning of each sense. For example,
the word “摩擦” has two senses, including “rub” and “conflict”. We
find that “abrasion” and “brawl” are the top two nearest neighbors
of “摩擦” according to word embeddings, which indicates that word
embeddings may mix the meanings of different senses of a polyse-
mous word. Besides, some word embeddings would be partial to one
of the senses, which can be seen from the nearest neighbors of “苹
果”. In contrast, the nearest neighbors of senses computed by sense
embeddings are more accurate and unambiguous.

In further investigation, our sense embeddings are proven to mit-
igate the meaning conflation deficiency problem effectively. For
example, “banana” ranks 700th among the nearest neighbors of
“Google” according to word embeddings, because both “Google”
and “banana” are similar to the different sense of “苹果” (apple). In
contrast, “banana” is far from “Google” with the ranking of 27,098th
according to our sense embeddings.

In addition, Table 3 shows some examples of soft sense disam-
biguation in certain contexts. For each word, the first row shows the
sememes of each sense and the senses of each word. The attention
score of each sense in a particular context is given in the table. Ob-
viously, our model can effectively choose the appropriate senses for
word in context with soft attention scores.

6 Extrinsic Evaluation

We explore the extrinsic effectiveness of our sense embeddings
across three downstream tasks in different levels: event detection
(word level), relation classification (sentence level) and text classi-
fication (document level). Since SAT focus on intrinsic evaluations
and we find no obvious difference between the performance of word
embeddings of SAT and conventional word embeddings in down-
stream tasks, we choose Skip-gram as the baseline. For each task,
we adopt the following embedding settings and experiment on them
respectively without other modifications:

T. Zhang et al. / Leveraging Human Prior Knowledge to Learn Sense Representations2310



Table 2. Nearest neighbors of word embeddings and sense embeddings.

Word/Sense (W /S) Nearest Neighbors
W：摩摩摩擦擦擦(rub/conflict) 磨损/abrasion, 争吵/brawl, 口角/quarrel, 矛盾/contradiction, 纠纷/dispute, 撞击/knock
S1：磨磨磨损损损(rub) 磨擦/friction, 磨损/abrasion, 色牢/color fast, 牢度/fastness, 耐/durability, 刮擦/scratch
S2：冲冲冲突突突(conflict) 撕扯/rend, 厮打/tussle, 矛盾/contradiction, 不和/disharmony, 争执/dispute, 闹/fracas
W：苹苹苹果果果(Apple brand/apple) 微软/Microsoft, 三星/Samsung, 谷歌/Google, 黑莓/BlackBerry, 摩托罗拉/Motorola
S1：电电电脑脑脑(Apple brand) 微软/Microsoft, 谷歌/Google, 三星/Samsung, 摩托罗拉/Motorola, 诺基亚/Nokia
S2：水水水果果果(apple) 香蕉/banana, 果品/fruit, 猕猴桃/kiwifruit, 桃子/peach, 葡萄/grape, 果农/fruit farmer

Table 3. Examples of word sense disambiguation in context.

W :摩摩摩擦擦擦 (S1:conflict, S2:rub) S1: (“fight”) S2: (“rub”)
双手摩摩摩擦擦擦会让手心变热 (Rubbing hands will warm your palms.) conflict: 0.18 rub: 0.82
两个人在一起有摩摩摩擦擦擦是正常的 (It’s normal that conflicts appear between people in love.) conflict: 0.80 rub: 0.20
W :苹苹苹果果果 (S1:Apple brand, S2:apple) S1: (“computer”,“able”,“PatternValue”, “bring”,“SpeBrand”) S2: (“fruit”)
今年的富士苹苹苹果果果吃起来又甜又脆 (Fuji apple taste sweet and crisp this year.) Apple brand: 0.08 apple: 0.92
新出品的苹苹苹果果果手机功能很全 (Apple’s new phone has complete functions.) Apple brand: 0.87 apple: 0.13

• Word embeddings from Skip-gram model (256d).

• Sense embeddings from SCA model (256d).

• The concatenation of word embeddings and sense embeddings
(512d).

• Word embeddings from Skip-gram model, which have the same
dimension with the concatenation (512d).

For all experiments on downstream tasks, we perform significant
test on word embedding (256d) versus sense embedding (256d) and
concatenation (512d). Additionally, significant test is performed on
word embedding with double dimension (512d) and concatenation
(512d) to exclude the impact of increased dimensions of embedding.

6.1 Event Detection

Event detection aims to extract events with specific types from un-
structured data. The ACE 20056 Chinese corpus is used for dataset,
divided into training, validation and test set. We perform event detec-
tion as a sequence tagging task with a classic Bidirectional LSTM-
CRF model [14]. We use early stop strategy and dropout on input
and output of Bi-LSTM with rate 0.5. Adam method is applied for
parameter optimization. The experimental results on event detection
are shown in Table 4.

Table 4. Micro F1 on event trigger classification. P value <0.05 for
concatenation versus word (256) and word (512), besides P value >0.05 for

sense.

Embeddings Micro F1
Word (256d) 62.38 ± 0.99
Sense (256d) 62.89 ± 0.45
Word (512d) 62.35 ± 0.69
Word ⊕ Sense (512d) 63.78 ± 1.19

6.2 Relation Classification

ACE 2005 RDC Chinese dataset contains 633 documents, 9,317 re-
lation mentions tagged with 6 major relation types and 18 subtypes.

6 https://catalog.ldc.upenn.edu/LDC2006T06

We retain 8,489 instances whose distances between the two entity
are less than 15 and split them into training , validation and test sets.
Following Nguyen and Grishman [23], we use a single layer convo-
lutional neural network with dropout on the input and output of con-
volution layer to predict the relation type of entity pairs. The training
strategy is same as for the event detection task. The experimental
results are shown in Table 5.

Table 5. Experiment results on relation classification. P value <0.01 for all
significant test.

Embedding Micro F1
Word (256d) 82.72 ± 0.94
Sense (256d) 84.20 ± 0.46
Word (512d) 82.91 ± 0.62
Word ⊕ Sense (512d) 85.75 ± 0.44

6.3 Text Classification

We use a subset sampling from THUCnews7 as the dataset, which
contains 65000 Chinese news documents tagged with 10 news top-
ics. Each news document has an average of 529 words. We divided
the dataset into training, validation and test sets. Following Kim [16],
we train a convolutional neural network with our pre-trained embed-
dings. The training strategy is same as for the precious tasks. The
experimental results on text classification are shown in Table 6.

Table 6. Experiment results on text classification. P value <0.05 for word
(256d) versus sense (256d) and <0.01 for other significant tests.

Embedding Accuracy
Word (256d) 95.84 ± 0.17
Sense (256d) 95.60 ± 0.20
Word (512d) 95.87 ± 0.09
Word ⊕ Sense (512d) 96.35 ± 0.13

7 http://thuctc.thunlp.org/
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Figure 3. The performance of different embedding settings in three tasks. The test set of each downstream task is divided into three subsets with equal size
according to the proportion of polysemous words.

6.4 Main Result of Extrinsic Evaluation

From Table 4 to Table 6, we find that sense embeddings outperform
word embeddings in both event extraction and relation classification,
but not in text classification. The concatenation of word embeddings
and sense embeddings achieves significant improvement in all tasks,
which indicates that both word and sense embeddings convey some
complementary semantic information to each other and the integra-
tion of both two embeddings can benefit downstream tasks with more
semantic information. In addition, comparing the results of word
(256d) and word (512d), we can see that the increasing of dimen-
sion does not have a significant influence, which indicates that the
improvement brought by concatenation is not due to the increased
dimension, and extra semantic information from sense embeddings
indeed plays an important role. In this sense, our sense embeddings
can be used as a supplement to word embeddings, instead of a simple
replacement.

6.5 Mitigation of the Impact of Polysemy

To further analyze the impact of polysemy in downstream tasks and
explore how our sense embeddings can mitigate it, we divide the test
set of each downstream task into three subsets with equal size but
different proportions (low / middle / high) of polysemous words. The
results on three subsets are shown in Figure 3.

For all tasks, the proportion of polysemous words affects the re-
sults. Overall, the performance for all tasks declines as the proportion
of polysemous words increases, which indicates that the polysemous
words indeed have a negative impact on downstream tasks. Particu-
larly, the influence of polysemy has no obvious trend in event detec-
tion. The possible reason is that the largest proportion of token tags
consists of “O” tag and whether they are polysemous may not effect
the performance significantly.

Though the performance of our sense embeddings is ordinary
when the polysemous proportion is Low, these sense embeddings
outperform conventional word embeddings over three tasks when the
polysemous proportion is Middle and High. The reason lies in that
our sense embeddings are superior in representing the semantic in-
formation of polysemous words, making the downstream task more
insensitive to the impact of polysemy.

The concatenation of word and sense embeddings can take the ad-
vantages of both representations and outperform each of them alone
in three tasks regardless of the polysemous proportion. This proves
the conclusion in Section 7 that our sense embeddings should be used
as a supplement to word embeddings. Additionally, the gap between
the concatenation and the word embeddings alone widens as the pro-

portion increases, which indicates that the integration of sense em-
beddings can effectively mitigate the impact of polysemy.

6.6 Discussion on SCA Model and Contextualized
Representations

We have demonstrated that sense representations generated by SCA
model can be easily integrated into downstream tasks and gain im-
provement. However, we did notice that recent work in contextu-
alized representations (e.g. BERT [6]) have achieved great perfor-
mance on a lot of NLP tasks, benefiting from their complex models,
large-scale corpus and long-range contextual information. Compared
to these language models, our light-weighted model essentially fo-
cus on sense representation learning, which can build dynamic word
representations by weighting sense representations during inference
without additional parameters introduced. It’s unfair to directly com-
pare SCA model with language models, yet we believe it is a valuable
future work to investigate how to incorporate language models with
prior human knowledge of word senses. Note that the usage of lan-
guage models means the context is always required, while sense em-
beddings can be also useful in context-free situations. For example,
accurate representations of word senses is beneficial to the construc-
tion and upgrading of linguistic infrastructures like semantic dictio-
nary and human knowledge base.

7 Conclusion

In this paper, we propose a knowledge-based method to learn individ-
ual sense representations which can effectively support downstream
tasks. To achieve that, we proposed to leverage the semantic infor-
mation in sememes to model the context distribution of each sense
and perform a reliable soft word sense disambiguation step with a
contextual attention mechanism. We evaluate the intrinsic quality of
our sense embeddings by a word similarity task and qualitative in-
vestigations, which indicate the significant advantages of our method
in capturing exact meanings of senses. Extrinsic experimental results
and the further analysis demonstrate that our sense embeddings gains
great improvements by mitigating the impact of polysemy when in-
tegrated into downstream NLP tasks. In the future, it will be valuable
to explore the incorporation of language models and prior human
knowledge of word senses to support NLP tasks.
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