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Abstract. Joint extraction of entities and relations aims to detect
entity pairs along with their relations using a single model. Prior
work typically solves this task in the extract-then-classify or unified
labeling manner. However, these methods either suffer from the re-
dundant entity pairs, or ignore the important inner structure in the
process of extracting entities and relations. To address these limita-
tions, in this paper, we first decompose the joint extraction task into
two interrelated subtasks, namely HE extraction and TER extraction.
The former subtask is to distinguish all head-entities that may be in-
volved with target relations, and the latter is to identify correspond-
ing tail-entities and relations for each extracted head-entity. Next,
these two subtasks are further deconstructed into several sequence la-
beling problems based on our proposed span-based tagging scheme,
which are conveniently solved by a hierarchical boundary tagger and
a multi-span decoding algorithm. Owing to the reasonable decompo-
sition strategy, our model can fully capture the semantic interdepen-
dency between different steps, as well as reduce noise from irrelevant
entity pairs. Experimental results show that our method outperforms
previous work by 5.2%, 5.9% and 21.5% (F1 score), achieving a new
state-of-the-art on three public datasets.

1 INTRODUCTION

Extracting pairs of entities with relations from unstructured text is
an essential step in automatic knowledge base construction, and an
ideal extraction system should be be capable of extracting overlap-
ping relations (i.e., multiple relations share a common entity) [31].
Traditional pipelined approaches first recognize entities, then choose
a relation for every possible pair of extracted entities. Such frame-
work makes the task easy to conduct, but ignoring the underlying in-
teractions between these two subtasks [13]. One improved way is to
train them jointly by parameter sharing [4, 17, 23]. Although show-
ing promising results, these extract-then-classify approaches still re-
quire explicit separate components for entity extraction and relation
classification. As a result, their relation classifiers may be misled by
the redundant entity pairs [3, 26], since N entities will lead to roughly
N2 pairs, and most of which are in the NA (non-relation) class.

Rather than extracting entities and relations separately, Zheng et
al. [35] proposed a unified tagging scheme to transform joint extrac-
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tion to a sequence labeling problem with a kind of multi-part tags.
However, this model lacks the elegance to identify overlapping re-
lations, which may lead to poor recall when processing a sentence
with overlapping relations. As the improvement, Dai et al. [3] pre-
sented PA-LSTM which tags entity and relation labels simultane-
ously according to each query word position, and achieves state-of-
the-art performance. Nevertheless, these models always ignore the
inner structure such as dependency included in the head entity, tail
entity and relation due to the unified labeling-once process. As is
well known, a tail-entity and a relation should be depended on a spe-
cific head-entity. In other words, if one model cannot fully perceive
the semantics of head-entity, it will be unreliable to extract the cor-
responding tail entities and relations.

For a complex NLP task, it is very common to decompose the task
into easier modules or processes, and a reasonable design is quite
crucial to help one model make further progress [8, 15, 33]. In this
paper, through analysis of the two kinds of methods above, we ex-
ploit the inner structure of joint extraction and propose a novel de-
composition strategy, which hierarchically decomposes the task into
several sequence labeling problems with partial labels capturing dif-
ferent aspects of the final task (see Figure 1). Starting with a sen-
tence, we first judiciously distinguish all the candidate head-entities
that may be involved with target relations, then label correspond-
ing tail-entities and relations for each extracted head-entity. We call
the former subtask as Head-Entity (HE) extraction, and the later as
Tail-Entity and Relation (TER) extraction. Such extract-then-label
(ETL) paradigm can be understood by decomposing the joint proba-
bility of triplet extraction into conditional probability p(h, r, t|S) =
p(h|S)p(r, t|h, S), where (h, r, t) is a triplet in sentence S. In this
manner, our TER extractor is able to take the semantic and posi-
tion information of the given head-entity into account when tagging
tail-entities and relations, and naturally, one head-entity can inter-
act with multiple tail-entities to form overlapping relations. Besides,
compared with the extract-then-classify methods, our paradigm no
longer extracts all entities at the first step, only head-entities that are
likely to participate in target triplets are identified, thus alleviating
the impact of redundant entity pairs.

Next, inspired by extractive question answering which identifies
answer span by predicting its start and end indices [22], we fur-
ther decompose HE and TER extraction with a span-based tagging
scheme. Specifically, for HE extraction, entity type is labeled at the
the start and end positions of each head-entity. For TER extraction,
we annotate the relation types at the start and end positions of all
the tail-entities which have relationship to a given head-entity. To
enhance the association between boundary positions, we present a
hierarchical boundary tagger, which labels the start and end posi-
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Figure 1. An example of our tagging scheme. PER is short for entity type PERSON, LOC is short for LOCATION, PO is short for relation type President of,
BI is short for Born in, and LI is short for Located in.

tions separately in a cascade structure and decode them together by
a multi-span decoding algorithm. By this means, HE and TER ex-
traction can be modeled in the unified span-based extraction frame-
work, differentiated only by their prior knowledge and output label
set. Overall, for a sentence with m head-entities, the entire task is
deconstructed into 2 + 2m sequence labeling subtasks, the first 2
for HE tagging and the other 2m for TER. Intuitively, the individ-
ual subtasks are significantly easy to learn compared with the whole
extraction task, suggesting that by trained cooperatively with shared
underlying representations, they can constrain the learning problem
and achieve a better overall outcome.

We evaluate our method on three public datasets: NYT-single,
NYT-multi and WebNLG. Experimental results show that the pro-
posed method significantly outperforms previous work on normal,
overlapping and multiple relation extraction, increasing the SOTA
F1 score to 59.0% (+5.2%), 78.0% (+5.9%) and 83.1% (+21.5%), re-
spectively. Further analysis confirms the effectiveness and rationality
of our decomposition strategy.

2 METHODOLOGY

In this section, we first introduce our tagging scheme, based on which
the joint extraction task is transformed into several sequence labeling
problems. Then we detail the hierarchical boundary tagger, which is
the basic labeling module in our method. Finally, we move on to the
entire extraction system.

2.1 Tagging Scheme

Let us consider the head-entity (HE) extraction first. As discussed
in the previous section, it is decomposed into two sequence labeling
subtasks. The first subtask mainly focuses on identifying the start
position of one head-entity. One token is labeled as the corresponding
entity type if it is the start word, otherwise it is assigned the label “O”
(Outside). In contrast, the second subtask aims to identify the end
position of one head-entity and has a similar labeling process except
that the entity type is labeled for the token which is the end word.

For each identified head-entity, TER extraction is also decom-
posed into two sequence labeling subtasks which make use span

boundaries to extract tail-entities and predict relations simultane-
ously. The first sequence labeling subtask mainly labels the relation
type for the token which is the start word of the tail-entity, while the
second subtask tags the end word.

Figure 1 illustrates an example of our tagging scheme, in which
the words “United”, “States”, “Trump”, “Queens”, “New” and “City”
are all related to final extraction results, thus they are labelled with
special tags. For example, the word “Trump” is the first and also
the last word of head-entity “Trump”, so the tags are both PER-
SON in the start and end tag sequences when tagging HE. For
TER extraction, when the given head-entity is “Trump”, there are
two tail-entities involved in with wanted relations, i.e., (“Trump”,
President Of, “United States”) and (“Trump”, Born In, “New York
City”), so “United” and “New” are labeled as President Of and
Born In respectively in the start tag sequences. Similarly, we can ob-
tain end tag sequences that “States” and “City” are marked. Beyond
that, the other words irrelevant to the final result are labeled as “O”.

Note that our tagging scheme is quite different from PA-LSTM
[3]. For an n-word sentence, PA-LSTM builds n different tag se-
quences according to different query position while our model tags
the same sentence for 2 + 2 ×m times to recognize all overlapping
relations, where m is the number of head-entities and m << n. This
means our model is more time-saving and efficient. Besides, it uses
“BIES” signs to indicate the position of tokens in the entity while we
only predict the start and end positions without loss of the ability to
extract multi-word entity mentions.

2.2 Hierarchical Boundary Tagger

According to our tagging scheme, we utilize a unified architecture
to extract HE and TER. In this paper, we wrap such extractor into
a general module named hierarchical boundary tagger (abbreviated
as HBT). For the sake of generality, we do not distinguish between
head and tail-entity, and they are collectively referred to as targets in
this subsection. Formally, the probability of extracting a target t with
label l (entity type for head-entity or relation type for tail-entity) from
sentence S is universally modeled as:

p(t, l|S) = p(slt|S)p(elt|slt, S) (1)
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Figure 2. An illustration of our model. The left panel is an overview of our joint extraction system, and the right panel shows the detailed structure of our
sequence tagger HBT. Here, “Queens” is extracted by the HE extractor, then its hidden state in the shared encoder is marked as the yellow box and entered into

the TER extractor as prior knowledge.

where slt is the start index of t with label l and elt is the end index.
Such decomposition indicates that there is a natural order among the
tasks: predicting end positions may benefit from the prediction re-
sults of start positions, which motivates us to employ a hierarchical
tagging structure. As shown in the right panel of Figure 2, we asso-
ciate each layer with one task and take the tagging results as well
as hidden states from the low-level task as input to the high-level. In
this work, we choose BiLSTM [7] as the basic encoder. Formally, the
label of word xi when tagging the start position is predicted as Eq. 4.

hsta
i = BiLSTMsta([hi;ai]) (2)

P (ystai ) = Softmax(Wsta · hsta
i + bsta) (3)

sta tag(xi) = argmax
k

P (ystai = k) (4)

where hi denotes token representation and ai is an auxiliary vector.
For HE extraction, ai is a global representation learned from the en-
tire sentence. It is beneficial to make more accurate predictions from
a global perspective. For TER extraction, ai is the concatenation of
a global representation and a head-entity-related vector to indicate
the position and semantic information of the given head-entity. Here
we adopt BiLSTMsta to fuse hi with ai into a single vector hsta

i .
Analogously, xi’s end tag can be calculated by Eq. 6.

hend
i = BiLSTMend([h

sta
i ;ai;p

se
i ]) (5)

P (yend
i ) = Softmax(Wend · hend

i + bend) (6)

end tag(xi) = argmax
k

P (yend
i = k) (7)

The difference between Eq. 2-4 and Eq. 5-7 is twofold. Firstly,
we replace hi in Eq. 2 with hsta

i to make model aware of the hid-
den states of start positions when predicting end positions. Secondly,
inspired by the position encoding vectors used in [29], we feed the
position embedding pse

i to the BiLSTMend layer as its additional
input. pse

i can be obtained by looking up psei in a trainable position
embedding matrix, where

psei =

{
i− s∗, if s∗ exists
C, otherwise

(8)

Here s∗ is the nearest start position before current index, and psei
is the relative distance between xi and s∗. When there is no start

position before xi, s∗ will not exist, then psi is assigned as a constant
C that is normally set to the maximum sentence length. In this way,
we explicitly limit the length of the extracted entity and teach model
that the end position is impossible to be in front of the start position.
To prevent error propagation, we use the gold pse (distance to the
correct nearest start position) during training process.

We define the training loss (to be minimized) of HBT as the sum
of the negative log probabilities of the true start and end tags by the
predicted distributions:

LHBT = − 1

n

n∑
i=1

(logP (ysta
i = ŷsta

i ) + logP (yend
i = ŷend

i )) (9)

where ŷsta
i and ŷend

i are the true start and end tags of the i-th word,
respectively, and n is the length of the input sentence.

At inference time, to adapt to the multi-target extraction task, we
propose a multi-span decoding algorithm, as shown in Algorithm 1.
For each input sentence S, we first initialize several variables (Lines
1-4) to assist with the decoding: (1) n is defined as the length of
S. (2) R is initialized as an empty set to record extracted targets
and type tags. (3) s∗ is introduced to hold the nearest start position
before current index. (4) pse is initialized as a list of length n with
default value C to save the position sequence [pse1 , · · · , psen ]. Next,
we obtain the start tag sequence by Eq. 4 (Line 5) and compute psei
for each token by Eq. 8 (Lines 6-10). On the basis of pse, we can get
pse by looking up position embedding matrix (Line 11) . Then the
tag sequence of end position can be computed by Eq. 7 (Line 12).

Now, all preparations necessary are in place, we start to decod-
ing sta tag(S) and end tag(S). We first traverse sta tag(S) to find
the start position of a target (Line 13). If the tag of current index is
not “O”, it denotes that this position may be a start word (Line 14),
then we will traverse end tag(S) from this index to search for a end
position (Line 15). The matching criterion is that if the tag of the
end position is identical to the start position (Line 16), the words be-
tween the two indices are considered to be a candidate target (Line
17), and the label of start position (or end position) is deemed as the
tag of this target (Line 18). The extracted target along with its tag
is then added to the set R (Line 19), and the search in end tag(S)
is terminated to continue to traverse sta tag(S) to find the next start
position (Line 20). Once all the indices in sta tag(S) are iterated, this
decoding function ends by returning the recordset R (Line 21).

B. Yu et al. / Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy2284



Algorithm 1 Multi-span decoding
Input:
S, C

S denotes the input sentence
C is a predefined distance constant

Output:
{(ej , tagj)}mj=1,

ej denotes the j-th extracted target and tagj is the type tag
1: Define n ← Sentence Length
2: Initialize R ← {}
3: Initialize s∗ ← 0
4: Initialize pse as a list of length n with default value C
5: Obtain sta tag(S) by Eq. 4
6: for idx ← 1 to n do
7: if sta tag (S)[idx] �= “O” then
8: s∗ ← idx
9: if s∗ > 0 then

10: pse[idx] ← idx− s∗

11: Obtain pse by transforming pse into matrix
12: Obtain end tag(S) by Eq. 7
13: for idxs ← 1 to n do
14: if sta tag(S)[idxs] �= “O” then
15: for idxe ← idxs to n do
16: if end tag(S)[idxe] = sta tag(S)[idxs] then
17: e ← S[idxs : idxe]
18: tag ←end tag(S)[idxe]
19: R ← R ∪ {(e, tag)}
20: Break
21: return R

2.3 EXTRACTION SYSTEM

With the span-based tagging scheme and the hierarchical boundary
tagger, we propose an end-to-end neural architecture (Figure 2) to
extract entities and overlapping relations jointly, which first encodes
the sentence with a shared BiLSTM encoder. Then, a HE extractor is
built to extract head entities. For each extracted head entity, the TER
extractor is triggered with this head-entity’s semantic and position
information to detect corresponding tail-entities and relations.

2.3.1 Shared Encoder

Given sentence S = {x1, · · · , xn}, we utilize a BiLSTM layer to
incorporate information from both forward and backward directions:

hi = BiLSTMsha(xi) (10)

where hi is the hidden state at position i, and xi is the word repre-
sentation of xi which contains pre-trained embeddings and character-
based word representations generated by running a CNN on the char-
acter sequence of xi. Following [4], we also employ part-of-speech
(POS) embedding to enrich xi.

2.3.2 HE Extractor

HE extractor aims to distinguish candidate head-entities and exclude
irrelevant ones. We first concatenate hi and g to get the feature vector
x̃i = [hi;g], where g is a global contextual representation computed
by max pooling over all hidden states. Actually, g works as the ai for
each token in Eq. 2. Moreover, we use HHE = {x̃1, · · · , x̃n} to de-
note all the word representations for HE extraction and subsequently
feed HHE into one HBT to extract head-entities:

RHE = HBTHE(HHE) (11)

where RHE = {(hj , typehj )}mj=1 contains all the head-entities and
corresponding entity type tags in S.

2.3.3 TER Extractor

Similar to HE extractor, TER extractor also uses the basic represen-
tation hi and global vector g as input features. However, simply con-
catenating hi and g is not enough for detecting tail-entities and re-
lations with the specific head-entity. The key information required to
perform TER extraction includes: (1) the words inside the tail-entity;
(2) the depended head-entity; (3) the context that indicates the re-
lationship; (4) the distance between tail-entity and head-entity. Un-
der these considerations, we propose the position-aware, head-entity-
aware and context-aware representation x̄i. Given a head-entity h,
we define x̄i as follows:

x̄i = [hi;g;h
h;pht

i ] (12)

where hh = [hsh ;heh ] denotes the representation of head-entity
h, in which hsh and heh are the hidden states at the start and end
indices of h respectively. pht

i is the position embedding to encode
the the relative distance from xi to h. Obviously, [g;hh;pht

i ] is the
auxiliary feature vector for TER extraction as ai in Eq. 2.

Formally, we take HTER = {x̄1, · · · , x̄n} as input to one HBT, and
the output RTER = {(to, relo)}zo=1, in which to is the o-th extracted
tail-entity and relo is its relation tag with the given head-entity.

RTER = HBTTER(HTER) (13)

Then we can assemble triplets by combining h and each (to, relo)
to form {(h, relo, to)}zo=1, which contains all triplets with head-
entity h in sentence S 5. It is worth noting that at the training time,
h is the gold head-entity, while at the inference time we select head-
entity one by one from RHE to complete the extraction task.

2.3.4 Training of Joint Extractor

Two learning signals are provided to train the model: LHE for HE
extraction and LTER for TER extraction, both are formulated as Eq.9.
To share input utterance across tasks and train them jointly, for each
training instance, we randomly select one head-entity from gold
head-entity set as the specified input of the TER extractor. We can
also repeat each sentence many times to ensure all triplets are uti-
lized, but the experimental results show that this is not beneficial.
Finally, the joint loss is given by:

L = LHE + LTER (14)

Then, the model is trained with stochastic gradient descent. Op-
timizing Eq.14 enables the extraction of head-entity, tail-entity, and
relation to be mutually influenced, such that, errors in each compo-
nent can be constrained by the other.

3 EXPERIMENTS

3.1 Experimental Settings

3.1.1 Datasets

Following popular choices and previous work [3, 4, 20, 30, 31, 35],
We conduct experiments on three benchmark datasets: (1) NYT-

5 Note that typeh is not included in the final output of our extraction system.
However, we claim that by predicting entity types, we can implicitly incor-
porate type information into head-entity representation, which is beneficial
to the subsequent TER tagging as our experiment reveals.
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Table 1. Statistics of the datasets.

Dataset NYT-single NYT-multi WebNLG

# Relation types 24 24 246
# Training sentences 66,335 56,195 5,019
# Test sentences 395 5,000 703

single is sampled from the New York Times corpus [21] and pub-
lished by Ren et al [20]. The training data is automatically labeled us-
ing distant supervision, while 395 sentences are annotated manually
as test data, most of which have single triplet in each sentence. (2)
NYT-multi is published by Zeng et al. [31] for testing overlapping
relation extraction, they selected 5000 sentences from NYT-single as
the test set, 5000 sentences as the validation set and the rest 56195
sentences are used as training set. (3) WebNLG is proposed by Claire
et al. [5] for Natural Language Generation task. We use the dataset
pre-processed by Zeng et al [31] and the train set contains 5019 sen-
tences, the test set contains 703 sentences and the validation set con-
tains 500 sentences. Statistics of the datasets are shown in Table 1.

Besides, as suggested in [4, 31], we also divided the test set into
three categories: Normal, SingleEntityOverlap (SEO), and Entity-
PairOverlap (EPO) to verify the effectiveness on extracting overlap-
ping relations. Specifically, a sentence belongs to Normal class if
none of its triplets has overlapping entities. If the entity pairs of two
triplets are identical but the relations are different, the sentence will
be added to the EPO set. A sentence belongs to SEO class if some
of its triplets have an overlapped entity and these triplets dont have
any overlapped entity pair. Note that a sentence in the EPO set may
contain multiple Normal and SEO triplets. We discuss the result for
different categories in the detailed analysis.

3.1.2 Evaluation

We follow the evaluation metrics in previous work [3, 4, 20, 30, 31,
35]. A triplet is marked correct if and only if its relation type and two
corresponding entities are all correct, where the entity is considered
correct if the head and tail offsets are both correct. We adopt the
standard micro Precision, Recall and F1 score to evaluate the results.

3.1.3 Implementation Details

We use the 300 dimension Glove [19] to initialize word embeddings.
The POS, character and position embeddings are randomly initial-
ized with 30 dimensions. The window size of CNN for character-
based word representations is set to 3, and the number of filters is 50.
For Bi-LSTM encoder, the hidden vector length is set to 100. Param-
eter optimization is performed using Adam [11] with learning rate
0.001 and batch size 64. Dropout is applied to word embeddings and
hidden states with a rate of 0.4. To prevent the gradient explosion
problem, we set gradient clip-norm as 5. All the hyper-parameters
are tuned on the validation set. We run 5 times for each experiment
then report the average results.

3.1.4 Comparison Models

For comparison, we employ the following models as baselines: (1)
Cotype [20] learns jointly the representations of entity mentions, re-
lation mentions and type labels; (2) NovelTagging [35] is the first
proposed unified sequence tagger which predicts both entity type and

relation class for each word; (3) MultiDecoder [31] considers rela-
tion extraction as a sequence-to-sequence problem and uses dynamic
decoders to extract relation triplets; (4) MultiHead [2] first identi-
fies all candidate entities, then perform relation extraction by iden-
tifying multiple relations for each entity, these two tasks are trained
jointly; (5) PA-LSTM [3] is the current best unified labeling method,
which tags entity and relation labels simultaneously according to a
query word position and achieves the recent state-of-the-art results
on the NYT-single dataset; (6) GraphRel [4] is the latest extrat-then-
classify method, which first employs GCNs to extract hidden fea-
tures, then predicts relations for all word pairs of an entity mention
pair extracted by a sequence tagger; (7) OrderRL [30] is the state-of-
the-art method on the NYT-multi and WebNLG datasets, which ap-
plies the reinforcement learning into a sequence-to-sequence model
to generate multiple triplets.

We call our proposed extract-then-label method with span-based
scheme as ETL-Span. In addition, to access the performance in-
fluence of span-based scheme, we also implement another compet-
itive baseline by replacing our tagger with widely used BiLSTM-
CRF without any change in the input features (x̃i and x̄i), and utilize
BIES-based scheme accordingly, which associates each type tag (en-
tity type or relation type) with four position tags to indicate entity
positions and types simultaneously, denoted as ETL-BIES.

3.2 Experimental Results and Analyses

3.2.1 Main Results

Table 2 reports the results of our models against other baseline meth-
ods. It can be seen that our method, ETL-Span, significantly outper-
forms all other methods and achieves the state-of-the-art F1 score
on all three datasets. Over the latest extract-then-classify method
GraphRel, ETL-Span achieves substantial improvements of 16.1%
and 40.2% in F1 score on the NYT-multi and WebNLG datasets re-
spectively. We attribute the performance gain to two design choices:
(1) the integration of tail-entity and relation extraction as it captures
the interdependency between entity recognition and relation classifi-
cation; (2) the exclusion of redundant (non-relation) entity pairs by
the judicious recognition of head-entities which are likely to take part
in some relations. For the NYT-single dataset, ETL-Span improves
by a relative margin of 5.2% against the strong baseline PA-LSTM.
We consider that it is because (1) we decompose the difficult joint
extraction task into several more manageable subtasks and handle
them in a mutually enhancing way; (2) our TER extractor effectively
captures the semantic and position information of the depended head-
entity, while PA-LSTM detects tail-entities and relations relying on a
single query word. In addition, we find that the results of our model
are better than sequence-to-sequence methods like MultiDecoder and
OrderRL, it is likely due to the innate restrictions on RNN unrolling,
the capacity of generating triplets is limited [4]. Beyond that, we no-
tice that the Precision of our model drops compared with NovelT-
agging on the NYT-single dataset. One possible reason is that many
overlapping relations are not annotated in the manually labeled test
data. Following PA-LSTM [3], we add some gold triplets into NYT-
single test set and further achieve a large improvement of 12.5% in
F1 score and 18.7% in Precision compared with the results in Table
2. Overall, these results indicate that our extraction paradigm which
first extracts head-entity then labels corresponding tail-entity and re-
lation can better capture the relational information in the sentence.

We also observe that ETL-Span performs remarkably better than
ETL-BIES, we guess it is because ETL-BIES must do additional
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Table 2. Main results on three benchmark datasets. Bold marks highest number among all models. ‡ marks results quoted directly from the original papers. †
marks results reported in [3] and [31]. ∗ marks results produced with offcial implementation.

Model
NYT-single NYT-multi WebNLG

Precision Recall F1 Precision Recall F1 Precision Recall F1

CoType‡ [20] 42.3% 51.1% 46.3% – – – – – –
NovelTagging† [35] 61.5% 41.4% 49.5% 32.8% 30.6% 31.7% 52.5% 19.3% 28.3%
MultiDecoder‡ [31] – – – 61.0% 56.6% 58.7% 37.7% 36.4% 37.1%
MultiHead∗ [2] 51.5% 52.8% 52.1% 60.7% 58.6% 59.6% 57.5% 54.1% 55.7%
PA-LSTM‡ [3] 49.4% 59.1% 53.8% – – – – – –
GraphRel‡ [4] – – – 63.9% 60.0% 61.9% 44.7% 41.1% 42.9%
OrderRL‡ [30] – – – 77.9% 67.2% 72.1% 63.3% 59.9% 61.6%

ETL-BIES 51.1% 64.6% 57.2% 84.4% 71.5% 77.4% 83.5% 81.1% 82.3%
ETL-Span 53.8% 65.1% 59.0% 85.5% 71.7% 78.0% 84.3 % 82.0% 83.1%

Table 3. Comparison of test-time speed. Bat/s refers to the number of
batches can be processed per second.

Model NYT-single NYT-multi WebNLG

ETL-BIES 10.9 Bat/s 11.2 Bat/s 6.3 Bat/s
ETL-Span 26.1 Bat/s 25.6 Bat/s 23.5 Bat/s

Table 4. An ablation study of ETL-Span on the NYT-multi dev set.

Model Precision Recall F1

ETL-Span 86.5% 73.5% 79.5%

– Char embedding 83.1% 71.2% 76.7%
– Position embedding pht 81.9% 70.3% 75.7%
– Hierarchical tagging 84.6% 70.7% 77.0%
– Head-entity type tagging 85.8% 72.2% 78.4%
– Joint learning 80.4% 68.9% 74.2%

work to learn the semantics of the BIES tags, while in ETL-Span,
the entity position is naturally encoded by the set of type labels, thus
reducing the tag space of each functional tagger. Another advantage
of span-based tagging is that it avoids the computing overhead of
CRF, as shown in Table 3, ETL-Span accelerates the decoding speed
of ETL-BIES by up to 3.7 times. The main reason is that decoding
the best chain of labels with CRF requires a significant amount of
computing resources especially when the tag space is huge (e.g., on
WebNLG with 246 relations and 989 tags). Besides, ETL-Span only
takes about 1/4 time per batch and 1/5 GPU memory compared with
ETL-BIES during training, which further verdicts the superiority of
our span-based scheme.

3.2.2 Ablation Study

To demonstrate the effectiveness of each component, we remove one
particular component at a time to understand its impact on the per-
formance. Concretely, we investigated character embedding, position
embedding pht, hierarchical tagging (by tagging boundary positions
at the outmost BiLSTM layer), head-entity type tagging (by tagging
0/1 instead of entity types in the HE extractor) and joint learning (by
training HE extractor and TER extractor separately without parame-
ter sharing). From these ablations shown in Table 4, we find that: (1)
Consistent with PA-LSTM [3], the character-level representations are
helpful to capture the morphological information and deal with OOV
words. (2) When we remove pht, the score drops by 3.8%, which

indicates that it is vital to let tail-entity extractor aware of position
information of the given head-entity to filter out irrelevant entities
by implicit distance constraint. (3) Removing the hierarchical tag-
ging structure hurts the result by 2.5% F1 score, which indicates that
predicting end positions benefits from the prediction results of start
positions. (4) By predicting entity type in the HE extractor, we can
implicitly incorporate type information into head-entity representa-
tion, which is beneficial to the subsequent TER tagging. (5) Com-
pared with the pipelined manner, joint learning framework brings
a remarkable improvement (5.3%) in F1 score, which demonstrates
that our HE extractor and TER extractor actually work in the mutual
promotion way, and again confirms the effectiveness and rationality
of our decomposition strategy.

3.2.3 Analysis on Different Sentence Types

To verify the ability of our model in handling the overlapping prob-
lem, following [4, 31], we conduct further experiments on the NYT-
multi test set. The results are shown in Figure 3. Among the com-
pared baselines, GraphRel and OrderRL are the latest two mod-
els with the capacity to handle the EPO triplets. For this purpose,
GraphRel predicts relations for all word pairs, in this case, its rela-
tion classifier will be overwhelmed by the superfluous candidates.
OrderRL utilizes a sequence-to-sequence model to decode overlap-
ping relations but can decode only the first word of multi-word entity,
while ours can detect the whole. Readers may have noticed that ETL-
Span cannot solve the problem of entity pair overlapping. Never-
theless, ETL-Span still surpasses baselines in all categories. Specifi-
cally, ETL-Span outperforms OrderRL by 6.1% on the Normal class,
6.9% on the SEO class, and 0.6% on the EPO class. In fact, even
on the EPO set, there are still a significant amount of triplets where
entity pairs don’t overlap. The most common triplets in the real-life
corpus are those of Normal and SEO class and our substantial surpass
on these two categories masks our shortcomings on the EPO class.
We leave the identification of EPO triplets for future work.

We also compare the results given different numbers of triplets in
a sentence, and sentences in the NYT-multi test set are divided into
5 subclasses, each class contains sentences that has 1,2,3,4 or ≥ 5
triplets. As illustrated in Figure 4, ETL-Span outperforms the base-
lines under all numbers of triplets in a sentence. When the sentence
only contains one triplet, ETL-Span yields a 8.8% improvement in
comparison with OrderRL. When there are multiple triplets in a sen-
tence, ETL-Span still outperforms GraphRel and OrderRL signifi-
cantly. These observations demonstrate that our extraction paradigm
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Figure 3. F1 score by overlapping category on the NYT-multi test set.

Figure 4. F1 score by sentence triplet count on the NYT-multi test set.

is effective to handle the multiple relation extraction task.

4 RELATED WORK

There have been extensive studies for entity relation extraction task.
Traditional pipelined methods divide this task into two separate sub-
tasks: first extract the token spans in the text to detect entity mentions,
and then discover the relational structures between entity mentions
[28]. Entity recognization has traditionally been solved as a sequence
labeling problem, and most recent work leverages a LSTM-CRF ar-
chitecture [12, 16, 34]. Relation extraction is normally treated as a
problem of multi-label classification [36]. Zeng et al. [29] employed
a deep convolutional neural network for extracting lexical and sen-
tence level features. Zhou et al. [37] combined attention mechanisms
with BiLSTM to reduce intra-sentence noise. Yu et al. [27] proposed
to learn the latent relational expressions based on the segment atten-
tion layer for relation extraction. However, all these methods require
preprocessing step such as NER and ignore interactions between en-
tity recognization and relation extraction, therefore may suffer from
error propagation [2, 3, 20, 24].

To address the above limitation, a variety of joint learning methods
were proposed [6, 10, 14, 25, 32]. Kate et al. [9] presented a card-
pyramid graph to represent entities and their relations in a sentence.
Miwa et al. [18] introduced a simple and flexible table representation
of entities and relations. However, these models need complicated
process of feature engineering, which requires much manual efforts
and domain expertise. Recently, several end-to-end neural architec-
tures are applied to joint relation extraction. Sun et al. [24] optimized
a global loss function to jointly train entity recognition model and
relation classification model under the framework work of Minimum
Risk Training. Bekoulis et al. [1, 2] first recognized the entities, then
they formulated the relation extraction task as a multi-head selection

problem. For each entity, they calculated the score between it and
every other entities for a given relation. Tan et al. [26] first identified
all candidate entities, then performed relation extraction via rank-
ing with translation mechanism. Sun et al. [23] developed an entity-
relation bipartite graph to perform joint inference on entity types and
relation types. Fu et al. [4] utilized graph convolutional network to
extract overlapping relations by splitting entity mention pairs into
several word pairs and considering all pairs for prediction. Neverthe-
less, these extract-then-classify methods still require explicit separate
components for entity extraction and relation classification, and the
relation classifier may be overwhelmed by the redundant extracted
entity pairs. Another line of work [30, 31] directly generated triplets
one by one by a sequence-to-sequence model but fail to extract an
entity that has multiple words. Zheng et al. [35] proposed a unified
tagging model which utilizes a special tagging scheme to convert
joint extraction task to a sequence tagging problem. However, their
model cannot recognize overlapping relations in the sentence. As the
improvement, Dai et al. [3] proposed to extract overlapping triplets
by tagging one n-word sentence for n times. Unfortunately, due to
the labeling-once process, this kind of unified labeling methods can-
not fully exploit the inter-dependency between entities and relations.

In this paper, we design a novel joint extraction paradigm which
first extracts head-entities and then labels tail-entities and relations
for each head-entity. In essence, it bridges the gap between extract-
then-classify and unified labeling approaches. More specifically,
when compared with the extract-then-classify methods, our extract-
then-label paradigm no longer extracts all entities at the first step,
only head-entities that are likely to participate in target triplets are
identified, thus alleviating the impact of redundant entity pairs. Ow-
ing to the reasonable decomposition strategy, our model can better
capture the correlations between head-entities and tail-entities than
unified labeling approaches, thus resulting in a better joint extraction
performance. Besides, our span-based tagging scheme is inspired by
recent advances in machine reading comprehension [22], which de-
rived the answer by predicting its start and the end indices in the
paragraph. Hu et al. [8] also applied this sort of architecture to open-
domain aspect extraction and achieved great success.

5 CONCLUSIONS

In this paper, we present an end-to-end sequence labeling framework
for joint extraction of entities and relations based on a novel decom-
position strategy. Experimental results show that the functional de-
composition of the original task simplifies the learning process and
leads to a better overall learning outcome, achieving a new state-of-
the-art on three public datasets. Further analysis demonstrates the
ability of our model in handling normal, overlapping and multiple
relation extraction. In the future, we would like to explore similar
decomposition strategy in other information extraction tasks, such as
event extraction and aspect extraction. The source code of this paper
can be obtained from https://github.com/yubowen-ph/JointER.
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