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Abstract. In this work, we study on semi-supervised semantic
parsing under a multi-task learning framework to alleviate limited
performance caused by limited annotated data. Two novel strategies
are proposed to leverage unlabeled natural language utterances.
The first one takes entity predicate sequences as training targets
to enhance representation learning. The second one extends Mean
Teacher to seq2seq model and generates more target-side data to
improve the generalizability of decoder network. Different from
original Mean Teacher, our strategy produces hard targets for the
student decoder and update the decoder weights instead of the
whole model. Experiments demonstrate that our proposed methods
significantly outperform the supervised baseline and achieve more
impressive improvement than previous methods.

1 Introduction

Semantic parsing aims to map natural language utterances into
machine executable meaning representations [12] (e.g. abstract
meaning representation or logical forms). It constitutes a key
technology for achieving the long-term goal of being capable of
understanding natural language in artificial intelligence, with a wide
range of applications in NLP tasks including robot controlling,
question answering, database queries, etc. In this work, we study on
logical forms. Fig 1 shows an example of natural language utterance,
corresponding logical forms and its denotation.

Recent researches have demonstrated the effectiveness of
sequence-to-sequence (seq2seq) based model on semantic parsing
[7, 12, 23]. The key to fully explore advantage of such sequence-
to-sequence based models is abundant natural language utterances
and corresponding logical forms [26]. However, logical forms are
diverse in different application scenarios (e.g. lambda-calculus and
SQL). The annotations of a particular scenarios are difficult to reuse
in other scenes, which makes annotation processing more expensive.
Namely, the limited amount of annotated data has become a huge
obstacle of seq2seq-based semantic parsing applications.

One solution to tackle the data-hungry challenge in seq2seq-
based model is to exploit unannotated utterances in semi-supervised
learning. This can be done for the reason that natural language
utterances are large-scale and readily-available in most domains,
meeting demands for semi-supervised learning. Unlabeled utterances
can improve model generalizability and ease over-fitting caused
by limited labeled training set. Many recent researches leverage
unannotated utterances to learn the information common in statistics,
which provides model with general representations rather than ones
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Utterance: what city has the largest population

Logical forms: (argmax $0 ( city: t $0) ( population: i $0) )

Knowledge Base

Denonation: California

Figure 1: An example of natural language utterance, corresponding
logical form and denotation on GEO.

targeted towards a particular task like semantic parsing, thus their
contribution to the task is limited.

Another one is multi-task learning (MTL), which generally
alleviates demands for annotated data by transferring knowledge
from related auxiliary tasks to the main task. In the generic MTL
architectures for sequence modeling, lower layers are shared for
transferring common knowledge between tasks, and higher layers are
independent and remained for various task. While in the case of low
resource of annotated data, the generalization performance of higher
layers is still weak.

In this work, we combine ideas of the two solutions and propose
SETNet, a semi-supervised approach with two novel strategies
leveraging unlabeled utterances in a MTL framework. The encoder
is shared all the time. Different from generic MTL, SETNet benefits
from the source-side information to improve the generality of
encoder as well as decoder network.

Specifically, the first strategy, entity lexicon learning, provides an
independent and related auxiliary task. It works by strengthening the
encoder network and obtaining high quality representation, directing
at semantic parsing. Semantic parsing is an exactly matching task,
meaning that miss or mismatch of key information in representation
will result in wrong predictions. The sequence autoencoder [6]
can enhance representation learning with a training objective of
minimizing reconstructing error, whereas it pays more attention to
common information in many utterances than key information in
a specific utterance. As an improvement, the training objective of
our strategy is to maximize the log likelihood of entity predicate
sequences (e.g. 'city:_t population:_i’) given unlabeled
utterances (e.g. ‘what city has the largest population’).

The second strategy, target gemeration, attempts to improve
generality of decoder network by generating more target-side data
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for semantic parsing training. The effectiveness of this strategy will
depend on quality of generated data. We are inspired by the Mean
Teacher [24] in Image Recognition, which tracks an exponential
moving average of the whole model (student) weights as teacher to
construct better predictions, and calculates distance between teacher
and student output distributions as cost. Different from the original
Mean Teacher, our strategy produces hard targets for original student
decoder by running the teacher decoder and update the decoder
weights in each training step instead of the whole model. When the
student improves and updates the weights, the teacher improves in
turn so that it can continually produce better target-side data.
Opverall, the main contributions in this work are:

e We improve semantic parsing by enhancing not only the
encoder representation, but also the decoder generality with extra
unlabeled utterances in a novel multi-task learning framework.

o We alleviate missing and mismatching cases of key information
and reduces wrong predictions by assigning entity lexicon
learning as auxiliary task.

e We provide a novel application of the Mean Teacher framework
on the task of semantic parsing and modify it for extending to
sequence modelling.

We perform experiments in GEO, ATIS and JOBS. The
results demonstrate our proposed methods significantly outperform
supervised baseline. Furthermore, improvement is more impressive
than previous methods.

2 Related work

Our work involves following threads of research. In this section, we
sum up approaches from previous works.

Semantic Parsing Early work on semantic parsing [28, 16]
relies on complex rules and pre-defined features. Recent years, the
researchers follow trends of deep learning and apply the sequence
to sequence model, attention mechanism [7], copy mechanism [12]
and transfer learning [9], which have made progress in field of NLP
and can be generally adapted to different domains and meaning
representations.

The issue of limited labeled training data has received
considerable critical attention and been addressed in the following
works. [1] utilizes the denotations of meaning representations
as indirect supervision in weakly-supervised learning; data
recombination is induced in research of [12]. Another direction
of research is domain adaptation, from multiple knowledge-bases
[9] to multilingual sources [23], aiming at transferring information
learned from related source domains to target domain by sharing
parameters and capturing common linguistic features. Moreover,
several attempts have been made in semi-supervised learning. [13]
trains Support Vector Machine classifiers for every production in
the meaning representation grammar. [2] applies dual learning in
semantic parsing. [26] employs VAEs. [15] applies self-training to
bootstrap an existing parser for AMR parsing. The semi-supervised
learning with multi-task learning setup proposed here offers an
alternative solution to this issue.

Multi-task learning for NLP Exploiting the shared information
between different but related tasks, multi-task learning for NLP
has been very popular since it was proposed by [5]. It has been
used in various NLP applications, such as machine translation,
machine reading comprehension and text classification. The majority
of these multi-task architecture generally consists of lower layers

shared across all tasks and top layers which are task-specific.
Another line of work considers arranging tasks in linguistically-
motivated hierarchies [10]. In this work, we follow the line of sharing
parameters in lower layers and propose an auxiliary task, which
provides information targeting towards semantic parsing, mitigating
missing and mismatched cases of key information.

Semi-Supervised Learning for NLP In the application of NLP,
semi-supervised learning has made fast progress with significant
performance made by self-training [25], language modeling [6],
autoencoder [3] and variational autoencoder [26]. Specifically, [21]
attempts to enhance the decoder network model by incorporating the
target-side monolingual data so as to boost the translation fluency.
Work of [3] proposes to reconstruct the monolingual corpora using
an auto-encoder for training NMT models. In [22], the weights of
the encoder and decoder of a seq2seq model are initialized with the
pre-trained weights of two language models and then fine-tuned with
labeled data. Such methods can be easily applied to tasks with rich
recourse on both source-side and target-side data. As for semantic
parsing, we seek solutions with extra unlabeled source-side data in
this work.

3 Methods
3.1 Overview

In this task, there are lots of natural language utterances
z',2?, ..., z’. Bach z' is constructed by a sequence of natural
language words ' = [z1,...,Zm]). Some of the utterances has
annotate with corresponding logic forms y*, 32, ..., y”, where J < I
and 3’ is constructed by a sequence of logic tokens y* = [Y1s ey Yn]-
The labeled utterances and its logic form construct a labeled semantic
parsing corpus L = {[z",y"]})_,. The rest unlabeled utterances
construct unlabeled corpus UL = {[z™]}¥_, . Our goal is to
enhance semantic parsing performance by fully exploring U L.

As is shown in Fig 2, we employee a multi-task learning
framework to solve this task. It consists of one shared encoder
and three attentional decoders, including semantic parsing decoder
(SPDecoder), entity lexicon learning decoder (ELLDecoder) and
target generation decoder (TGDecoder).

On the labeled corpus L, we train on the shared encoder and
SPDecoder for the main task, semantic parsing. Once trained, we
just use this part to do inference.

On the unlabeled corpus UL, we propose two strategies to
improve the encoder and decoder network respectively. The first one
enhances representation of the shared encoder by assigning entity
predicates sequences as training targets in an auxiliary task, which
we refer to as entity lexicon learning. The second one improves
decoder network by extending Mean Teacher algorithm to generate
more stable and better target for semantic parsing training, which we
refer to as target generation.

3.2 Semantic parsing

We view the main task, semantic parsing, as a sequence transduction
problem. We model it on the attention-based Encoder-Decoder
architectures (i.e. Seq2seq) which have been successfully applied in
neural semantic parsing. We implement the encoder as a bidirectional
RNN and the decoder as another RNN, both with long short-term
memory [11] units. The encoder encodes natural language sequence
into a fixed-dimensional context vector as the representation, then
the decoder generates logical forms based on the context vector with
attention mechanism [19].
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Figure 2: An overview of SETNet. (a) shows semantic parsing training on labeled dataset, (b) and (c) respectively illustrate our proposed
strategies, entity lexicon learning and target generation, training on unlabeled dataset. y;, ¢; and y; are logical token ids, while e; indicates

entity predicate id. They are all mapped from target vocabulary

Utterance: what city has the largest population

Lexicon Leaming:

Logical form: (argmax $0 ( city:_t $0 ) (population:_i $0 ) )

Missing Case: (argmax $0 ( population: i$0))

Mismatched Case: ( argmax $0 ( state: t $0) (population: i $0))

Entity predicate sequence: city: t population:_i

Figure 3: An example of exact match in semantic parsing, missing
and mismatched cases, and assigned entity predicates sequence.
The mappings between utterance and logical form represent lexicon
learning.

3.3 Entity Lexicon Learning

To most unsupervised learning algorithm, such as sequence
autoencoder [6], the motivation is given all consideration to the
integrity of input and expects to provide the decoder with more
comprehensive information. However, it focuses on more common
in statistics but useless information instead of entity keywords.
Lexicon learning aims to learn the mapping from natural language
words to predicates in pre-defined knowledge base, which is
fundamental for exact match of semantic parsing. In this case, we
focus on entity lexicon learning, which we define as capturing the
entity-type words in the natural language utterance and mapping

into corresponding entity predicates (e.g., “city” : city:_t).

Different from other types of lexicons (e.g., “largest” :: argmax),
entity lexicons are pre-specific and rather static in a specific domain
and can be easily learned using entity linking techniques instead
of manual annotation. We could benefit this setting by two factors.
First, it aims to force shared encoder’s representations to pay more
attention to the information targeting towards semantic parsing,
mitigating missing and mismatched cases of key information.
Second, the target outputs are logical tokens instead of natural
language words, thus ELLDecoder can share the same embedding
with other decoders.

As shown in Fig 2b, given the unlabeled corpus UL
{[xm]}i\le, we preprocess the corpus by identifying predifined
entity-type words in knowledgebase and pair each sample x
[x1, ..., zm] with ordered entity predicate sequence e = [e1, ..., €n],
where e; refers to entity predicate ids mapped from V;. As illustrated
in Fig 3, natural language utterance ‘what city has the largest
population’ is tagged with ‘city:_t population:_i’. The
shared encoder computes representation of x, then the ELLDecoder
predicts e from the representation.

On this strategy, we regard Entity Lexicon Learning as a standard
and independent task. We freeze the parameters of other parts and
just optimize the shared encoder and ELLDecoder by maximizing
the log likelihood of e.

3.4 Target Generation

The key idea of Target Generation is that if logical form labels of
good quality could be generated for the unlabeled utterances, the
decoder network will be enhanced. Effectiveness of this strategy will
highly depend on the quality of generated data. Targets computed
from an exponential moving average of the model parameters tend to
be better than ones generated by the original model [24].
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As is shown in Fig 2c, our strategy follows three steps.
First, we construct a teacher TGDecoder by tracking exponential
moving average of SPDecoder parameters. We update parameters of
TGDecoder as following:

Orap = Ngap + (1 —N) 05pp )

where 0%.cp and 0%, refer to parameters of TGDecoder and
SPDecoder at step ¢, A is the decay parameter which controls the
speed of model updating and its value usually approaches 1. This
step is conducted when 6spp updates. Second, TGDecoder acts
as a teacher and generates complete logical form targets. Since
teacher forcing can’t be implemented on account of the absence
of ground truth at each time step, TGDecoder predicts hard target
t = [t1,...,tn] with the unlabeled utterance © = [z1, ..., Tm] in
every training step, where ¢; is logical token id mapped from V;.
Finally, SPDecoder acts as a student at the same training step and
learns from the teacher TGDecoder by generating logical forms
y* = [yi,...,yn] regarding ¢ as ground truth, where y; is logical
token id mapped from V;. Note that we apply dropout both in the
second and the third steps.

Compared with constructing synthetic labeled data with self-
training model [25], our strategy generates new labels for unlabeled
utterances per epoch, and the quality of labels improve as the model
updates.

4 Training Setting

In this part, we discuss the training objective of each task and how
they combine in semi-supervised setting.

Training on Semantic Parsing Given a labeled corpus L =
{[z", y”]}»f:]:1 , semantic parsing is trained in fully supervised
manner. The loss function is as following:

Lsp (0g,0spp,0rLLD) =

N
1 i )
N E —logP (y"|+",08,0sprD)

n=1

where 0 is a set of the shared encoder parameters, Ogr,p and
0spp indicate parameters of ELLDecoder and SPDecoder.

Training on Entity Lexicon Learning Let U L =
{[z™, k™]}M_ denote the dataset which is assigned with ordered
entity predicate sequence for unlabeled data, the loss function is
factorized as:

Lgrr (0g,0spp,05LLD) =

N
1 mm 3)
ME —logP (K" |z™,0r,05LLD)

n=1

Training on Target Generation Let ¢™ denote output from
running beam search with TGDecoder given z™ in UL =
{[z™]}M_, , the loss function is formalized as:

Lrg (0s,0spp,0ELLD) =

1 & mim “)
w(t) - MZ_lng(t |z, 0spD)
n=1

where w (t) is unsupervised loss weighting function for balancing
the preference for this task. In the beginning, we loosen the
constraint between the averaging model and the original model

Algorithm 1: Training Procedures

input : Dataset L, ULI ,UL, Parameter 0g,0spp,05LLD
output: Parameter 0g,0spp,0ELLD

1 mode =0

2 // for choose the auxiliary task

3 repeat

4 for epoch = 0, F' do

5 for (z",y"™) € Ldo

6 Compute Lsp by Equation (2)

7 Update 0k, 0spp by gradient descent on Lgsp
8 Update 07cp by Equation (1)

9 if mode%2 == 0 then
10 for (z™, k™) € UL do

11 Compute L g1, by Equation (3)

12 Update 0, 0r 1. p by gradient descent on L1,
13 else
14 for (™) € UL do

15 Compute L1 by Equation (4)

16 Update s pp by gradient descent on Lr¢

17 Update 07cp by Equation (1)
18 mode++
19 /I change the auxiliary task

20 until model converge;

before meaningful prediction is obtained. In this stage, the function
begins with zero and ramps up at a slow speed. After several training
epochs, the training targets obtained by the averaging model can be
expected to be significant and better than original model so that the
function stays a larger value. When the network tends to stabilize,
the advantage of training targets is not as obvious as before and
sometimes maybe inferior compared with model prediction, then
the function ramps down. Similar to [17], we choose a Gaussian
curve to describe the dynamical weighting function. In this training
procedure, we fix parameters of the shared encoder and don’t do
backpropagation through it.

Training Procedure As shown in Algorithm 1, we train the model
alternately on the main task semantic parsing and two auxiliary
tasks, switching modes over at a particular frequency F'. More
specifically, after F' times of semantic parsing training epochs, the
model switches to one of the proposed tasks for one epoch. We only
add one auxiliary task at a time and continue this process until the
model converges.

S Experiment
5.1 Dataset

Our model was evaluated on the following datasets.

GEO This dataset is a frequently used semantic parsing
benchmark, including 880 queries to a U.S. geography database
and their corresponding logical forms. The logical form takes the
form of lambda-calculus expressions. We follow the practice in [27]
and divide the training set into 600 examples for training and 280
examples for testing.

ATIS This dataset is about queries to a flight booking system,
consisting of 5,410 examples. The dataset is split into 4434 examples
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for training, 448 examples for testing and 528 examples for
developing. The logical forms also use lambda-calculus.

JOBS This dataset is about queries to a database of job listings.
Questions are paired with Prolog-style queries. 640 examples are
split into 500 training and 140 test instances.

In particular, we use argument identification [7] to replace entities
and numbers with type names (e.g. company, degree, language,
platform, location and job area in JOBS) and unique IDs. Moreover,
we develop a simple procedure for identifying entity-type words and
assigning entity predicate sequences to unlabeled natural language
utterances, which compose the training set for Entity Lexicon
Learning.

5.2 Setup

We select samples of the original dataset at random as the labeled
training set and establish the unlabeled set with all natural language
utterances in domain, which refers to the method in [26] to simulate
the semi-supervised learning scenario.

Hyper-parameters of the supervised part follow the settings in
[7]. In all experiments, we used pre-trained GloVe vectors with
dimension 300. We use the RMSProp algorithm to train the model
as [7] does. For semi-supervised setting, alternating frequency F is
chosen from 1 to 15. Exponential moving average decay value A is
chosen from the set {0.9, 0.99, 0.999}. As previous semantic parsing
researches did, the accuracy metric we use refers to the percentage
of exact correct parsed outputs.

Our experiment consists of the following aspects. First, we
compare our proposed model (SETNet) in semi-supervised manner
using all the training data as the labeled set and unlabeled set
with prior work in the literature. We conduct experiments on
seq2seq model (SUP-SEQ2SEQ) described in Subsection 3.2 as
our baselines. Then we compare SUP-SEQ2SEQ with SETNet
and two ablation variants, i.e., only with Entity Lexicon Learning
(SETNet.ELL) and only with Target Generation (SETNet.TG),
under the settings of different labeled sizes. Second, we discuss
comparison between our proposed method with previous semi-
supervised models. The semi-supervised frameworks proposed by
previous works are various while not all can be applied to semantic
parsing. We implement self-training (SELF-TRAIN, [29]), auto-
encoder (AUTO-ENCODER) and cross-view training (CVT, [4]),
and then train them with the same labeled data as our method.
The AUTO-ENCODER is a standard MTL model, which has the
same structure as SETNet.ELL and just replaces the target output
with the input sequence itself, while SELF-TRAIN is the algorithm
which learns from the model itself by following steps: 1) training
a model with labeled examples until converging 2) assigning labels
to unlabeled examples 3) mixing the generated data with original
labeled data and training them as normal supervised training. As for
CVT, we follow the design for seq2seq learning in [4]. In addition,
we compare with results presented in SEQ4+, SEQ4- [14] on GEO,
and STRUCTVAE [26] on ATIS. Since their results are all based
on randomly sampled labeled data, we pay more attention to the
improvement upon the same baseline model with the same amount
of labeled data in these groups of comparison. Then we analyze how
the proposed strategies work and explore impact of different hyper-
parameters.

5.3 Comparison with previous work

The comparisons on GEO, ATIS and JOBS are listed on Tab 1-4.

Table 1: Previous supervised methods.

Method ATIS GEO JOBS
ZCO05 [27] - 79.3 79.3
ZC07 [28] 84.6 86.1 -
UBL [16] 71.4 87.9 -
DCS+L [18] - 87.9 90.7
TISP [30] 84.2 88.9 85.0
SEQ2SEQ [7] 84.2 84.6 87.1
SEQ2TREE [7] 84.6 87.1 90.0
ASN [20] 85.3 85.7 91.4
COARSE2FINE [8]  87.7 88.2 -
SETNet 87.2 85.4 89.3

Comparison with Supervised Methods As is shown in Tab 1, our
method is competitive with previous neural network based methods
on three datasets. Among all datasets, SETNet performs significantly
better than SEQ2SEQ[7] by 3.0% on ATIS, 0.8% on GEO, and 2.2%
on JOBS.

Comparison with Baseline First, SETNet outperforms the
baseline all the time when there are extra unlabeled data disjoint
with the labeled set. Using all labeled data in the dataset, we find
that SETNet still has contributions to semantic parsing task. SETNet
outperforms the baseline by 1.0% on ATIS, 0.8% on GEO and 0.7%
on JOBS. In addition, it should be noted that the improvement is
remarkable in the case of a small amount of labeled data. The
best improvements achieved are respective 11.1% on GEO with
150 labeled examples, 5.8% on ATIS with 500 labeled examples
and 19.3% on JOBS with 50 labeled examples. After that, the
improvement falls steadily as the size of labeled data increases. This
suggests that our method performs better in the setting of a small
amount of labeled data and a relatively larger amount of unlabeled
data. Among the three datasets, we find that the improvement in
JOBS is more remarkable than GEO and ATIS. On JOBS, SETNet
with 50 labeled examples even performs better than fully supervised
SUP-SEQ2SEQ with 100 labeled examples.

Comparison with Semi-supervised Methods Among all 13
settings, where labeled size is smaller than size of the whole
dataset, our method surpasses the three semi-supervised methods
by 12 settings in comparison with SELF-TRAIN, 13 settings for in
comparison with AUTO-ENCODER and 13 settings in comparison
with CVT. On GEO dataset, SETNet improves more on baseline than
SEQ4+ in all 6 settings, while than SEQ4- in 5 of 6 settings. On ATIS
dataset, the improvement in SETNet is larger than in STRUCTVAE-
SEQ in 3 settings of all 5 settings.

5.4 Performance of proposed strategies

We explore how proposed strategies work respectively through the
training curves.

Study on Entity Lexicon Learning By comparing AUTO-
ENCODER with the ablation variant SETNet.ELL, we find that
AUTO-ENCODER gets a small boost than SETNet.ELL. In Fig
4, we define the error rate as the proportion of wrong predictions
caused by miss or mismatch of entity predicates. The examples are
shown in Fig 3. We find that in the training process, SETNet.ELL
has the stronger ability to capture key information in utterances
and complete the expression of logical forms, while SUP-SEQ2SEQ
converges faster than the others. By contrast, AUTO-ENCODER is
even harmful to address key information.
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Table 2: Evaluation result on ATIS w.r.t. the size of labeled training data. The numbers in brackets represent the improvements relative to the

performance of supervised baseline.

Method ATIS

500 1000 2000 3000 4434
SUP-SEQ2SEQ 58.2 74.8 79.5 84.2 86.2
SELF-TRAIN 57.1 (1.1 75.0 (4o.2) 82.4 42.09) 847 (1o0.5) -
AUTO-ENCODER 60.7 (12.5) 75.2 (0.4 80.0 (+0.5y 84.3 (4o.1) -
CVT 60.1 (41.9 75.9 (41.1) 79.3 (—0.2)  80.0 (_1.2) -
SETNet 64.0 (15.8) 79.2 (14.0 820 (+25) 853411y 872 (410
- SETNet. TG 61.6 (43.4) 76.1 (41.3) 81.5 42.0) 837 (—05 87.5(43)
- SETNet.ELL 61.5 (+3.3) 77.8 (+3.0) 814 (+1.9) 85.5(+q3) 86.1 (-0.1)
Previous Method
SUP_SEQ2SEQ [26] 47.3 62.5 73.9 80.6 84.6
Structvae-SEQ [26] 55.6 (+83) 73.1(+106) T4.8(50.9) 813407y 842 (o4

Table 3: Evaluation result on GEO w.r.t. the size of labeled training data. The numbers in brackets represent the improvements relative to the

performance of supervised baseline.

Method GEO

30 150 300 450 600
SUP-SEQ2SEQ 18.2 43.7 60.0 75.7 80.7 84.6
SELF-TRAIN 19.1 o9y 438 (4o1) 596 (—0a)y 749 (—0s 804 (o3 -
AUTO-ENCODER 19.6 (+1.4) 45.1 (+1.4) 60.7 (+0.7) 76.1 (+0.4) 81.7 (+1.0) -
CVT 18.6 (yo.4y 424 (_13) 60.7 4oy 759 (yo.2) 804 (_o.3) -
SETNet 26.0 (+7.8) 49.1 (+54) 71.1 (+11.1) 82.1 ( +6.4 ) 833 ( +2.6 ) 85.4 (+0.8 )
- SETNet. TG 208 (426) 460 (124 614 414y 779 (422 820 414y 854 (1o
- SETNet.ELL 26.2 (+8.0) 47.7 (+4.0) 69.9 (+9.9) 79.3 (+3.6) 81.1 (+0.4) 84.6 (+0.0)
Previous Method
SUP_SEQ2SEQ [14] 21.9 39.7 62.4 80.3 85.3 86.5
SEQ4+[]4] 26.2 (44.3) 42.1 (+2.4) 67.1 (+4.7) 80.4 (40.1) 85.1 (—0.2) 87.2 (40.8)
SEQ4- [14] 30.1 (4s2) 420 (424 704 (4s0) 812100y 841412 86.5 (100

Table 4: Evaluation result on JOBS w.r.t. the size of labeled training data. The numbers in brackets represent the improvements relative to the

performance of supervised baseline.

Method JOBS

50 100 250 400 500
SUP-SEQ2SEQ 51.4 64.3 77.1 82.1 88.6
SELF-TRAIN 514 ooy 599 (_asy 779 Gos 821 (to.o) -
AUTO-ENCODER 550 (+3.6) 657 (41.0) 786 (415 814 (ox) -
CVT 52.5 (+1.1) 65.6 (+1.3) 77.7 (+0.6) 80.3 (—1.8) -
SETNet 70.7 (+19.3 ) 72.1 (+7.8) 80.8 (+3.7) 87.9 (+58) 89.3 (+0.7)
- SETNet. TG 58.6 (+7.2) 67.9 (+3.6) 79.3 (4+2.2) 83.6 (+1.5) 88.2 (—0.4)
- SETNet.ELL 664 (1150) 700 (157 808 (4am 857 (4ss 893 (ro7)
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Figure 4: Error rate about miss and mismatch key information with
50 labeled example on Jobs.

Study on Target Generation As shown in Fig 5, in early
training steps, the teacher decoder in SETNet.TG makes more
accurate predictions than the student decoder at the most. Though
the difference is small, we can find that the student has learned
from the teacher and improved the performance in comparison with
SUP-SEQ2SEQ. When the model tends to converge, the teacher and
student performance better alternately.
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Figure 5: Performance of SUP-SEQ2SEQ, teacher and student
decoder on SETNet. TG with 50 labeled example on Jobs.

Comparison of Two Strategies It’s clear to see that both
strategies have served their purposes and improved performance
to varying degrees. SETNet.ELL outperforms baseline in all 13
settings where labeled size is smaller than size of the whole
dataset, while SETNet.TG outperforms in 12 of 13 settings. In
most settings, SETNet.ELL contributes more improvements than
SETNet.TG. The biggest gap between them is 7.8% in the setting of
50 labeled examples on JOBS. This demonstrates that our method
contributes more to the encoder representation learning than the
decoder network. In addition, on GEO and JOBS, the improvement
of SETNet.ELL declines considerably as the size of labeled data
increases, while SETNet. TG remains relatively stable. For example,
the biggest gaps between settings on GEO are 9.5% for SETNet.ELL

and 1.2% for SETNet.TG. While on ATIS, the difference is not
obvious.

5.5 Effects of hyper-parameters

Table 5: Performance of SETNet with 50 labeled examples on JOBS
w.r.t. the size of unlabeled data

Size ‘ 0 50 100 250 400 500
Acc ‘ 514 571 579 657 68.6 707

Table 6: Performance of SETNet. TG with 50 labeled examples on
JOBS w.r.t. the value of exponential moving average decay in the
beginning

EMA decay‘ - 09 099 0.999
Acc ‘51.4 586 558 503

We discuss how unlabeled size influences model performance.

Effect of unlabeled size It’s easy to find that model performance
improves with increasing size of unlabeled data, as is shown in Tab
5. This demonstrates once again that our method can learn from
unlabeled utterances and the more, the better.

Effect of exponential moving average decay Tab 6 shows
the impact of exponential moving average decay we set in the
beginning. It indicates that we should loosen the constraint between
the averaging model and the original model before meaningful
prediction is obtained. When we use 0.999 as the value of decay, the
teacher decoder remembers the old and inaccurate student weights.

6 Conclusions

In this work, we study on semi-supervised semantic parsing and
propose two strategies to leverage unlabeled natural language
utterances, one for entity lexicon earning and the other for target
generation. Experiments show that with unlabeled utterances, it
performs better than in fully supervised manner and achieves more
impressive improvement than previous semi-supervised methods.
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