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Abstract. The majority of existing methods for fake news detection
universally focus on learning and fusing various features for detec-
tion. However, the learning of various features is independent, which
leads to a lack of cross-interaction fusion between features on so-
cial media, especially between posts and comments. Generally, in
fake news, there are emotional associations and semantic conflicts
between posts and comments. How to represent and fuse the cross-
interaction between both is a key challenge. In this paper, we pro-
pose Adaptive Interaction Fusion Networks (AIFN) to fulfill cross-
interaction fusion among features for fake news detection. In AIFN,
to discover semantic conflicts, we design gated adaptive interaction
networks (GAIN) to capture adaptively similar semantics and con-
flicting semantics between posts and comments. To establish feature
associations, we devise semantic-level fusion self-attention networks
(SFSN) to enhance semantic correlations and fusion among features.
Extensive experiments on two real-world datasets, i.e., RumourEval
and PHEME, demonstrate that AIFN achieves the state-of-the-art
performance and boosts accuracy by more than 2.05% and 1.90%,
respectively.

1 Introduction

Owing to the low cost of information dissemination and the lack
of timely and effective supervision, social media provides an ideal
breeding ground for the growth of fake news (a.k.a. hoaxes, rumors,
etc.). Research indicates that fake news has dominated the news cycle
since the US presidential election (2016) [3, 9]. In detail, a tweeting
rate for users tweeting links to websites containing news classified as
fake more than four times larger than for traditional media and 25%
of tweets during the election in Twitter spread fake news [4], mean-
while, 1% of users are even exposed to 80% of fake news [9]. Fur-
thermore, fake news has greater virality than true information, which
diffuses remarkably farther, faster, deeper, and more broadly than the
truth [13]. Therefore, how to effectively evaluate information cred-
ibility has become a crucial problem, drawing wide attention from
academic and industrial communities.

Currently, most existing studies based on deep neural net-
works capture various features for fake news detection, which have
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So awful!!!!!!! Incredible, it was 

Biden who leaked the names of SEAL 

Team 6 family’s [sic] to Al Qaeda and 

cannot be trusted!

It's so sad!!!!!!!!!!!! Hundreds of firefighters 

died in forest fires. The bodies of firefighters 

were found one after another, and people 

could not hide their grief and upset. It is said 

the cause of the fire is old power facilities.  

(a) Example 1 for fake news (b) Example 2 for fake news 

Post Content Post Content

How shameless! If it came down to 

me voting him in I wouldn't.

Too angry, reveal confidential!

There’s no evidence! He did not 

mention the specific unit or any 

specific members by name.

Comments
It’s false. I only saw a few deaths in the 

latest reports.

Bad, I cried! Salute the firefighters. 

No, the cause was man-made. 

Comments

The forest fire is really frightening.

Figure 1. Two fake news from Twitter. Blue denotes semantic correlations
between comments and posts while red means emotional correlations

between comments and posts.

achieved great success. Generally, they devise different modules to
capture different credibility features including news content [11, 2],
diffusion patterns [16, 15], and social context (a.k.a. meta-data)
[33, 31], and then use some traditional fusion strategies to integrate
these features for evaluation. For instance, Wang [26] adopts CNN
to capture content semantics and employs BiLSTM to learn meta-
data features. Finally, the author fuses them by concatenation for
fake news detection. Zhang et al. [33] obtain semantics of news and
comments by different BiLSTM combining Bayesian networks then
build simple multi-layer perception to fuse them for misinformation
detection. Wu et al. [28] rely on adversarial networks and multi-task
learning to capture differential credibility features from news content
semantics and fuse them for information credibility evaluation.

However, there are still several general limitations of the above
methods. First, feature fusion is relatively shallow. Most fusion
strategies are based on concatenation, addition, or simple neural
networks, which are hard to choose noteworthy features and even
bring a certain amount of noise. Secondly, various features are typ-
ically fused only in the final evaluation stage while lacking cross-
interaction fusion in the intermediate semantic learning stage. We
know that cross interaction is ubiquitous on social media, especially
there are feature correlations and semantic conflicts between posts
and comments in fake news. Figure 1 shows two concrete examples
to illustrate this phenomenon. We observe that: 1) Emotions of com-
ments usually correspond to these of posts (in red), like ‘cried’ and
‘grief’; and 2) Some comments have semantic conflicts with posts
(in blue), like ‘power facilities’ and ‘man-made’. Cross-interaction
fusion among features can enhance core semantics and help to dis-
cover the causes of fake news. Therefore, how to represent and fuse
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these interactions is a major challenge for fake news detection.
To address the above problems, we propose Adaptive Interaction

Fusion Networks (henceforth, AIFN) to cross-interactively fuse var-
ious features for fake news detection. Specifically, in order to dis-
cover semantic conflicts between posts and comments, we design
gated adaptive interaction networks (GAIN) to acquire adaptively
similar and conflicting semantics between both, in which conflicting
gate is designed for capturing differential features while refining gate
aims to obtain similar semantics between posts and comments. To ef-
fectively utilize feature associations within posts and comments re-
spectively, we explore semantic-level fusion self-attention networks
(SFSN) to screen their valuable features and fuse them deeply. Ex-
perimental results show that AIFN achieves better performance than
other state-of-the-art methods and gains new benchmarks. The main
contributions of our work can be summarized as follows:

• Proposed gated adaptive interaction networks fulfill global fea-
ture interaction, which focuses on discovering conflicting seman-
tics more accurately by capturing adaptively similar semantics and
differential semantics (Section 4.4.3 and 4.5).

• Explored semantic-level fusion self-attention networks can
achieve deep semantic fusion within posts and comments, which
effectively build feature associations between both (Section 4.4.2
and Section 4.5).

• Experiments on two public, widely used fake news datasets
demonstrate that our method significantly outperforms previous
state-of-the-art methods (Section 4.3). We release the source code
publicly for further research3.

The rest of the paper is organized as follows. We start with an
overview of related work in Section 2. Section 3 presents the de-
tails of our approach. Experiment results and discussions are given
in Section 4, and Section 5 concludes our work.

2 Related Work

2.1 Fake News Detection

Existing studies for fake news detection can be roughly summarized
into two categories. The first category is to extract or construct plenty
of features with manual ways [5, 34]. The prominent merits of this
category are low computational complexity and many effective meta-
data features discovered from social context.

Instead of gaining features by labor-intensive manual design, the
second category is to automatically capture credibility features based
on deep neural networks. There are two ways: One is to capture lin-
guistic features from text content, such as semantics [30, 22, 17],
emotions [2], writing styles [21], and stances [27]. But the cap-
ture of stances might bring some noise and reduce some perfor-
mance indicators of models. The other way emphasizes on capturing
meta-data features surrounding social context such as source-based
[25], post-based [29, 33], comment-based [23], user-based [24], and
propagation-based [16]. In this work, combined with the pros of both
categories, we capture deeply semantic and emotional features from
posts and comments.

2.2 Feature Fusion

Generally, most feature fusion methods are based on concatenation
[18], point-wise addition [14], and multi-layer perceptions [33], etc.

3 https://www.dropbox.com/s/9pos1pvv392adnt/interactFusions.zip?dl=0

For example, Nguyen et al. [18] concatenate document features ob-
tained by TF-IDF, semantics obtained by word2vec, and user-event
graph features obtained by node2vec as the input layer of the model
for fake news detection. Nevertheless, these fusion methods usually
lack feature interaction. To address it, attention mechanism [24, 32]
is developed to focus on the interaction of two related features, like
user profiles and behaviors, posts and comments. Typically, Shu
et al. [23] present a sentence-comment co-attention network to ex-
ploit both news contents and comments to jointly detect explainable
check-worthy sentences and comments for fake news detection. But
attention-based methods are mostly based on the interaction of lo-
cal and partial features, which lack global cross-interaction of all
features. To address these limitations, we propose cross-interaction
fusion model integrating self-attention networks for evaluation.

3 Adaptive Interaction Fusion Networks

The architecture of AIFN with five components is illustrated in Fig-
ure 2 and each component of AIFN is described as follows:

3.1 Input Feature Descriptions

AIFN learns four types of features around posts and comments from
the perspectives of word and emotion.

3.1.1 BERT Embeddings

Word embeddings of posts and comments in tweets are both ap-
plied BERT embeddings. BERT embeddings of a post containing l
words are indicated as Xp = {[xp

1; pos
p
1], [x

p
2; pos

p
2], ..., [x

p
l ; pos

p
l ]},

Xp ∈ R
l×(d+l), where embeddings of each word are concatenated

by word embeddings x
p
i ∈ R

d and position embeddings pos
p
i ∈ R

l.
x
p
i of word i is a d-dimensional vector obtained by pre-trained BERT

model [8]. pos
p
i of word i is achieved by one-hot encoding. ; means

concatenation operation. For BERT embeddings of comments, we
first rank all comments in chronological order and then concate-
nate them into a sequence with k words. The way of embeddings is
the same as the post, i.e., Xc = [xc

1; posc1], [x
c
2; posc2], ..., [x

c
k; posck],

Xc ∈ R
k×(d+k).

3.1.2 Emotion Embeddings

We represent D-dimensional emotion embeddings of one word via
pre-trained emotion word embeddings (EWE) [1], which learns
emotion-enriched word representations by projecting emotionally
similar words into neighboring spaces based on a large training
dataset with a rich spectrum of emotions. Here, emotion embeddings
of a post Ep and comments Ec are denoted as Ep = {e

p
1, e

p
2, ..., e

p
l }

and Ec = {ec1, ec2, ..., eck}, respectively, where e
p
i ∈ R

D , Ep ∈
R

l×D , eci ∈ R
D and Ec ∈ R

k×D .

3.2 Feature Encoding

We encode word-based and emotion-based sequence via BiLSTM,
which can not only capture long-term dependencies by a persistent
memory compared with RNN but also obtain contextual information
by modeling word sequence from both directions of words. BiLSTM
contains a forward LSTM

−−−−→
LSTM and a backward LSTM

←−−−−
LSTM,

which learns word sequence from the first word to the last word and
learns the sequence in reverse order respectively.

L. Wu and Y. Rao / Adaptive Interaction Fusion Networks for Fake News Detection 2221
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Gated Adaptive 
Interaction Networks 

(GAIN) 
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B
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Semantic-level Fusion Self-attention Networks (SFSN)

True 

False

Figure 2. Overall architecture of AIFN. The model utilizing organically four types of features focuses on interaction and fusion among features by the
following components: input features, feature encoding, semantic-level fusion self-attention networks, gated adaptive interaction networks, and task learning.

−→
hi =

−−−−→
LSTM(

−−→
hi−1, xi) (1)

←−
hi =

←−−−−
LSTM(

←−−
hi+1, xi) (2)

hi =
−→
hi ⊕←−

hi (3)

where
−→
hi ∈ R

h and
←−
hi ∈ R

h are hidden states of forward and back-
ward LSTM at position i, respectively. xi is the i-th input which can
be replaced by word embeddings X

p
i and Xc

i , or emotion embed-
dings E

p
i and Ec

i . ⊕ denotes concatenation. In addition, experiments
confirm BiLSTM can be replaced by BiGRU for comparable perfor-
mance in AIFN.

3.3 Gated Adaptive Interaction Networks (GAIN)

We first obtain the pooled vectors X
pw
pool, X

pe
pool, Xcw

pool, and Xce
pool

(all ∈ R
l) from the encoded word-level and the encoded emotion-

level features in posts and comments respectively by max-pooling
operation. Then we get the integrated post vector X

p
pool and comment

vector Xc
pool by concatenation.

X
p
pool = X

pw
pool ⊕ X

pe
pool (4)

X
c
pool = X

cw
pool ⊕ X

ce
pool (5)

To discover semantic conflicts between posts and comments, we
devise GAIN to capture adaptively similar semantics and differential
semantics.

3.3.1 Conflicting Gate

Conflicting gate is to obtain differential and conflicting features be-
tween posts and comments, i.e., X

p
pool and Xc

pool, respectively.

μf = σ(Xp
poolWf1 + X

c
poolWf2 + bf ) (6)

F = tanh(Xp
pool�μfWh1+X

c
pool � (1−μf )Wh2+bh)(7)

where F is the conflicting features obtained. All weights W ∈ R2l×2l

and biases bf , bh ∈ R2l.
When μf approaches 0, the conflicting features in X

p
pool are more

obtained. Conversely, more conflicting features in Xc
pool are ob-

tained. This way ensures the adjustability of the conflicting gate so
that all conflicting features of both have the possibility of being ob-
tained.

3.3.2 Refining Gate

We design refining gate to capture more similar features between
posts and comments X

p
pool and Xc

pool:

μr = σ(Xp
poolWr1 + X

c
poolWr2 + br) (8)

R = tanh(Xp
pool � μrWrp + X

c
pool � μrWrc + brr) (9)

where all weights W ∈ R2l×2l and biases b ∈ R2l.

3.3.3 Adaptive Mechanism

The location of semantic conflicts is inseparable from the matching
of highly similar semantics in sequences, in order to accurately locate
the differential features in a sequence, we develop adaptive mecha-
nism to capture adaptively the similar and conflicting semantics.

L. Wu and Y. Rao / Adaptive Interaction Fusion Networks for Fake News Detection2222



S = R + (1− μr)� F (10)

t
px = tanh(Wpx

S + b
px) (11)

t
pe = tanh(Wpe

S + b
pe) (12)

t
cx = tanh(Wcx

S + b
cx) (13)

t
ce = tanh(Wce

S + b
ce) (14)

where S ∈ R
dx is the adaptive features. tpx, tpe, tcx and tce are

different dimensional global interaction vectors suitable for different
types of features, i.e., word-level in posts, emotion-level in posts,
word-level in comments, and emotion-level in comments, respec-
tively.

3.4 Semantic-level Fusion Self-attention Networks
(SFSN)

We design SFSN to build associations and deep semantic fusion
among features. Specifically, SFSN is used to fuse deeply differ-
ent types of features and the interacted features obtained by GAIN
(in Section 3.3). We take word-level in posts as an example to
explain the details, where tpx is the global interaction vector and
Xpx = {x

px
1 , x

px
2 , ..., x

px
l } is outputs of BiLSTM for word-level in

posts.
Self-attention Networks We leverage the multi-head self-

attention networks to learn dependencies and semantics between any
two words in one sequence. The scaled dot-product attention, the
core of self-attention networks, is described as

Attention(Q,K,V) = softmax(
QKT

√
d

)V (15)

where Q ∈ R
l×2h, K ∈ R

l×2h, and V ∈ R
l×2h are query, key, and

value matrices respectively and Q = K = V = Xpx.
To get high parallelizability of attention, multi-head attention first

linearly projects queries, keys, and values j times by different linear
projections and then j projections perform the scaled dot-product at-
tention in parallel. Finally, these results of attention are concatenated
and once again projected to get the new representation. Formally, the
multi-head attention can be formulated as:

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ) (16)

O
′ = MultiHead(Q,K,V) (17)

= Concat(head1, head2, ..., headh)W
o (18)

where W
Q
i ∈ R

2h×dk , WK
i ∈ R

2h×dk , WV
i ∈ R

2h×dk , and Wo ∈
R

2h×2h are trainable parameters and dk is 2h/j.
Fusion Strategy We exploit the interaction vector tpx to concen-

trate on the fusion of deep semantics in self-attention networks for
highlighting semantic relevance of different types of features.

O
px = t

px � O
′ (19)

where � is element-wise multiplication.
Subsequently, self-attention networks pass a feed forward network

(FFN) for adding non-linear features while keeping scale-invariant
features, which includes a single hidden layer with an ReLU.

O
px
ffn = FFN(Opx) = max(0,O

px
W1 + b1)W2 + b2 (20)

where W1, and W2 (both ∈ R
2h×2h), b1, and b2 (both ∈ R

2h) are
learned parameters.

Finally, we apply max-pooling to each dimension across all words
for gaining a fixed-size representation Xpw of the sequence as final
outputs of word-level in posts.

X
pw = max-pooling(Opx

ffn) (21)

Additionally, we leverage concatenation to integrate the learned
word-level features and emotion-level features from posts and com-
ments, respectively, i.e., Xpw, Xpe, Xcw, and Xce.

X
p = X

pw ⊕ X
pe (22)

X
c = X

cw ⊕ X
ce (23)

where Xp and Xc are the final integrated features from posts and
comments respectively.

3.5 Task Learning

We employ concatenation operation to integrate the output features
of posts and comments, i.e., Xp and Xc.

X
pc = X

p ⊕ X
c (24)

Then we apply the integrated features to Softmax function for task
learning. Softmax function emits the prediction of probability distri-
bution by the following equations:

p = softmax(WdX
pc + bd) (25)

We train the model to minimize cross-entropy error for a single
training instance with ground-truth label y:

Loss = −
∑

ylogp (26)

4 Experiments

4.1 Datasets and Evaluation Metrics

For experimental evaluation, we use two real-world benchmark
datasets, RumourEval [7] and PHEME [35], which respectively con-
tains 325 and 6,425 Twitter threads discussing rumors. Both datasets
include Twitter conversation threads associated with different news-
worthy events, like the Ferguson unrest, where one thread consists
of a source tweet conveying a rumor and a tree of comments. The
credibility of each tweet can be true, false, and unverified. Since our
goal is to evaluate whether one tweet is true or false, we filter out
unverified tweets. Table 1 gives statistics of the two datasets.

In consideration of the imbalance label distributions, evaluation
solely relying on accuracy effortlessly achieve competitive perfor-
mance beyond the majority class. Therefore, besides accuracy (A),
we add precision (P), recall (R) and F1-score (F1) as complementary
evaluation metrics for tasks. We divide the two datasets into train-
ing, validation, and testing subsets with proportion of 70%, 10%, and
20%.

4.2 Setting

We strictly turn all hyper-parameters on the validation dataset, and
we achieve the best performance via a small grid search. The hyper-
parameters turned on the validation subset are shown as follows:

L. Wu and Y. Rao / Adaptive Interaction Fusion Networks for Fake News Detection 2223



Table 1. Statistics of the datasets

Subset Veracity RumourEval PHEME

#posts #comments #posts #comments

Training
True 83 1,949 861 24,438
False 70 1,504 625 17,676
Total 153 3,453 1,468 42,114

Validation
True 10 101 95 1,154
False 12 141 115 1,611
Total 22 242 210 2,765

Testing
True 9 412 198 3,077
False 12 437 219 3,265
Total 21 849 417 6,342

• Word embedding sizes d for posts and comments are both set to
768;

• Emotion embeddings size D is 300;
• The dimensionality of LSTM hidden state h is 120;
• The initial learning rate is set to 0.001;
• The dropout rate is 0.4;
• The number of projections j is 8;
• Attention heads and blocks are set to 6 and 4, respectively;
• The minibatch size is 64.

4.3 Performance Evaluation

We compare AIFN with the following baselines:
SVM [7] are used to detect misinformation based on manually

extracted features.
CNN [6] with different convolutional window sizes captures con-

tent features similar to n-grams for rumor verification.
TE [10] leverages tensor decomposition to derive concise article

embeddings to create an article-by-article graph for misinformation
detection.

DeClarE [20] applies posts as the queries of attention mechanism
to extract evidence from comments and aggregates post sources and
languages.

MTL-LSTM [12] jointly trains three tasks, i.e., rumor detection,
veracity classification, and stance classification, and learns the rela-
tionships among the tasks by common LSTM for improving perfor-
mance of each task.

TRNN [16] contains two tree-structured models based on RNN,
which learns credibility features based on non-sequential propaga-
tion structure formed by comments for rumor detection. In this work,
we adopt the top-down model with better results as the baseline.

Bayesian-DL [33] employs Bayesian to represent the uncertainty
of prediction for the veracity of a claim and then encodes all the
people’s comments to the claim through LSTM for misinformation
detection.

The experimental results are summarized in Table 2. We observe
that:

• MTL-LSTM exploiting stance features shows 2.86% and 2.67%
improvements in recall on RumourEval and PHEME respectively,
but it also introduces noise, which makes it achieve from 4.90%
to 21.38% degradation than our model in accuracy, precision, and
F1. Besides, our model achieves 1.94% and 2.12% boosts than
the latest baseline (Bayesian-DL) in accuracy on the two datasets
respectively. These reveal the effectiveness of our model.

• SVM incorporating meta-data features gains better performance
than some deep neural networks only learning content features,

like CNN and TE. It confirms the effectiveness of meta-data fea-
tures for fake news detection.

• Both TRNN and Bayesian-DL by integrating comments into posts
achieves eminent performance than other baselines, which reveals
the effectiveness of the fusion of comments and posts. But they
are worse than AIFN because AIFN not only captures semantics
of comments and posts but also emotional features from the both.

4.4 Discussions

We evaluate the effectiveness of each part of AIFN and the effective-
ness of internal structure of GAIN and SFSN.

4.4.1 Ablation Analysis of AIFN

Table 3 provides the experimental results of AIFN and the following
simplified models:

• BERT+BiLSTM applies BERT to BiLSTM model.
• BERT+BiLSTM+SFSN adds semantic-level fusion self-attention

networks (SFSN) to BERT+BiLSTM.
• BERT+BiLSTM+SFSN+GAIN means BERT+BiLSTM+SFSN

incorporating gated adaptive interaction networks (GAIN), i.e.,
AIFN.

• Glove+BiLSTM+SFSN+GAIN uses Glove [19] as word embed-
dings of AIFN.

From the experimental results of Table 3, we draw the following ob-
servations:

• Effectiveness of BERT. Compared with BERT+BiLSTM+SFSN
+GAIN and Glove+BiLSTM+SFSN+GAIN, the former achieves
2.85% and 1.65% boosts in accuracy on RumourEval and PHEME
respectively. It proves the effectiveness of BERT including feature
ensemble.

• Effectiveness of SFSN. BERT+BiLSTM+SFSN boosts the per-
formance as compared with BERT+BiLSTM, showing 4.70% and
5.66% improvements in accuracy on the two datasets, which re-
veals that SFSN enhancing semantic associations and fusion is
effective.

• Effectiveness of GAIN. Compared to BERT+BiLSTM+SFSN,
BERT+BiLSTM+SFSN+GAIN notably improves the perfor-
mance (2.65% and 1.49% boosts) on the two datasets with the
help of conflicting semantics obtained by GAIN. It explains the
effectiveness of GAIN.

4.4.2 Semantic-level Fusion Self-attention Networks
Evaluation

To further evaluate the effectiveness of SFSN, we verify the per-
formance of semantic-level fusion between four output features
of GAIN and four self-attention networks i.e., four SFSN, where
’SFSN-post-word’ represents only removing the fusion between the
output of GAIN for word-level of posts and self-attention networks
for word-level of posts. ’SFSN-post-emotion’, ’SFSN-comment-
word’, and ’SFSN-comment-emotion’ are for only removing the fu-
sion on emotion level of posts, only removing the fusion on word
level of comments, and only removing the fusion on emotion level of
comments, respectively. Table 4 presents the experimental results of
these methods on RumourEval and PHEME. We have the following
observations:

L. Wu and Y. Rao / Adaptive Interaction Fusion Networks for Fake News Detection2224



Table 2. Performance comparison of our proposed model against the baselines.

Dataset Measure SVM CNN TE DeClarE MTL-LSTM TRNN Bayesian-DL Ours

RumourEval

A (%) 71.42 61.90 66.67 66.67 66.67 76.19 80.95 82.89
P (%) 66.67 54.54 60.00 58.33 57.14 70.00 77.78 78.52
R (%) 66.67 66.67 66.67 77.78 88.89 77.78 77.78 86.21
F1 (%) 66.67 59.88 63.15 66.67 69.57 73.68 77.78 82.19

PHEME

A (%) 72.18 59.23 65.22 67.87 74.94 78.65 80.33 82.45
P (%) 78.80 56.14 63.05 64.68 68.77 77.11 78.29 79.12
R (%) 75.75 64.64 64.64 71.21 87.87 78.28 79.29 85.20
F1 (%) 72.10 60.09 63.83 67.89 77.15 77.69 78.78 82.05

Table 3. Comparison between AIFN and simplified models on RumourEval and PHEME.

RumourEval PHEME

A(%) P(%) R(%) F1(%) A(%) P(%) R(%) F1(%)
BERT+BiLSTM 75.54 70.22 75.26 72.65 75.30 73.89 76.21 75.03
BERT+BiLSTM+SFSN 80.24 77.18 84.23 80.79 80.96 77.56 83.66 80.49
BERT+BiLSTM+SFSN+GAIN 82.89 78.52 86.21 82.19 82.45 79.12 85.20 82.05
Glove+BiLSTM+SFSN+GAIN 80.04 77.21 84.90 80.87 80.80 77.13 83.75 80.30

• The removal of word-level SFSNs presents lower performance
than emotion-level SFSNs, which shows up to 1.27% and 1.04%
performance degradation than emotion-level SFSNs in accuracy
on RumourEval and PHEME, respectively. It reveals that seman-
tics are more effective than emotions for fake news detection.

• Compared with comment-level SFSNs, post-level SFSNs decrease
0.52% and 0.64% performance, which indicates posts contain
more effective credibility indicators.

• The removal of any SFSN will degrade the performance of the
model, which shows from 2.84% to 1.91% degradation in ac-
curacy on RumourEval and PHEME, respectively. This demon-
strates the effectiveness of SFSN.

Table 4. Comparison between different SFSNs.

A(%) P(%) R(%) F1(%)

R
um

ou
rE

va
l SFSN-post-word 80.05 76.87 84.03 80.29

SFSN-post-emotion 81.20 77.82 85.34 81.40
SFSN-comment-word 80.57 77.24 84.69 80.79
SFSN-comment-emotion 81.84 78.13 85.94 81.85
Our Model 82.89 78.52 86.21 82.19

PH
E

M
E

SFSN-post-word 80.54 77.37 83.21 80.18
SFSN-post-emotion 81.51 78.26 84.34 81.19
SFSN-comment-word 80.95 77.91 83.78 80.74
SFSN-comment-emotion 81.96 78.68 84.76 81.61
Our Model 82.45 79.12 85.20 82.05

To validate the capture of valuable features in SFSN, we respec-
tively map the outputs of self-attention networks and simple fusion
strategies (which replaces SFSN) to the input elements of word-level
and the visualized results are shown in Figure 3 where the input is
the tweet in Figure 1(b). We observe that:

• Concatenation and addition can capture partial keywords, like
‘firefighters’ and ‘died’ as well as obtaining some non-keywords,
like ‘old’ and ‘another’, which illustrates that simple fusion strate-
gies easily introduce noise.

• SFSN can catch most of keywords compared with golds while
it does not touch any irrelevant semantics, which confirms that
SFSN is capable of effectively capturing noteworthy features.

Concatenation: hundreds firefighters died    cause   old another found 

Addition:  firefighters died forest     old another hide 

SFSN: hundreds firefighters died  upset cause power     

Golds: hundreds firefighters died forest upset cause power facilities    

Figure 3. The words captured by SFSN, concatenation, and addition at
word-level in posts.

4.4.3 Gated Adaptive Interaction Networks Evaluation

Table 5 provides the performance of each part of GAIN by the fol-
lowing simplified models: -All means that GAIN is replaced by
concatenation; -Conflicting implies that only refining gate works
in GAIN; -Refining means that the refining gate is removed; and
-Adaptive means that adaptive mechanism is replaced with concate-
nation.

From Table 5, we observe that:

• Ablating any parts of GAIN can reduce the performance of model,
underperforming AIFN from 0.44% to 2.65% degradation in ac-
curacy on RumourEval and PHEME, respectively. This confirms
the effectiveness of each part of GAIN;

• -Conflicting achieves the worst performance compared to the
models that only ablate one part, showing at least 1.29% degrada-
tion in accuracy on the two datasets, which explains that conflict-
ing semantics obtained by -Conflicting can more strongly improve
the performance of fake news detection.

4.4.4 Error Analysis

According to the results of Table 2, our model achieves unsatisfied
performance in recall compared with MTL-LSTM by -2.86% and -
2.67% on RumourEval and PHEME, respectively. Two reasons can
be explained for this issue: 1) MTL-LSTM builds multi-task learn-
ing, which can learn the relationship features between tasks. Our
model focuses on the interaction and interaction of multiple effec-
tive features under a single task fake news detection, lacking joint
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Table 5. Comparison among different parts of GAIN.

A(%) P(%) R(%) F1(%)

R
um

ou
rE

va
l -All 80.24 77.18 84.23 80.79

-Conflicting 81.04 77.26 85.48 81.16
-Refining 81.32 77.74 84.56 81.01
-Adaptive 82.45 78.03 85.89 81.77
AIFN 82.89 78.52 86.21 82.19

PH
E

M
E

-All 80.96 77.56 83.66 80.49
-Conflicting 81.16 77.91 84.21 80.94
-Refining 81.52 78.53 84.78 81.54
-Adaptive 81.89 78.87 84.95 81.80
AIFN 82.45 79.12 85.20 82.05

training of multiple tasks. 2) Stance features may have significant
advantages in recall rate, but have no obvious performance boosts
and even bring negative effects on other evaluation metrics. In order
to improve the performance of our model effectively and equitably,
we do not leverage stance features to interact with other credibility
indicators.

� It’s false. I only saw a few deaths in the

latest reports.

� Bad, I cried! Salute the firefighters.

� No, the cause was man-made.

� The forest fire is really frightening.

Comments:

Post: It's so sad!!!!!!!!!!!! Hundreds of firefighters 

died in forest fires. The bodies of firefighters were 

found one after another, and people could not hide 

their grief and upset. It is said the cause of the fire 

is old power facilities.

Comments:

Post: It's so sad!!!!!!!!!!!! Hundreds of firefighters 

died in forest fires. The bodies of firefighters were 

found one after another, and people could not hide 

their grief and upset. It is said the cause of the fire 

is old power facilities.

(a) Our model without integrating GAIN (b) Our model with integrating GAIN 

� It’s false. I only saw a few deaths in the 

latest reports.
� Bad, I cried! Salute the firefighters.

� No, the cause was man-made.

� The forest fire is really frightening.

Figure 4. The visualization of fusion interaction of AIFN.

4.5 Case Study

To express intuitively what features AIFN has learned from posts
and comments, we design two groups of experiments to visualize
the outputs of semantic-level fusion self-attention networks (SFSN).
The first group is SFSN integrating GAIN (our model with inte-
grating GAIN) and the second is that SFSN integrates the outputs
of concatenation which replaces GAIN (our model without integrat-
ing GAIN). Specifically, we firstly employ max-pooling operation to
pool the outputs of four self-attention networks and then map them
into the corresponding elements in the input layer respectively, and
finally obtain interesting patterns to visualize in Figure 4. We observe
that:

• From Figure 4 (a), our model without integrating GAIN not only
obtains some keywords, like ‘firefighters’ and ‘died’ but also high-
lights semantic associations between posts and comments, such as
‘died’ to ‘deaths’, ‘grief, upset’ to ‘cried’, and ‘firefighters’, which
gets benefit from SFSN screening and feature correlation.

• From Figure 4 (b), the model with GAIN captures similar se-
mantics between posts and comments, like ‘died’ and ‘cause’,
and also focuses on some conflicting words, like ‘hundred’, ‘old
power facilities’ in posts and ‘few’, ‘man-made’ in comments. It
reveals GAIN effectively finds conflicting semantics about fake
news from comments.

5 Conclusion

In this paper, we studied the problem of cross-interaction fusion in
fake news detection on social media and proposed adaptive interac-
tion fusion networks considering the extracted features from posts
and comments. Specifically, we discovered conflicting semantics be-
tween posts and comments by gated adaptive interaction networks
and developed semantic-level fusion self-attention networks to ex-
plore feature associations for capturing noteworthy features and fus-
ing deeply them. The experimental results based on two real-world
datasets demonstrated that our method significantly outperformed
previous state-of-the-art models. In the future, we will capture se-
mantic conflicts by considering the hierarchical interaction structure
of comments for fake news detection.
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