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Abstract. Dialogue response generation (DRG) is a critical com-
ponent of task-oriented dialogue systems (TDSs). Its purpose is to
generate proper natural language responses given some context, e.g.,
historical utterances, system states, etc. State-of-the-art work focuses
on how to better tackle DRG in an end-to-end way. Typically, such
studies assume that each token is drawn from a single distribution
over the output vocabulary, which may not always be optimal. Re-
sponses vary greatly with different intents, e.g., domains, system ac-
tions. We propose a novel mixture-of-generators network (MoGNet)
for DRG, where we assume that each token of a response is drawn
from a mixture of distributions. MoGNet consists of a chair genera-
tor and several expert generators. Each expert is specialized for DRG
w.r.t. a particular intent. The chair coordinates multiple experts and
combines the output they have generated to produce more appropri-
ate responses. We propose two strategies to help the chair make bet-
ter decisions, namely, a retrospective mixture-of-generators (RMoG)
and a prospective mixture-of-generators (PMoG). The former only
considers the historical expert-generated responses until the current
time step while the latter also considers possible expert-generated
responses in the future by encouraging exploration. In order to dif-
ferentiate experts, we also devise a global-and-local (GL) learning
scheme that forces each expert to be specialized towards a partic-
ular intent using a local loss and trains the chair and all experts to
coordinate using a global loss. We carry out extensive experiments
on the MultiWOZ benchmark dataset. MoGNet significantly outper-
forms state-of-the-art methods in terms of both automatic and human
evaluations, demonstrating its effectiveness for DRG.

1 INTRODUCTION

Task-oriented dialogue systems (TDSs) have sparked considerable
interest due to their broad applicability, e.g., for booking flight tick-
ets or scheduling meetings [32, 34]. Existing TDS methods can be
divided into two broad categories: pipeline multiple-module mod-
els [2, 5, 34] and end-to-end single-module models [11, 30]. The for-
mer decomposes the TDS task into sequentially dependent modules
that are addressed by separate models while the latter proposes to use
an end-to-end model to solve the entire task. In both categories, there
are many factors to consider in order to achieve good performance,
such as user intent understanding [31], dialogue state tracking [37],
and dialogue response generation (DRG). Given a dialogue context
(dialogue history, states, retrieved results from a knowledge base,
etc.), the purpose of DRG is to generate a proper natural language
response that leads to task-completion, i.e., successfully achieving
specific goals, and that is fluent, i.e., generating natural and fluent
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Figure 1: Density of the relative token frequency distribution for dif-
ferent intents (domains in the top plot, system actions in the bottom
plot). We use kernel density estimation2 to estimate the probability
density function of a random variable from a relative token frequency
distribution.

utterances.
Recently proposed DRG methods have achieved promising re-

sults (see, e.g., LaRLAttnGRU [36]). However, when generating a
response, all current models assume that each token is drawn from
a single distribution over the output vocabulary. This may be unrea-
sonable because responses vary greatly with different intents, where
intent may refer to domain, system action, or other criteria for par-
tioning responses, e.g., the source of dialogue context [24]. To sup-
port this claim, consider the training set of the Multi-domain Wizard-
of-Oz (MultiWOZ) benchmark dataset [4], where 67.4% of the dia-
logues span across multiple domains and all of the dialogues span
across multiple types of system actions. We plot the density of the
relative token frequency distributions in responses of different intents
over the output vocabulary in Fig. 1. Although there is some overlap
among distributions, there are also clear differences. For example,
when generating the token [entrance], it has a high probability of
being drawn from the distributions for the intent of booking an at-
traction, but not from booking a taxi. Thus, we hypothesize that a
response should be drawn from a mixture of distributions for multi-
ple intents rather than from a single distribution for a general intent.

We propose a mixture-of-generators network (MoGNet) for DRG,

2 https://pandas.pydata.org/pandas-docs/stable/
reference/api/pandas.DataFrame.plot.kde.html
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Figure 2: Overview of MoGNet. It illustrates how the model generates the token y3 given sequence X as an input in the process of generating
the whole sequence Y as a dialogue response.

which consists of a chair generator and several expert generators.
Each expert is specialized for a particular intent, e.g., one domain,
or one type of action of a system, etc. The chair coordinates multi-
ple experts and generates the final response by taking the utterances
generated by the experts into consideration. Compared with previ-
ous methods, the advantages of MoGNet are at least two-fold: First,
the specialization of different experts and the use of a chair for com-
bining the outputs breaks the bottleneck of a single model [10, 19].
Second, it is more easily traceable: we can analyze who is responsi-
ble when the model makes a mistake and generates an inappropriate
response.

We propose two strategies to help the chair make good decisions,
i.e., retrospective mixture-of-generators (RMoG) and prospective
mixture-of-generators (PMoG). RMoG only considers the retrospec-
tive utterances generated by the experts, i.e., the utterances generated
by all the experts prior to the current time step. However, a chair
without a long-range vision is likely to make sub-optimal decisions.
Consider, for example, these two responses: “what day will you be
traveling?” and “what day and time would you like to travel?” If
we only consider these responses until the 2nd token (which RMoG
does), then the chair might choose the first response due to the ab-
sence of a more long-range view of the important token “time” lo-
cated after the 2nd token. Hence, we also propose a PMoG, which
enables the chair to make full use of the prospective predictions of
experts as well.

To effectively train MoGNet, we devise a global-and-local (GL)
learning scheme. The local loss is defined on a segment of data with
a certain intent, which forces each expert to specialize. The global
loss is defined on all data, which forces the chair and all experts to
coordinate with each other. The global loss can also improve data
utilization by enabling the backpropagation error of each data sample
to influence all experts as well as the chair.

To verify the effectiveness of MoGNet, we carry out experiments
on the MultiWOZ benchmark dataset. MoGNet significantly outper-
forms state-of-the-art DRG methods, improving over the best per-
forming model on this dataset by 5.64% in terms of overall perfor-
mance (0.5*Inform+0.5*Success+BLEU) and 0.97% in terms of re-
sponse generation quality (Perplexity).

The main contributions of this paper are:

• a novel MoGNet model that is the first framework that devises
chair and expert generators for DRG, to the best of our knowledge;

• two novel coordination mechanisms, i.e., RMoG and PMoG, to
help the chair make better decisions; and

• a GL learning scheme to differentiate experts and fuse data effi-
ciently.

2 MIXTURE-OF-GENERATORS NETWORK

We focus on task-oriented DRG (a.k.a. the context-to-text generation
task [4]). Formally, given a current dialogue context X = (U,B,D),
where U is a combination of previous utterances, B are the belief
states, and D are the retrieved database results based on B, the goal
of task-oriented DRG is to generate a fluent natural language re-
sponse Y = (y1, . . . , yn) that contains appropriate system actions
to help users accomplish their task goals, e.g., booking a flight ticket.
We propose MoGNet to model the generation probability P (Y | X).

2.1 Overview

The MoGNet framework consists of two types of roles:
• k expert generators, each of which is specialized for a particu-

lar intent, e.g., a domain, a type of action of a system, etc. Let
D = {(Xp, Yp)}|D|

p=1 denote a dataset with |D| independent sam-
ples of (X,Y ). Expert-related intents partition D into k pieces
S = {Sl}kl=1, where Sl � {(Xl

p, Y
l
p )}|Sl|

p=1. Then Sl is used to
train each expert by predicting P l(Y l | Xl). We expect the l-th
expert to perform better than the others on Sl.

• a chair generator, which learns to coordinate a group of experts
to make an optimal decision. The chair is trained to predict P (Y |
X), where (X,Y ) is a sample from D.

Fig. 2 shows our implementation of MoGNet; it consists of three
types of components, i.e., a shared context encoder, k expert de-
coders, and a chair decoder.

2.2 Shared context encoder

The role of the shared context encoder is to read the dialogue con-
text X and construct a representation. We follow Budzianowski et al.
[3] and model the current dialogue context as a combination of user
utterances U , belief states B, and retrieval results from a database D.

First, we employ a Recurrent Neural Network (RNN) [7] to map
a sequence of input tokens U = {w1, . . . , wm} to hidden vectors
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HU = {hU
1 , . . . ,h

U
m}. The hidden vector hi at the i-th step can be

represented as:

hU
i , si = RNN(wi,h

U
i−1, si−1), (1)

where wi is the embedding of the token wi. The initial state s0 of
the RNN is set to 0.

Then, we represent the current dialogue context x as a combina-
tion of the user utterance representation hU

m, the belief state vector
hB , and the database vector hD:

x = tanh(Wuh
U
m +Wbh

B +Wdh
D), (2)

where hU
m is the final hidden state from Eq. 1; hB is a 0-1 vector

with each dimension representing a state (slot-value pair); hD is also
a 0-1 vector, which is built by querying the database with the current
state B. Each dimension of hD represents a particular result from the
database (e.g., whether a flight ticket is available).

2.3 Expert decoder

Given the current dialogue context X and the current decoded tokens
Y0:j−1, the l-th expert outputs the probability P l(yl

j | Y0:j−1, X)
over the vocabulary V at the j-th step by:

P l(yl
j | Y0:j−1, X) = softmax(UTol

j + b)

ol
j , s

l
j = RNN(yj−1 ⊕ clj ,o

l
j−1, s

l
j−1),

(3)

where U is the parameter matrix and b is bias; slj is the state vector,
which is initialized by the dialogue context vector from the shared
context encoder, i.e., sl0 = x; yj−1 is the embedding of the gener-
ated token at time step j − 1; ⊕ is the concatenation operation; clj
is the context vector which is calculated with a concatenation atten-
tion mechanism [1, 18] over the hidden representations from a shared
context encoder as follows:

clj =
m∑

i=1

αl
jihi

αl
ji =

exp(wl
ji)∑m

i=1 exp(w
l
ji)

wl
ji = vT

l tanh (WT
l (hi ⊕ slj−1) + bl),

(4)

where α is a set of attention weights; ⊕ is the concatenation opera-
tion. Wl, bl, vl are learnable parameters, which are not shared by
different experts in our experiments.

2.4 Chair decoder

Given the current dialogue context X and the current decoded tokens
Y0:j−1, the chair decoder estimates the final token prediction distri-
bution P (yj | Y0:j−1, X) by combining the prediction probabilities
from k experts. Here, we consider two strategies to leverage the pre-
diction probabilities from experts, i.e., RMoG and PMoG. The for-
mer only considers expert generator outputs from history (until the
(j − 1)-th time step), which follows the typical neural Mixture-of-
Experts (MoE) architecture [25, 27]. We propose the latter to make
the chair generator envision the future (i.e., after the (j − 1)-th
time step) by exploring expert generator outputs from t extra steps
(t ∈ [1, n− j], t ∈ N).

Specifically, the chair determines the prediction P (yj |
Y0:j−1, X) as follows:

P (yj | Y0:j−1, X) = βC
j · P (ycj | Y0:j−1, X)

+
k∑

l=1

(βl,R
j + βl,P

j ) · P (ylj | Y l
:j−1, X),

(5)

where P (yc
j | Y0:j−1, X) is the prediction probability from the chair

itself; P (yl
j | Y0:j−1, X) is the prediction probability from expert

l; βj = [βC
j , βl,R

j , βl,P
j ] are normalized coordination coefficients,

which are calculated as:

βj =
exp(vThj)∑k
l=1 exp(v

Thl)

hj = MLP([P (ycj | Y0:j−1, X),hR
j ,h

P
j ]).

(6)

βC
j , βl,R

j and βl,P
j are estimated w.r.t. P (ycj | Y0:j−1, X), hR

j and
hP
j , respectively. hR

j is a list of retrospective decoding outputs from
all experts, which is defined as follows:

hR
j = P (y11:j−1 | y0, X)⊕ · · · ⊕ P (yl

1:j−1 | y0, X)

⊕ P (yk
1:j−1 | y0, X),

(7)

where y0 is a special token “[BOS]” indicating the start of decoding;
P (yl1:j−1 | y0, X) is the output of expert l from the 1-st to the (j −
1)-th step using Eq. 3; hP

j is a list of prospective decoding outputs
from all experts, which is defined as follows:

hP
j = P (y1j:j+t | Y0:j−1, X)⊕ · · ·

⊕ P (ylj:j+t | Y0:j−1, X)

⊕ P (ykj:j+t | Y0:j−1, X),

(8)

where P (ylj:j+t | Y0:j−1, X) are the outputs of expert l from the
j-th to (j + t)-th step. We obtain P (yl

j:j+t | X) by forcing expert l
to generate t steps using Eq. 3 based on the current generated tokens
Y0:j−1.

2.5 Learning scheme

We devise a global-and-local learning scheme to train MoGNet. Each
expert l is optimized by a localized expert loss defined on Sl, which
forces each expert to specialize on one of the portions of data Sl. We
use cross-entropy loss for each expert and the joint loss for all experts
is as follows:

Lexperts =
k∑

l=1

∑

(Xl
p,Y

l
p)∈Sl

n∑

j=1

μly
l
j logP (ylj | Y l

0:j−1, X), (9)

where P (ylj | Y l
0:j−1, X) is the token prediction by expert l (Eq. 3)

computed on the r-th data sample; yl
j is a one-hot vector indicating

the ground truth token at j.
We also design a global chair loss to differentiate the losses in-

curred from different experts. The chair can attribute the source of
errors to the expert in charge. For each data sample in D, we calcu-
late the combined taken prediction P (yj | Y0:j−1, X) (Eq. 5). Then
the global loss becomes:

Lchair =

|D|∑

r=1

n∑

j=1

yj logP (yj | Y0:j−1, X). (10)

Our overall optimization follows the joint learning paradigm that is
defined as a weighted combination of constituent losses:

L = λ · Lexperts + (1− λ) · Lchair , (11)

where λ is a hyper-parameter to regulate the importance between the
experts and the chair for optimizing the loss.
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3 EXPERIMENTAL SETUP

3.1 Research questions

We seek to answer the following research questions: (RQ1) Does
MoGNet outperform state-of-the-art end-to-end single-module DRG
models? (RQ2) How does the choice of a particular coordination
mechanism (i.e., RMoG, PMoG, or neither of the two) affect the per-
formance of MoGNet? (RQ3) How does the GL learning scheme
compare to using the general global learning as a learning scheme?

3.2 Dataset

Our experiments are conducted on the MultiWOZ [4] dataset. This is
the latest large-scale human-to-human TDS dataset with rich seman-
tic labels, e.g., domains and dialogue actions, and benchmark results
of response generation.3 MultiWOZ consists of ∼10k natural conver-
sations between a tourist and a clerk. It has 6 specific action-related
domains, i.e., Attraction, Hotel, Restaurant, Taxi, Train, and Book-
ing, and 1 universal domain, i.e., General. 67.4% of the dialogues
are cross-domain which covers 2–5 domains on average. The average
number of turns per dialogue is 13.68; a turn contains 13.18 tokens
on average. The dataset is randomly split into into 8,438/1,000/1,000
dialogues for training, validation, and testing, respectively.

3.3 Model variants and baselines

We consider a number of variants of the proposed mixture-of-
generators model:
• MoGNet: the proposed model with RMoG and PMoG and GL

learning scheme.
• MoGNet-P: the model without prospection ability by removing

PMoG coordination mechanism from MoGNet.
• MoGNet-P-R: the model removing the two coordination mecha-

nisms and remaining GL learning scheme.
• MoGNet-GL: the model that removes GL learning scheme from

MoGNet.
See Table 1 for a summary. Without further indications, the intents
used are based on identifying eight different domains: Attraction,
Booking, Hotel, Restaurant, Taxi, Train, General, and UNK.

Table 1: Model variants.

βC
j βl,R

j βl,P
j λ

MoGNet True True True 0.5
MoGNet-P True True False 0.5
MoGNet-P-R True False False 0.5
MoGNet-GL True True True 0.0

βC
j , βl,R

j , βl,P
j are from Eq. 5. “True” means we preserve it and learn it as

it is. “False” means we remove it (set it to 0). λ is from Eq. 11 and we report
two settings, 0.0 and 0.5. See § 5.2.

To answer RQ1, we compare MoGNet with the following methods
that have reported results on this task according to the official leader-
board.4

• S2SAttnLSTM. We follow the dominant Sequence-to-Sequence
(Seq2Seq) model under an encoder-decoder architecture [5] and
reproduce the benchmark baseline, i.e., single-module model
named S2SAttnLSTM [3, 4], based on the source code provided
by the authors. See footnote 4.

• S2SAttnGRU. A variant of S2SAttnLSTM, with Gated Recurrent
Units (GRUs) instead of LSTMs and other settings kept the same.

3 http://dialogue.mi.eng.cam.ac.uk/index.php/corpus/
4 The Context-to-Text Generation task at https://github.com/
budzianowski/multiwoz.

• Structured Fusion. It learns the traditional dialogue modules and
then incorporates these pre-trained sequentially dependent mod-
ules into end-to-end dialogue models by structured fusion net-
works [20].

• LaRLAttnGRU. The state-of-the-art model [36], which uses re-
inforcement learning and models system actions as latent vari-
ables. LaRLAttnGRU uses ground truth system action annotations
and user goals to estimate the rewards for reinforcement learning
during training.

3.4 Evaluation metrics

We use the following commonly used evaluation metrics [4, 36]:
• Inform: the fraction of responses that provide a correct entity out

of all responses.
• Success: the fraction of responses that answer all the requested

attributes out of all responses.
• BLEU: for comparing the overlap between a generated response

to one or more reference responses.
• Score: defined as Score = (0.5∗Inform+0.5∗Success+BLEU)∗

100. This measures the overall performance in term of both task
completion and response fluency [20].

• PPL: denotes the perplexity of the generated responses, which is
defined as the exponentiation of the entropy. This measures how
well a probability DRG model predicts a token in a response gen-
eration process.

We use the toolkit released by Budzianowski et al. [3] to compute the
metrics.5 Following their settings, we also use Score as the selection
criterion to choose the best model on the validation set and report the
performance of the model on the test set. We use a paired t-test to
measure statistical significance (p < 0.01) of relative improvements.

3.5 Implementation details

Theoretically, the training time complexity of each data sample is
O(n ∗ (k + 1) ∗ n), where n is the number of response tokens. To
reduce the computation cost, we assign j + t = n and compute the
expert prediction with Eq. 3. This means that the chair will make
a final decision only after all the experts have decoded their final
tokens. Thus, the time complexity decreases to O(n ∗ (k + 1) + n).

For a fair comparison, the vocabulary size is the same as
Budzianowski et al. [4], which has 400 tokens. Out-of-vocabulary
words are replaced with “[UNK]”. We set the word embedding size
to 50 and all GRU hidden state sizes to 150. We use Adam [13] as our
optimization algorithm with hyperparameters α = 0.005, β1 = 0.9,
β2 = 0.999 and ε = 10−8. We also apply gradient clipping [22]
with range [–5, 5] during training. We use l2 regularization to allevi-
ate overfitting, the weight of which is set to 10−5. We set the mini-
batch size to 64. We use greedy search to generate the responses dur-
ing testing. Please note that if a data point has multiple intents, then
we assign it to each corresponding expert, respectively. The code is
available online.6

4 RESULTS

4.1 Automatic evaluation

We evaluate the overall performance of MoGNet and the compara-
ble baselines on the metrics defined in §3.4. The results are shown
in Table 2. First of all, MoGNet outperforms all baselines by a
large margin in terms of overall performance metric, i.e., satisfac-
tion Score. It significantly outperforms the state-of-the-art baseline
LaRLAttnGRU by 5.64% (Score) and 0.97 (PPL). Thus, MoGNet

5 https://github.com/budzianowski/multiwoz.
6 https://github.com/Jiahuan-Pei/multiwoz-mdrg
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Table 2: Comparison results of MoGNet and the baselines.
BLEU Inform Success Score PPL

S2SAttnLSTM 18.90% 71.33% 60.96% 85.05 3.98

S2SAttnGRU 18.21% 81.50% 68.80% 93.36 4.12
Structured Fusion [20] 16.34% 82.70% 72.10% 93.74 –
LaRLAttnGRU [36] 12.80% 82.78% 79.20% 93.79 5.22

MoGNet 20.13%∗ 85.30%∗ 73.30% 99.43∗ 4.25
Bold face indicates leading results. Significant improvements over the best
baseline are marked with ∗ (paired t-test, p < 0.01).

not only improves the satisfaction of responses but also improves
the quality of the language modeling process. MoGNet also achieves
more than 6.70% overall improvement over the benchmark baseline
S2SAttnLSTM and its variant S2SAttnGRU. This proves the effec-
tiveness of the proposed MoGNet model.

Second, LaRLAttnGRU achieves the highest performance in terms
of Success, followed by MoGNet. However, it results in a 7.33%
decrease in BLEU and a 2.56% decrease in Inform compared to
MoGNet. Hence, LaRLAttnGRU is good at answering all requested
attributes but not as good at providing more appropriate entities with
high fluency as MoGNet. LaRLAttnGRU tends to generate more
slot values to increase the probability of answering the requested at-
tributes. Take an extreme case as an example: if we force a model to
generate all tokens with slot values, then it will achieve an extremely
high Success but a low BLEU.

Third, S2SAttnLSTM is the worst model in terms of overall per-
formance (Score). But it achieves the best PPL. It tends to gener-
ate frequent tokens from the vocabulary which exhibits better lan-
guage modeling characteristics. However, it fails to provide useful
information (the requested attributes) to meet the user goals. By con-
trast, MoGNet improves the user satisfaction (i.e., Score) greatly and
achieves response fluency by taking specialized generations from all
experts into account.

4.2 Human evaluation

To further understand the results in Table 2, we conducted a hu-
man evaluation of the generated responses from S2SAttnGRU,
LaRLAttnGRU, and MoGNet. We ask workers on Amazon Mechan-
ical Turk (AMT)7 to read the dialogue context, and choose the re-
sponses that satisfy the following criteria: (i) Informativeness mea-
sures whether the response provides appropriate information that is
requested by the user query. No extra inappropriate information is
provided. (ii) Consistency measures whether the generated response
is semantically aligned with the ground truth response. (iii) Satisfac-
tory measures whether the response has a overall satisfactory per-
formance promising both Informativeness and Consistency. As with
existing studies [20], we sample one hundred context-response pairs
to do human evaluation. Each sample is labeled by three workers.
The workers are asked to choose either all responses that satisfy the
specific criteria or the “NONE” option, which denotes none of the
responses satisfy the criteria. To make sure that the annotations are
of high quality, we calculate the fraction of the responses that satisfy
each criterion out of all responses that passes the golden test. That
is, we only consider the data from the workers who have chosen the
golden response as an answer.

The results are displayed in Table 3. MoGNet performs better than
S2SAttnGRU and LaRLAttnGRU on Informativeness because it fre-
quently outputs responses that provide richer information (compared
with S2SAttnGRU) and fewer extra inappropriate information (com-
pared with LaRLAttnGRU). MoGNet obtains the best results, which

7 https://www.mturk.com/

Table 3: Results of human evaluation.
S2SAttnGRU LaRLAttnGRU MoGNet

� 1 � 2 � 1 � 2 � 1 � 2

Informativeness 56.79% 31.03% 76.54% 44.83% 80.25% 53.45%
Consistency 45.21% 23.53% 71.23% 39.22% 80.82% 50.98%

Satisfactory 26.79% 25.00% 44.64% 21.88% 60.71% 37.50%

Bold face indicates the best results. � n means that at least n AMT workers
regard it as a good response w.r.t. Informativeness, Consistency and Satisfac-
tory.

means MoGNet is able to generate responses that are semantically
similar to the golden responses with large overlaps. The results of
LaRLAttnGRU outperforms S2SAttnGRU in all cases except for Sat-
isfactory under the strict condition (� 2). This reveals that balancing
between Informativeness and Consistency makes it difficult for the
mturk workers to assess the overall quality measured by Satisfactory.
In this case, MoGNet receives the most votes on Satisfactory under
the strict condition (� 2) as well as the loose condition (� 1). This
shows that the workers consider the responses from MoGNet more
appropriate than the other two models with a high degree of agree-
ment. To sum up, MoGNet is able to generate user-favored responses
in addition to the improvements for automatic metrics.

4.3 Coordination mechanisms

In Table 4 we contrast the effectiveness of different coordination
mechanisms. We can see that MoGNet-P loses 4.32% overall per-
formance with a 0.62% decrease of BLEU, 5.90% decrease of In-
form and 1.50% decrease of Success. This shows that the prospection
design of the PMoG mechanism is beneficial to both task comple-
tion and response fluency. Especially, most improvements come from
providing more correct entities while improving generation fluency.
MoGNet-P-R reduces 2.62% Score with 1.97% lower of BLEU, 0.2%
lower of Inform and 1.10% of Success. Thus, the MoGNet framework
is effective thanks to its design with two types of roles: the chair and
the experts.

Table 4: The impact of coordination mechanisms.
BLEU Inform Success Score PPL

MoGNet 20.13% 85.30% 73.30% 99.43 4.25

MoGNet-P 19.51% 79.40% 71.80% 95.11 4.19
MoGNet-P-R 18.16% 85.10% 72.20% 96.81 4.12
Underlined results indicate the worst results with a statistically significant de-
crease compared to MoGNet (paired t-test, p < 0.01).

4.4 Learning scheme

We use MoGNet-GL to refer to the model that removes the GL learn-
ing scheme from MoGNet and uses the general global learning in-
stead. MoGNet-GL results in a sharp reduction of 6.95% overall per-
formance with 0.80% of BLEU, 6.90% of Inform and 5.40% of Suc-
cess. The main improvement is attributed to the strong task comple-
tion ability. This shows the effectiveness and importance of the GL
learning scheme as it encourages each expert to specialize on a par-
ticular intent while the chair prompts all experts to coordinate with
each other.

5 ANALYSIS

In this section, we explore MoGNet in more detail. In particular, we
examine (i) whether the intent partition affects the performance of
MoGNet (§5.1); (ii) whether the improvements of MoGNet could
simply be attributed to having a larger number of parameters (§5.2);
(iii) how the hyper-parameter λ (Eq. 11) affects the performance of
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Table 5: Impact of the learning scheme.
BLEU Inform Success Score PPL

MoGNet 20.13% 85.30% 73.30% 99.43 4.25
MoGNet-GL 19.33% 78.40% 67.90% 92.48 3.97

Underlined results indicate the worst results with a statistically significant de-
crease compared with MoGNet (paired t-test, p < 0.01).

MoGNet (§5.2); and (iv) how RMoG, PMoG and GL influence DRG
using a small case study (§5.3).

5.1 Intent partition analysis

As stated above, the responses vary a lot for different intents which
are differentiated by the domain and the type of system action. There-
fore, we experiment with two types of intents as shown in Table 6.

Table 6: Two groups of intents that are divided by domains and the
type of system actions.
Type Intents

Domain Attraction, Booking, Hotel, Restaurant, Taxi, Train, General, UNK.

Action Book, Inform, NoBook, NoOffer, OfferBook, OfferBooked, Select,
Recommend, Request, Bye, Greet, Reqmore, Welcome, UNK.

To address (i), we compared two ways of partitioning intents.
MoGNet-domain and MoGNet-action denote the intent partitions
w.r.t. domains and system actions, respectively. MoGNet-domain has
8 intents (domains) and MoGNet-action has 14 intents (actions), as
shown in Table 6. The results are shown in Table 7.

Table 7: Results of MoGNet with two intent partition ways.
BLEU Inform Success Score PPL

MoGNet-domain 20.13% 85.30% 73.30% 99.43 4.25

MoGNet-action 17.28% 79.40% 69.70% 91.83 4.48

MoGNet consistently outperforms the baseline S2SAttnGRU for
both ways of partitioning intents. Interestingly, MoGNet-domain
greatly outperforms MoGNet-action. We believe there are two rea-
sons: First, the system actions are not suitable for grouping intents
because some partition subsets are hard to be distinguished from
each other, e.g., OfferBook and OfferBooked. Second, some system
actions only have a few data samples, simply not enough to special-
ize the experts. The results show that different ways of partitioning
intents may greatly affect the performance of MoGNet. Therefore,
more effective intent partition methods, e.g., adaptive implicit intent
partitions, need to be explored in future work.

5.2 Hyper-parameter analysis

To address (ii), we show the results of MoGNet and S2SAttnGRU
with different hidden sizes in Fig. 3. S2SAttnGRU outperforms
MoGNet when the number of parameters is less than 0.6e7. However,
MoGNet achieves much better results with more parameters. Most
importantly, the results from both models show that a larger number
of parameters does not always mean better performance, which in-
dicates that the improvement of MoGNet is not simply due to more
parameters.

To address (iii), we report the Score values of MoGNet with differ-
ent values of λ (Eq. 11), as shown in Fig. 4. When λ = 0, no expert
is trained on a particular intent. When λ = 1, the model ignores the
global loss, i.e., the RMoG and PMoG mechanisms are not used and
the chair is only trained as a general expert. We can see that these
two settings decrease the performance greatly which further verifies

Figure 3: Score of MoGNet and S2SAttnGRU with different number
of parameters.

Figure 4: Score of MoGNet with different values of λ.

the effectiveness of RMoG and PMoG as well as the MoGNet frame-
work. We also note that the performance of MoGNet is quite stable
when λ ∈ [0.1, 0.7] with the best performance for λ = 0.7. Hence,
MoGNet is not very sensitive to the hyper-parameter λ.

5.3 Case study
To address (iv), we select an example to illustrate the influence
of RMoG, PMoG, and GL. Table 8 exhibits the responses gener-
ated by comparable baselines (i.e., S2SAttnGRU, LaRLAttnGRU)
and MoGNet variants as in Table 4. In red we highlight the to-
kens that show the differences in terms of task completion. Gen-
erally, MoGNet can generate more appropriate and meaningful re-
sponses. Specifically, without PMoG, MoGNet-P and MoGNet-P-R
ignore the fact that the attribute time is important for searching a train
ticket (1st turn) and omit the exact departure time ([value time]) of
the train (2nd turn). Without GL, MoGNet-GL ignores the primary
time information need day (1st turn) and omits the implicit need
of [value price] (4th turn). There are also some low-quality cases,
e.g., MoGNet and the baselines occasionally generate redundant and
lengthy responses, because none of them has addressed this issue ex-
plicitly during training.

6 RELATED WORK

Traditional models for DRG [8, 33] decompose the task into sequen-
tially dependent modules, e.g., Dialogue State Tracking (DST) [37],
Policy Learning (PL) [35], and Natural Language Generation
(NLG) [21]. Such models allow for targeted failure analyses, but
inevitably incur upstream propagation problems [5]. Recent work
views DRG as a source-to-target transduction problem, which maps
a dialogue context to a response [11, 17, 31]. Sordoni et al. [28]
show that using an RNN to generate text conditioned on dialogue
history results in more natural conversations. Later improvements in-
clude the addition of attention mechanisms [16, 29], modeling the
hierarchical structure of dialogues [26], or jointly learning belief
spans [15]. Strengths of these methods include global optimization
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Table 8: Example responses from MoGNet with the ablation settings in a 4-turn dialogue.
Turn User System

1
i am looking for a train departing
from [value place] that will arrive
at [value place].

S2SAttnGRU: what day would you like to travel ?
LaRLAttnGRU: there are [value count] trains leaving [value place] on [value day] . what
day would you like to travel ?

MoGNet: what day and time would you like to travel?
MoGNet-P: what day will you be traveling?
MoGNet-P-R: what day will you be traveling?
MoGNet-GL: there are [value count] trains ... do you have a time you would like to depart?

2 i would like to leave on [value day]
and arrive no later than [value time].

S2SAttnGRU: [train id] will arrive at [value time] .
LaRLAttnGRU: i have train [train id] leaving at [value time] and arriving at [value time] .
would you like me to book this for you ?

MoGNet: [train id] leaves at [value time] and arrives by [value time] .
MoGNet-P: [train id] will arrive at [value time].
MoGNet-P-R: the [train id] arrives at [value time].
MoGNet-GL: i have train [train id] that leaves at [value time] and arrives at [value time].
+All: would you like me to book that for you?

3 can i please have the reference number? All: ... how many tickets do you need?

4
could you book [value count] tickets
for me and send me the reference
number?

S2SAttnGRU: i have booked you [value count] tickets on the [train id] . your reference
number is [train reference]. is there anything else i can help you with ?
LaRLAttnGRU: i have booked [value count] tickets on [train id] . the reference number is
[train reference] .

MoGNet: i have booked [value count] tickets for you. the total fee is [value price] gbp
payable at the station. your reference number is [train reference]. is there anything else
i can help you with ?
MoGNet-P: i have booked [value count] tickets. the total fee is [value price] gbp payable
at the station. your reference number is [train reference].
MoGNet-P-R: booking was successful , the total fee is [value price] gbp payable at the
station. reference number is [train reference].
MoGNet-GL: i have booked [value count] tickets for you. the reference number is
[train reference]. is there anything else i can help you with ?

and easier adaptation to new domains [5].
The studies listed above assume that each token of a response is

sampled from a single distribution, given a complex dialogue con-
text. In contrast, MoGNet uses multiple cooperating modules, which
exploits the specialization capabilities of different experts and the
generalization capability of a chair. Work most closely related to ours
in terms of modeling multiple experts includes [6, 12, 14, 23]. Le
et al. [14] integrate a chat model with a question answering model us-
ing an LSTM-based mixture-of-experts method. Their model is sim-
ilar to MoGNet-GL-P (without PMoG and GL) except that they sim-
ply use two implicit expert generators that are not specialized on par-
ticular intents. Guo et al. [12] introduce a mixture-of-experts to use
the data relationship between multiple domains for binary classifica-
tion and sequence tagging. Sequence tagging generates a set of fixed
labels; DRG generates diverse appropriate response sequence. The
differences between MoGNet and these two approaches are three-
fold: First, MoGNet consists of a group of modules including a
chair generator and several expert generators; this design addresses
the module interdependence problem since each module is indepen-
dent from the others. Second, the chair generator alleviates the error
propagation problem because it is able to manage the overall errors
through an effective learning scheme. Third, the models of those two
approaches cannot be directly applied to task-oriented DRG. The re-
cently published HDSA [6] slightly outperforms MoGNet on Score
(+0.07), but it overly relies on BERT [9] and graph structured di-
alog acts. MoGNet follow the same modular TDS framework [23],
but it preforms substantially better due to fitting the expert genera-
tors with both retrospection and prospection abilities and adopting

the GL learning scheme to conduct more effective learning.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel mixture-of-generators network
(MoGNet) model with different coordination mechanisms, namdely,
RMoG and PMoG, to enhance dialogue response generation. We also
devise a GL learning scheme to effectively learn MoGNet. Experi-
ments on the MultiWOZ benchmark demonstrate that MoGNet sig-
nificantly outperforms state-of-the-art methods in terms of both auto-
matic and human evaluations. We also conduct analyses that confirm
the effectiveness of MoGNet, the RMoG and PMoG mechanisms, as
well as the GL learning scheme.

As to future work, we plan to devise more fine-grained expert
generators and to experiment on more datasets to test MoGNet. In
addition, MoGNet can be advanced in many directions: First, better
mechanisms can be proposed to improve the coordination between
chair and expert generators. Second, it would be interesting to study
how to do intent partition automatically. Third, it is also important to
investigate how to avoid redundant and lengthy responses in order to
provide a better user experience.
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hona, P.-H. Su, S. Ultes, and S. Young. A network-based end-
to-end trainable task-oriented dialogue system. In EACL, pages
438–449, 2017.

[31] T.-H. Wen, D. Vandyke, N. Mrkšić, M. Gasic, L. M. R. Bara-
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