
Unsupervised Learning of Interpretable Dialog Models

Dhiraj Madan 1 and Dinesh Raghu 2 and Gaurav Pandey 3 and Sachindra Joshi 4

Abstract. Recently several deep learning based models have been
proposed for end-to-end learning of dialogs. While these models can
be trained from data without the need for any additional annotations,
it is hard to interpret them. On the other hand, there exist traditional
state based dialog systems, where the states of the dialog are discrete
and hence easy to interpret. However these states need to be hand-
crafted and annotated in the data. To achieve the best of both worlds,
we propose Latent State Tracking Network (LSTN) using which we
learn an interpretable model in unsupervised manner. The model de-
fines a discrete latent variable at each turn of the conversation which
can take a finite set of values. These variables correspond to the state
of the dialog after each turn. Since the conversations are not labelled
with the dialog states, we use EM algorithm to train our model in un-
supervised manner. In the experiments, we show that LSTN can help
achieve inter- pretability in dialog models with performance compa-
rable to end-to-end approaches. This interpretability allows us to edit
the model and improve the same.

1 Introduction

Recently, there have been several approaches [13, 4, 9, 5, 10] pro-
posed for end-to-end learning of dialogs. Most of these approaches
have an encoder-decoder architecture. The encoder understands the
conversation so far by encoding it as a context vector, while the de-
coder generates the response based on the context vector. As the con-
text vector is in continuous space, it is hard to interpret what the sys-
tem has understood. Moreover, it is hard to interpret why a particular
response was generated. More importantly, the model provides no
means to control the type of responses the system can generate. In
spite of being a black box, these approaches have gained popularity
as they can easily adapt to new domain and do not require additional
annotations on data.

On the other end of the spectrum are the traditional dialog systems.
They cannot easily adapt to new domains as they require additional
annotations on the data. However, they are interpretable and provide
complete control over the system by restricting their state space to
come from a discrete set. Here they have a set of belief states which
represent what the system has understood so far. They also have a
set of action states which represent the set of possible responses. At
each turn of the conversation, the belief state is updated based on the
user input and the previous belief state. The belief state is mapped
to the action state, based on which a response is generated. These
state-based dialog systems are usually designed as Markov decision
processes or partially observable Markov decision processes. Unfor-
tunately, human-intervention is necessary to define these states and

1 IBM Research AI, email : dmadan07@in.ibm.com
2 IBM Research AI, email : diraghu1@in.ibm.com
3 IBM Research AI, email : gpandey1@in.ibm.com
4 IBM Research AI, email : jsachind@in.ibm.com

annotate each dialog in the data that makes it hard to scale to new
domains.

Recently, there has been a push towards reducing the amount of
human intervention in state-based dialog systems [16] without com-
promising on interpretability. [16] proposed a deep learning based
approach that learns the action space of a state-based dialog system
in an unsupervised manner. However, the approach still requires the
belief state to be hand-crafted and annotated for each turn in a dia-
log. There are also some efforts [18] for making end-to-end dialog
systems more interpretable. Zhao et al. proposed a modification to
end-to-end models where in they augment the context vector with a
discrete valued vector resulting in interpretable responses. However,
since the states are still in the continuous space, it is challenging
to deduce the sequence of reasoning that led to a certain response,
thereby making the transitions uninterpretable. Thus we see that the
two strands of works are steadily moving towards the common goal
of building a fully interpretable dialog model without the need for
human intervention.

In this paper, we propose an approach for unsupervised learn-
ing of fully interpretable dialog models. We propose a Latent State
Tracking Network (LSTN) to learn internal discrete states in an unsu-
pervised manner. The network encodes the conversation-so-far into
a discrete latent state using a transition model, while the emission
model generates a response based on the encoded state. Since the pro-
posed model is unsupervised, the discrete states are not available dur-
ing training. Hence we propose an expectation-maximization (EM)
based solution for jointly learning the states as well as the transition
and emission models. Once the model has been trained, we can in-
fer the state associated with a new user utterance using the transition
model. Furthermore, we can generate the response that corresponds
to the state using the emission model. The approach also allows us to
construct a dialog flow which is a finite state automata with edges la-
belled with user utterances and states labelled with agent responses.
This dialog flow can then be directly used to create bots using frame-
works such as Google Dialog Flow 5, IBM Watson Assistant 6 and
Microsoft Bot Framework7. One can traverse the dialog flow to gen-
erate novel conversations and edit the edges and vertices to further
improve the dialog flow for conversation modelling.

To summarize, we make the following contributions: (1) We pro-
pose a novel Latent State Tracking Network (LSTN) for learning in-
terpretable dialog models from conversations without any supervi-
sion. (2) We propose an EM-algorithm for jointly learning the latent
states as well as the transition and emission modules in an LSTN.
(3) We also show that in this process of discretization we do not lose
much over the state-of-the-art, deep learning models for dialog, but
gain in terms of having an interpretable model which can be easily

5 https://dialogflow.com/
6 https://www.ibm.com/cloud/watson-assistant/
7 https://dev.botframework.com/

ECAI 2020
G.D. Giacomo et al. (Eds.)
© 2020 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/FAIA200333

2101

modified using domain knowledge. In our experiments we show that
editing the model leads to an improved performance as judged by
human evaluation scores.

2 Latent State Tracking Network

Let a dialogue D = {(x1, y1), . . . , (xN , yN)} be represented as a
sequence of utterances where xi and yi are the user utterance and
agent response at the ith turn. Given a set of such dialogues, we wish
to learn a interpretable dialog model M which encodes the conver-
sation so far using a discrete state variable and then samples a value
from the state variable to generate an agent response yi.

The state variable zi ∈ {1, ..,K} at any turn i, is computed us-
ing the user utterance xi at turn i, along with the previous turn’s
state variable zi−1. We model this dependency using the transition
distribution p(zi|zi−1, xi). The agent response yi is then generated
based on the state variable zi. The relation between the response and
the discrete state variable is modeled using an emission distribution
p(yi|zi). An illustration of the flow of dialog using our latent state
tracking network is shown in Figure 1.

A graphical model representation of LSTN is given in Figure 2.
The joint distribution of the agent responses y = (y1, . . . , yN) and
the belief states z = (z1, . . . , zN) given the user utterances x =
(x1, . . . , xN) for a given conversation can be written as:

p(z,y|x) =
N∏
i=1

p(zi|zi−1, xi)p(yi|zi) (1)

Note that there are two key distributions in this model:

1. The transition distribution which models the probability of mov-
ing to a new state zi given the previous state zi−1 and current user
utterance xi.

2. The emission distribution which models the probability of gener-
ating response yi given the current state zi.

In order to completely define the model, we need to explain the
computation of the above distributions from the utterances in a con-
versation.

2.1 The Transition Distribution:

Here, we need to model the probability of observing a new state zi
given the previous state zi−1 and the user utterance xi. We use an
LSTM network to embed the user utterance to a hidden state repre-
sentation h(xi). For modeling the transition distribution, the states
{1, . . . ,K} are represented using continuous vectors {v1, . . . , vK}.
Hence, for the state zi−1, we fetch the corresponding vector rep-
resentation vzi−1 . This vector is then concatenated with the hidden
state representation of the utterance and then fed to a classifier with
softmax outputs. The classifier outputs a probability distribution over
the next states. Hence, the probability of the next state zi given the
previous state zi−1 and the user utterance xi is given by

p(zi|zi−1, xi) = softmax(W [h(xi); vzi−1] + b) , (2)

where W, b, the network h and the embeddings vz are parameters
that are learnt during training.

2.2 The Emission Distribution:

Given the current state zi, this distribution models probability of all
possible responses. To model this distribution, the states {1, . . . ,K}

Algorithm 1 Training Algorithm
1: procedure COMPUTECOST

2: Input: Dialog Utterances {(x(i), y(i))}Ni
i=1

3: Parameter Weights Θ, Posterior q(zi|zi−1,x,y)
4: Output: Log likelihood L(Θ)
5: Compute fN (Θ, zN−1) using the transition and
6: emission distribution as defined in (9)
7: for i ← N − 1 downto 1 do

8: Compute fi(Θ, zi−1) from fi+1(Θ, zi) using the
9: transition and emission distribution as defined

10: in (8).
11: return f0(Θ, z0 = 0)

are represented using continuous vectors {r1, . . . , rK}. We feed the
embedding of the current state to the decoder LSTM which outputs
a sequence of distributions over the words. The probability of a re-
sponse yi = (w1, . . . , wM) conditioned on the state zi is given by

p(yi|zi) =
M∏
j=1

p(wj |w1, . . . , wj−1, zi) (3)

2.3 Common representation of z versus different
representation

As discussed previously, we have a vector representation of the
latent variable Z , vZ for obtaining the transition probabilities
p(Zi|Zi−1, xi). We have another representation rZ for generating
the corresponding response. Both these vectors are trainable param-
eters. We have tried two different approaches , one using a common
representation for rZ and vz and another with different representa-
tions. We found that using a common representation works better on
all the datasets except SMD datasets with Schedule and Navigate do-
mains.

2.4 Training the LSTN

In order to train the model, we need to maximize the marginal log-
likelihood of the responses given the user utterances. Hence, we need
to marginalize out the states z = (z1, . . . , zN) from the model. The
corresponding marginal log-likelihood for a single conversation is
given by

L(Θ) = ln(p(y|x,Θ))

= ln

(∑
z

∏
i

p(zi|zi−1, xi; Θ)p(yi|zi; Θ)

)
.

We use EM algorithm to maximize the above objective function.
In the first step, also referred to as the E-step in literature, we

compute the posterior distribution over all the states of a given
conversation based on our current estimate of the parameters i.e.
q(z) = p(z|x,y; θold). In the M-step, we maximize the expectation
of the joint log-likelihood with respect to the posterior obtained in
the E-step i.e. maxθ Eq(z)(ln(p(z|x, y; θ))). We discuss these steps
in further detail below.

D. Madan et al. / Unsupervised Learning of Interpretable Dialog Models2102

����
� �

��������	�

���	�

�	
���
���� �����

������������	���
��
���
�

��������
�
���
�������
�
	�
��
�����
��
���
�������

������
��
���
� �� 	�� ������	��

�������	���������	�� ��������������	�����
�����������������������������������

��������	�

���	�

�	
�
���� ���
��
� �

������	��
���	�
� ����
����

������	��
���	��
� ��
��

Figure 1. The Latent State Tracking Network for two steps of a conversation.

���� ��

���� ��

������

Observed

Unobserved

Figure 2. Plate notation of the Latent State Tracking Network

2.4.1 The E-step:

As discussed in the previous section, the prior distribution over the
states of an LSTN given the user utterances factorizes as follows:

p(z|x) =
N∏
i=1

p(zi|zi−1, xi), (4)

where z0 = 0 is the default state at the beginning of a conversation.
Here, we will discuss the computation of the posterior distribution
over the states given the user utterances and the agent responses. As
with the prior, the posterior distribution over the states factorizes.
That is,

p(z|x,y) =
N∏
i=1

p(zi|zi−1,x,y)

For the sake of brevity, we refer to yi, . . . , yN as yi:N . The same
notation is used for sequence of user utterances and latent states. In
order to compute the posterior, we note that given the previous state,

the next state is independent of all previous agent responses. That is:

p(zi|zi−1,y,x) = p(zi|zi−1, yi:n,x)

∝ p(zi, yi:n|zi−1,x)

To compute the above distribution, we use dynamic programming.
In particular, the above distribution can be expressed in terms of the
corresponding distribution at time step i+ 1 as follows:

p(zi, yi:N |zi−1,x)

= p(zi|zi−1, xi)p(yi|zi)
∑
zi+1

p(zi+1, yi+1:N |zi,x) (5)

Note that the distribution within the summation has the same form
as the distribution that we wish to compute. Hence, the desired dis-
tribution at timestep i can be computed recursively from the corre-
sponding distribution at timestep i+ 1. Moreover, the distribution at
the last timestep can be computed directly as follows:

p(zN , yN |zN−1,x) = p(zN |zN−1, xN)p(yN |zN)

Thus, we can run the above computation over the N turns of the
conversation to obtain the posterior distribution of each latent state.

2.4.2 The M-step:

Having obtained the posterior, we use it for maximizing the expected
complete log-likelihood of the agent responses and the latent states.
In particular, we need to maximize

Ez∼p(z|y,x,Θold) ln p(z,y|x,Θ) (6)

Here, Θold in the posterior refers to the fact that the posterior has
been evaluated using the current parameters and will be held fixed
during the M-step. The above expectation is computed recursively

D. Madan et al. / Unsupervised Learning of Interpretable Dialog Models 2103

using a Viterbi based approach. We define fi(Θ, zi−1) as the ex-
pectation of the log-likelihood of the last N − i states and agent
responses. That is:

fi(Θ, zi−1) = Ezi:N ln p(zi:N ,yi:N |xi:N , zi−1,Θ) , (7)

where the expectation is over the posterior distribution of the latent
states. Note that the objective that we wish to optimize is f1(Θ, z0),
where z0 is the default start state. To compute this quantity, we note
that fi(Θ, zi−1) can be expressed as function of fi+1(Θ, zi) as fol-
lows:

fi(Θ, zi−1) = Ezi [fi+1(Θ, zi)

+ ln(p(zi|zi−1, xi,Θ)) + ln(p(yi|zi,Θ))] ,
(8)

where the expectation is over the posterior distribution of Zi. Finally,
we note that fN (Θ, zn−1) can be computed directly to begin the
recursion as follows:

fN (Θ, zN−1) =EZN [ln(p(zN |zN−1, xN ,Θ))

+ ln(p(yN |zN ,Θ))]
(9)

The computation of f1(Θ, z0) from fN (Θ, zN) constitutes the for-
ward pass of the M-step and is listed in Algorithm 1. Note that each
step of the computation is differentiable, and hence, the objective is
a differentiable function of the transition and emission distributions.
Hence, during the backward pass, we backpropagate the gradient all
the way from the final objective to the transition and emission distri-
butions.

2.5 Inference

In this section we will discuss how the trained model is used for gen-
erating the response utterance given the context consisting of previ-
ous user utterances and agent responses . There are two parts to our
inference:-

2.5.1 Emission Module:

Here given a dialog state, we need to generate the mostly likely
responses associated with the same. Having learnt the distribution
p(y|z), as a decoder RNN, we use this to generate top responses for
each value of z. For each value of z from 1 to K, we initialize the hid-
den state of decoder RNN with vector rz and perform beam search to
generate the top responses. In our experiments we used a beam size
of 10. This step is performed only once and is not repeated for new
test examples. At test time it will suffice to use the top responses as-
sociated with a state or sample one from the top 10 generated through
beam search.

2.5.2 Transition Module:

This module computes a distribution over current state given the past
state and the new user utterance. During inference, we use this mod-
ule to obtain the distribution of each state given the past user utter-
ances. In particular, the distribution of the ith state given all the user
utterances till step i can be expressed as follows:
p(zi|x1:i) =

∑
zi−1

p(zi|zi−1,xi)p(zi−1|x1:i−1) . During infer-
ence, we can generate the response corresponding to the most prob-
able hidden state. i.e. we compute z̄i = argmaxzi

p(zi|x1:i). We
then produce the most likely response corresponding to z̄i using
emission module.

Algorithm 2 Inference Algorithm
1: procedure STATETRACKER

2: Initialize state distribution as p(z0 = 0) = 1 and i ← 1.
3: while True do

4: Receive new user utterance xi

5: Update p(zi) =
∑

zi−1
p(zi−1)p(zi|zi−1, xi)

6: Compute z̄i = argmaxzi
p(zi)

7: Generate top response corresponding to z̄i
8: i ← i+ 1

3 Experiments

3.1 Datasets

We perform experiments on Stanford Multi-Domain Dataset (SMD)
[1], and Car Assistant Dialog Dataset (CADD). The SMD dataset
contains conversations from three domains: calendar, navigation and
weather. CADD is a set of 986 conversations between an in-house car
assistant bot and its users. The bot is designed to help with navigation
and controlling various devices in the car. SMD was pre-processed
as in [1] to reduce lexical variability.

3.2 Training

Adam optimizer was used for training . The hyperparameters were
selected based on perplexity on a held-out validation set. The learn-
ing rate was varied over the set {0.01, 0.001, 0.0001}, dimension of
word embeddings from {16, 32, 64}, the number of distinct latent
states K from {8, 16, 32, 64, 128}. We experimented with having
same versus different embeddings for the latent states while comput-
ing transition and emission distributions.

Intent Class Train User Utterances

#turn on music
music
play music
turn on the radio

#rock
i like rock
oh rock then
i prefer the genre of rock

#jazz
jazz
play some jazz
i hate jazz

#find gas station
find a gas station
locate a gas station
i need gas

#first
first
1
second please

Table 1. Intent classes and the associated user utterances from the CADD
dataset

3.3 Interpretable Model

The discrete nature of LSTN enables it to be translated to a finite
state automaton, whose transitions correspond to user utterances. To
obtain this automaton, we run the inference algorithm of LSTN for
each conversation in the training data. Each turn in a conversation is

D. Madan et al. / Unsupervised Learning of Interpretable Dialog Models2104

labelled with a latent state z in this step. To obtain the transitions for
each pair of states z and z′, we identify the user utterance u in the
conversation that led the transition from z to z′. The directed edge
between the two nodes is labelled with the utterance x.

When we simulate the above procedure over all the conversations
in the training data, we may obtain several user utterances that lead
the transition between z and z′. Each such group of user utterances
between a fixed pair of values z and z′ correspond to an intent class.
Few of the intent classes in the CADD dataset are listed in Table 1.
As can be observed from the table, LSTN modeling causes similar
user utterances to cluster together in the same intent class.

We further associated each node in the finite state automaton with
an agent response. To obtain the response for a latent state z, we
maximize the emission module p(y|z) with respect to the response
y. In practice, this can be achieved by running beam search on the
emission module p(r|z), and picking the response that maximizes
this probability.

Having completed the above steps, we obtain a finite state automa-
ton whose edges are labelled with user intents, while the vertices are
labelled with agent responses. We refer to this automaton as dialog
flow. This dialog flow can be directly consumed by chatbot building
frameworks such as Google Dialog Flow , IBM Watson Assistant and
Microsoft Bot Framework to create a chatbot. As the dialog flow is
completely interpretable, a domain expert can edit the transitions and
emissions to fine tune the bot as required.

Figure 3. A part of the dialog flow for CADD dataset

A conversation can be generated by traversing the dialog flow and
listing the user intents and agent responses of the nodes and edges
visited, sequentially. A subtree of the dialog flow for CADD dataset
is shown in Figure 3.

3.4 Baselines

To illustrate the advantage of jointly modeling the transitions and
emissions (as in LSTN), we compare it against a model that learns
the emissions and the transitions in a pipelined fashion. We call the
latter model as split-LSTN. This model is learnt in two phases. In the
first phase, the conversation-so-far is encoded using an LSTM and
mapped to a discrete-value from which the response is generated.
The likelihood of the response is maximized using EM algorithm
to learn the latent states and the emissions. In the second phase, we
learn the transitions between the latent states obtained in the previous
phase in a supervised manner.

We further compare our model against a sequence-to-sequence
model often employed for conversation modelling, namely, hierar-
chical recurrent encoder decoder (HRED) [11]. HRED translates a
sequence of user utterances and agent responses to a continuous val-
ued context vector. The agent response is generated from the context
vector using a decoder.

3.5 Editing the LSTN

HRED is not an interpretable model, and hence, it is not possible
to edit the model to improve the responses. In contrast, the proposed
LSTN model can be edited by first converting the model into a dialog
flow as described in the previous section and then editing the edges
and vertices of the automaton. We refer to the edited model as edited-
LSTN. In particular, we follow a two step process to edit dialog flows:
1) Split almost similar response clusters and 2) Merge examples from
similar transitions together.

In some cases, two very similar responses get associated with the
same state, say z. For example, in the CADD dataset, ”i ’ll turn off
the lights for you” and ”i ’ll turn off the wipers for you” are associ-
ated with the same state. The former response has the highest prob-
ability of being generated given the state z. So, during test time it
would be picked when the user requests to turn off either the lights
or the wipers. The first step helps to alleviate this issue by spliting
the state into two (i.e) a new state z′ would now be created with a re-
sponse ”i ’ll turn off the wipers for you”. Transitions to/from the new
state z′ are then created by splitting the transitions which include z.

Current user utterance and the previous discrete state decide the
current discrete state. In other words, user utterances that helps move
the state from a state z to another state z′ are clustered together. In
some cases, the current state is dependent only on the current user
input but not the previous state. For example, when the user input is
”Thank you”, irrespective of what the previous state is, the reply is
”you are welcome”. In such cases, forcing the transition to be condi-
tioned on the previous state, creates sparsity. In some cases, more that
one transition to a state z would semantically similar. So, as a second
step, we identify such transitions and merge the examples together to
reduce sparsity.

While the dialog flow discussed in Section 3.3 was obtained in
a completely automated manner, we involve a human-in-the-loop to
edit the dialog flow. However, the effort involved in editing the dialog
flow is much smaller than building an entire dialog flow from scratch.

3.6 Quantitative Evaluation

Evaluating dialogue models is a significantly challenging problem on
its own. One can use perplexity to evaluate how well a given proba-
bilistic model fits the data. However, when the data contains a lot of
generic utterances, a model can achieve low perplexity by assigning

D. Madan et al. / Unsupervised Learning of Interpretable Dialog Models 2105

Dataset
BLEU Score Human Evaluation

HRED Split-LSTN LSTN Edited-LSTN HRED LSTN Edited-LSTN

SMD (Wea.) 15.59 13.41 16.16 15.92 0.84 0.90 0.92
SMD (Cal.) 17.90 14.78 15.90 17.30 0.80 0.80 0.88
SMD (Nav.) 9.09 7.51 8.03 7.98 0.78 0.68 0.84
CADD 63.88 56.05 57.98 49.65 0.54 0.62 0.86

Table 2. Comparison of BLEU Scores of responses generated from HRED, split-LSTN, LSTN and edited-LSTN Connections

high probability to generic utterances. In contrast, a model that gen-
erates non-generic utterances specific to the conversation could still
have high perplexity.

Alternatively, one can employ n-gram based measures such as
BLEU to determine the overlap between the generated and ground-
truth response. Unlike perplexity, BLEU score can be used for com-
paring non-probabilistic models. While BLEU scores are often used
for comparing models in translation and speech recognition, they are
quite unsuitable for comparing dialog models since two responses
with no n-gram overlap could be equally suitable for a given context.

Finally, since the BLEU scores can be uncorrelated with human
judgements for dialogs [6], we also performed human annotations
on all the 4 datasets. In particular, we randomly selected 50 context-
response pairs for each dataset. We generated the responses using
3 models: HRED, LSTN and Edited-LSTN to obtain a total of 600
annotations. For each context, the annotator was asked to assign a
binary value for each annotated response, where a 1 indicates that
the response is suitable for the current context, while a 0 indicates its
unsuitability.

Table 2 lists the BLEU scores as well as the scores for human eval-
uation obtained on various datasets. As can be observed from the Ta-
ble, non-interpretable sequence-to-sequence models achieve higher
BLEU score than interpretable models. Among interpretable mod-
els, LSTNs achieve better BLEU score than split-LSTN, thereby sug-
gesting that jointly optimizing the transition and emission modules is
beneficial for conversation modelling.

While LSTN and Edited-LSTN achieve lower BLEU scores, they
perform better on human evaluations. This is due to the fact that a sin-
gle context can be associated with multiple responses. For instance,
as shown in Table 3, the responses generated by HRED as well as
edited-LSTN are suitable for the context. However, the responses
generated by Edited-LSTN will have much lower BLEU score than
the one generated by HRED. It is also worthy to note that editing
the LSTN model often results in a decrease in BLEU scores. This is
expected since we do not care about maximizing quantitative metrics
while editing LSTN. To evaluate the effect of the number of latent
states K, we trained LSTN for several values for K. Figure 4 shows
the performance in terms of BLEU score for two datasets. We ob-
serve that as the value of K increases the performance also increases
and saturates after a while.

4 Related Work

To the best of our knowledge, our work is the first to propose an
unsupervised approach for learning interpretable dialog models. The
word unsupervised indicates that the dialogs used to train the model
are not annotated with any labels.
Unsupervised Learning of Dialogs: Early approaches for learning
dialogs from chat transcripts were inspired from machine transla-

Figure 4. Variation of BLEU Score with number of latent states K

tion [8] and language modelling [11]. [13] ([13]) proposed a deep
learning approach based on the sequence-to-sequence model [12].
[9] ([9]) proposed an approach that leverages the hierarchical struc-
ture of the dialog to model them better. Even though these models
can be trained in an unsupervised manner, they are not interpretable.
Interpretable Dialog Models Traditional task oriented dialog sys-
tems were built using reinforcement learning (RL) approaches. The
systems were either modeled as Markov decision processes [3, 14]
or partially observable Markov decision processes [17, 2]. Recently,
there have been efforts [15, 16] to solve RL based approaches using
deep learning. The discrete states and actions make the model easy to
interpret. However this comes at a cost of handcrafting states, actions
and rewards for training the RL model. In our approach, we provide
interpretability by learning discrete intermediate states latently with-
out any handcrafting.
Discrete Latent Variables: An emerging area in deep learning re-
search is to use a set of discrete latent variables in the deep learning
model. Learning dialogs by augmenting the real-valued context vec-
tor with discrete latent variables [16] adds a notion of interpretability.
The prior works only use the discrete state to generate the response.
However the transitions are still in continuous space. Another work
[7] also considers the idea of finding dominant clusters in the user
utterances and the response space. However this work only consid-
ers clusters based on utterance level. Also the transitions between the
states are not learnt. Our work differs from these approaches as we
use discrete latent states to capture the entire conversation context.

D. Madan et al. / Unsupervised Learning of Interpretable Dialog Models2106

User hi there

Gold Response
hello ! i ’m doing good . i ’m here to
help you . just say the word

HRED
hello ! i ’m doing good . i ’m here to
help you . just say the word

Edited-LSTN
hi . it looks like a nice drive
today . what would you like me to do ?

User turn on wipers

Gold Response
hi . it looks like a nice drive
today . what would you like me to do ?

HRED i ’ll turn on the lights for you

Edited-LSTN i ’ll turn on the wipers for you

User thank you .

Gold Response you ’re welcome !

HRED you ’re welcome !

Edited-LSTN no problem .

Table 3. Examples of responses generated by HRED and edited-LSTN

The discrete states and the transitions between them help us in mak-
ing the entire model easy to interpret and modify. This also allows us
to create a dialog flow as discussed in Section 3.3 .

5 Conclusions

In this paper, we introduce a novel problem of learning interpretable
dialog models in an unsupervised manner. We propose a novel
model, Latent State Tracking Network (LSTN) for this task. LSTN
learns the discrete latent states using a EM based algorithm. We show
that (1) even after discretization the states learnt by LSTN are as
good as uninterpretable models (such as HRED) (2) joint learning of
emissions and transitions is better than learning them in a pipelined
manner and (3) the learnt emissions and transitions are interpretable
and meaningful.

REFERENCES

[1] Mihail Eric, Lakshmi Krishnan, Francois Charette, and Christopher D.
Manning, ‘Key-value retrieval networks for task-oriented dialogue’, in
Proceedings of the 18th Annual SIGdial Meeting on Discourse and Di-
alogue, Saarbrücken, Germany, August 15-17, 2017, pp. 37–49, (2017).

[2] Milica Gasic, Catherine Breslin, Matthew Henderson, Dongho Kim,
Martin Szummer, Blaise Thomson, Pirros Tsiakoulis, and Steve Young,
‘Pomdp-based dialogue manager adaptation to extended domains’, in
Proceedings of the SIGDIAL 2013 Conference, pp. 214–222, (2013).

[3] Esther Levin, Roberto Pieraccini, and Wieland Eckert, ‘A stochastic
model of human-machine interaction for learning dialog strategies’,
IEEE Transactions on Speech and Audio Processing, 8(1), 11–23,
(2000).

[4] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan,
‘A diversity-promoting objective function for neural conversation mod-
els’, in Proceedings of the 2016 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 110–119, (2015).

[5] Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and
Dan Jurafsky, ‘Deep reinforcement learning for dialogue generation’, in
Proceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, pp. 1192–1202, (2016).

[6] Chia-Wei Liu, Ryan Lowe, Iulian Serban, Mike Noseworthy, Laurent
Charlin, and Joelle Pineau, ‘How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation metrics for dialogue re-
sponse generation’, in Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pp. 2122–2132, (2016).

[7] Dhiraj Madan and Sachindra Joshi, ‘Finding dominant user ut-
terances and system responses in conversations’, arXiv preprint
arXiv:1710.10609, (2017).

[8] Alan Ritter, Colin Cherry, and William B Dolan, ‘Data-driven response
generation in social media’, in Proceedings of the conference on empir-
ical methods in natural language processing, pp. 583–593. Association
for Computational Linguistics, (2011).

[9] Iulian Vlad Serban, Alessandro Sordoni, Yoshua Bengio, Aaron C
Courville, and Joelle Pineau, ‘Building end-to-end dialogue systems
using generative hierarchical neural network models.’, in AAAI, vol-
ume 16, pp. 3776–3784, (2016).

[10] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin,
Joelle Pineau, Aaron C Courville, and Yoshua Bengio, ‘A hierarchi-
cal latent variable encoder-decoder model for generating dialogues.’, in
AAAI, pp. 3295–3301, (2017).

[11] Alessandro Sordoni, Michel Galley, Michael Auli, Chris Brockett,
Yangfeng Ji, Margaret Mitchell, Jian-Yun Nie, Jianfeng Gao, and Bill
Dolan, ‘A neural network approach to context-sensitive generation of
conversational responses’, in Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 196–205, (2015).

[12] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, ‘Sequence to sequence
learning with neural networks’, in Advances in neural information pro-
cessing systems, pp. 3104–3112, (2014).

[13] Oriol Vinyals and Quoc Le, ‘A neural conversational model’, Pro-
ceedings of the International Conference on Machine Learning, Deep
Learning Workshop., (2015).

[14] Marilyn Walker, Rashmi Prasad, and Amanda Stent, ‘A trainable gen-
erator for recommendations in multimodal dialog’, in Eighth European
Conference on Speech Communication and Technology, (2003).

[15] TH Wen, D Vandyke, N Mrkšı́c, M Gašı́c, LM Rojas-Barahona, PH Su,
S Ultes, and S Young, ‘A network-based end-to-end trainable task-
oriented dialogue system’, in 15th Conference of the European Chap-
ter of the Association for Computational Linguistics, EACL 2017-
Proceedings of Conference, volume 1, pp. 438–449, (2017).

[16] Tsung-Hsien Wen, Yishu Miao, Phil Blunsom, and Steve Young, ‘La-
tent intention dialogue models’, in International Conference on Ma-
chine Learning, pp. 3732–3741, (2017).

[17] Jason D Williams and Steve Young, ‘Partially observable Markov de-
cision processes for spoken dialog systems’, Computer Speech & Lan-
guage, 21(2), 393–422, (2007).

[18] Tiancheng Zhao, Kyusong Lee, and Maxine Eskenazi, ‘Unsupervised
discrete sentence representation learning for interpretable neural dia-
log generation’, in Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers), pp.
1098–1107. Association for Computational Linguistics, (2018).

D. Madan et al. / Unsupervised Learning of Interpretable Dialog Models 2107

